Wachspress Objects and the Reconstruction of Convex Polytopes University of Warwick

Wachspress ObJECTS AND THE
 Reconstruction of Convex Polytopes from Partial Data

Martin Winter
University of Warwick
07. February, 2023

The setting: CONVEX POLYTOPES

$$
P=\operatorname{conv}\left\{p_{1}, \ldots, p_{n}\right\} \subset \mathbb{R}^{d}
$$

- always convex

- general dimension $d \geq 2$
- general geometry \& combinatorics (not only simple/simplicial/lattice/...)
- always of full dimension

Combinatorics of polytopes

edge-graph $\ldots G_{P}:=\{$ vertices and edges of $P\}$ skeleton \ldots embedding $p: G_{P} \rightarrow \mathbb{R}^{d}$ of the edge-graph
face lattice $\ldots \mathcal{F}(P):=\{$ faces of P ordered by inclusion $\}$
or combinatorial type

WACHSPRESS OBJECTS

Wachspress objects

"A family of objects that appear as bridges between algebra, geometry and combinatorics"

- Wachspress coordinates
- Wachspress variety
- Wachspress ideal
- Wachspress map
- adjoint polynomial
- adjoint hypersurface
- Izmestiev matrix

Wachspress objects

"A family of objects that appear as bridges between algebra, geometry and combinatorics"

- Wachspress coordinates
- Wachspress variety
- Wachspress ideal
- Wachspress map
- adjoint polynomial
- adjoint hypersurface
- Izmestiev matrix

Generalized barycentric coordinates

$\left.\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}_{\geq 0}^{n} \mid \alpha_{1}+\cdots+\alpha_{n}=1\right)\right\}$
Generalized barycentric coordinates (GBCs): $\alpha: P \rightarrow \Delta_{n}$ satisfy

$$
\sum_{i} \alpha_{i}(x) p_{i}=x \quad \text { (linear precision) }
$$

Generalized barycentric coordinates

$\left.\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}_{\geq 0}^{n} \mid \alpha_{1}+\cdots+\alpha_{n}=1\right)\right\}$
Generalized barycentric coordinates (GBCs): $\alpha: P \rightarrow \Delta_{n}$ satisfy

$$
\sum_{i} \alpha_{i}(x) p_{i}=x \quad \text { (linear precision) }
$$

There are ...

- harmonic coordinates,
- mean value coordinates,
- Wachspress coordinates (Wachspress 1975; WARren, 1996)

Generalized barycentric coordinates

$$
\left.\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}_{\geq 0}^{n} \mid \alpha_{1}+\cdots+\alpha_{n}=1\right)\right\}
$$

Generalized barycentric coordinates (GBCs): $\alpha: P \rightarrow \Delta_{n}$ satisfy

$$
\sum_{i} \alpha_{i}(x) p_{i}=x \quad \text { (linear precision) }
$$

There are ...

- harmonic coordinates,
- mean value coordinates,
- Wachspress coordinates (Wachspress 1975; Warren, 1996)
... have many non-trivially equivalent definitions

The many faces of Wachspress coordinates

I. Unique rational GBCs of lowest possible degree (Warren, 2003)

$$
\alpha_{i}(x)=\frac{\mathrm{p}_{i}(x)}{\mathrm{q}(x)} \quad \text { where } \mathrm{q}(x)=\sum_{i} \mathrm{p}_{i}(x) \ldots \text { adjoint polynomial }
$$

- there are not always polynomial GBCs
\rightarrow degree $=\#$ facets $-d$

The many faces of Wachspress coordinates

I. Unique rational GBCs of lowest possible degree (Warren, 2003)

$$
\alpha_{i}(x)=\frac{\mathrm{p}_{i}(x)}{\mathrm{q}(x)} \quad \text { where } \mathrm{q}(x)=\sum_{i} \mathrm{p}_{i}(x) \ldots \text { adjoint polynomial }
$$

- there are not always polynomial GBCs
\rightarrow degree $=\#$ facets $-d$
- Wachspress variety

$$
\ldots V:=\operatorname{im}(\alpha) \subseteq \Delta_{n}
$$

- Wachspress ideal $\ldots I(V)$
\cong Stanley-Reisner ideal

The many faces of Wachspress coordinates

II. Relative cone volumes (Ju et al., 2005)

$$
\text { polar dual } \ldots P^{\circ}:=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, p_{i}\right\rangle \leq 1 \text { for all } i \in V\left(G_{P}\right)\right\} .
$$

$$
\alpha_{i}=\frac{\operatorname{vol}\left(F_{i}^{\circ}\right)}{\left\|p_{i}\right\| \operatorname{vol}\left(P^{\circ}\right)}
$$

The many faces of Wachspress coordinates

III. From spectral embeddings of the edge-graph (W., 2023)

$$
\begin{aligned}
\theta \in \operatorname{Spec}(A) & \Longrightarrow u_{1}, \ldots, u_{d} \in \operatorname{Eig}_{\theta}(A) \\
& \Longrightarrow\left[\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{d} \\
\mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
- & p_{1}- \\
\vdots \\
- & p_{n} & -
\end{array}\right] \in \mathbb{R}^{n \times d}
\end{aligned}
$$

The many faces of Wachspress coordinates

III. From spectral embeddings of the edge-graph (W., 2023)

$$
\begin{aligned}
\theta \in \operatorname{Spec}(A) & \Longrightarrow u_{1}, \ldots, u_{d} \in \operatorname{Eig}_{\theta}(A) \\
& \Longrightarrow\left[\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{d} \\
\mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
- & p_{1} & - \\
\vdots \\
- & p_{n} & -
\end{array}\right] \in \mathbb{R}^{n \times d}
\end{aligned}
$$

Colin de Verdière embedding

- A polytope skeleton is a spectral embedding of the edge-graph w.r.t. some weighted adjacency matrix M (Izmestiev, 2010)

$$
\alpha_{i}:=\sum_{j} M_{i j}
$$

The many faces of Wachspress coordinates

IV. Via a variation of volume

$$
P^{\circ}(\mathbf{c}):=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, p_{i}\right\rangle \leq c_{i} \text { for all } i \in V\left(G_{P}\right)\right\} .
$$

where $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{R}^{n}$.

The many faces of Wachspress coordinates

IV. Via a variation of volume

$$
P^{\circ}(\mathbf{c}):=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, p_{i}\right\rangle \leq c_{i} \text { for all } i \in V\left(G_{P}\right)\right\}
$$

where $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{R}^{n}$. Expand $\operatorname{vol}\left(P^{\circ}(\mathbf{c})\right)$ at $\mathbf{c}=1$:

$$
\operatorname{vol}\left(P^{\circ}(\mathbf{c})\right)=\operatorname{vol}\left(P^{\circ}\right)+\langle\tilde{\alpha}, \mathbf{c}-\mathbf{1}\rangle+\frac{1}{2}(\mathbf{c}-\mathbf{1})^{\top} \tilde{M}(\mathbf{c}-\mathbf{1})+\cdots
$$

Wachspress
coordinates

Izmestiev
matrix

WACHSPRESS COORDINATES ACROSS DISCIPLINES

- adjoint polynomial q cuts out minimal degree surface that passes through "external non-faces"
- algebraic statistics
- moment varieties of polytopes
- Bayesian statistics

- intersection theory (computing Segre classes of monomial schemes)
- P with adjoint polynomial is a positive geometry (cf. the amplituhedron from theoretical physics)
- has also been defined on polycons and smooth convex bodies
- Izmestiev matrix has been used
- to encode polytopal symmetries in colorings of the edge-gaph
- for progress on the Hirsch conjecture

RECONSTRUCTION OF POLYTOPES FROM PARTIAL DATA

RECONSTRUCTION OF POLYTOPES

"In how far is a polytope determined by partial combinatorial and geometric data, up to isometry, affine transformation or combinatorial equivalence?"

Reconstruction of polytopes

"In how far is a polytope determined by partial combinatorial and geometric data, up to isometry, affine transformation or combinatorial equivalence?"

- Does the edge-graph determine the combinatorics?

RECONSTRUCTION OF POLYTOPES

"In how far is a polytope determined by partial combinatorial and geometric data, up to isometry, affine transformation or combinatorial equivalence?"

- Does the edge-graph determine the combinatorics? No.

RECONSTRUCTION OF POLYTOPES

"In how far is a polytope determined by partial combinatorial and geometric data, up to isometry, affine transformation or combinatorial equivalence?"

- Does the edge-graph determine the combinatorics? No.
- Does combinatorics + edge-lengths determine the geometry?

RECONSTRUCTION OF POLYTOPES

"In how far is a polytope determined by partial combinatorial and geometric data, up to isometry, affine transformation or combinatorial equivalence?"

- Does the edge-graph determine the combinatorics? No.
- Does combinatorics + edge-lengths determine the geometry? No.

Flexible polytopes

Two opposing EFFECTS ...

Simple polytopes:

- combinatorics can be reconstructed
(Blind \& Mani; Kalai)
- geometry cannot be reconstructed

Simplicial polytopes:

- geometry can be reconstructed, once combinatorics is known (CAUCHY)
- combinatorics cannot always be reconstructed (e.g. cyclic polytopes)

Two opposing EfFECTS ...

Simple polytopes:

- combinatorics can be reconstructed (Blind \& Mani; Kalai)
- geometry cannot be reconstructed

Simplicial polytopes:

- geometry can be reconstructed, once combinatorics is known (CAUCHY)
- combinatorics cannot always be reconstructed (e.g. cyclic polytopes)
... what additional data is needed to permit a reconstruction?

Reconstruction of POINTED POLYTOPES

"Rigidity, Tensegrity and Reconstruction of Polytopes under Metric Constraints" (arXiv:2302.14194, accepted at IMRN)

Pointed polytopes

$:=$ polytope $P \subset \mathbb{R}^{d}+$ point $x_{P} \in \mathbb{R}^{d}$

Pointed polytopes

$:=$ polytope $P \subset \mathbb{R}^{d}+$ point $x_{P} \in \mathbb{R}^{d}$

Conjecture. (W., 2023)

A pointed polytope P with $x_{P} \in \operatorname{int}(P)$ is uniquely determined (up to isometry) by its edge-graph, edge lengths and radii.
implies e.g. reconstruction of matroids from base exchange graph

Point in The Interior is necessary ...

Conjecture. (W., 2023)
A pointed polytope P with $x_{P} \in \operatorname{int}(P)$ is uniquely determined (up to isometry) by its edge-graph, edge lengths and radii.

Tensegrity version

Conjecture. (W., 2023)

If $P \subset \mathbb{R}^{d}$ and $Q \subset \mathbb{R}^{e}$ are pointed polytopes with the same edge-graph and
(i) $x_{Q} \in \operatorname{int}(Q)$
(ii) edges in Q are at most as long as in P,
(iii) radii in Q are at least as large as in P, then P and Q are isometric.
"A polytope cannot become larger if all its edges become shorter."

Conjecture holds in special cases (w., 2023)

The conjecture holds in the following cases:
I. Q is a small perturbation of P

- one can replace Q by a graph embedding $q: G_{P} \rightarrow \mathbb{R}^{d}$
\cong locally rigid as a framework

II. P and Q are centrally symmetric

- one can replace Q by a centrally symmetric graph embedding $q: G_{P} \rightarrow \mathbb{R}^{e}$
\cong universally rigid as a centrally symmetric framework
III. P and Q are combinatorially equivalent
- in particular true for polytope of dimension $d \leq 3$

CONJECTURE HOLDS IN SPECIAL CASES (W., 2023)

The conjecture holds in the following cases:
I. Q is a small perturbation of P

- one can replace Q by a graph embedding $q: G_{P} \rightarrow \mathbb{R}^{d}$
\cong locally rigid as a framework

$P \subset \mathbb{R}^{d}$

$Q \subset \mathbb{R}^{e}$

$q: G_{P} \rightarrow \mathbb{R}^{e}$

Conjecture holds in special cases (w., 2023)

The conjecture holds in the following cases:
I. Q is a small perturbation of P

- one can replace Q by a graph embedding $q: G_{P} \rightarrow \mathbb{R}^{d}$
\cong locally rigid as a framework

II. P and Q are centrally symmetric

- one can replace Q by a centrally symmetric graph embedding $q: G_{P} \rightarrow \mathbb{R}^{e}$
\cong universally rigid as a centrally symmetric framework
III. P and Q are combinatorially equivalent
- in particular true for polytope of dimension $d \leq 3$

General graph embedding version is false

Warmup: SIMPLICES

$P, Q \subset \mathbb{R}^{d}$ simplices,
(i) $0 \in \operatorname{int}(Q)$,
(ii) edges in Q are at most as long as in P.
(iii) radii in Q are at least as large as in P.

Warmup: SIMPLICES

$P, Q \subset \mathbb{R}^{d}$ simplices,
(i) $0 \in \operatorname{int}(Q)$,
(ii) edges in Q are at most as long as in P.
(iii) radii in Q are at least as large as in P.

Proof.

Warmup: SIMPLICES

$P, Q \subset \mathbb{R}^{d}$ simplices,
(i) $0 \in \operatorname{int}(Q)$,
(ii) edges in Q are at most as long as in P.
(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_{n}$ holds

$$
\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} p_{i}\right\|^{2}+\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|p_{i}-p_{j}\right\|^{2}
$$

Warmup: SIMPLICES

$P, Q \subset \mathbb{R}^{d}$ simplices,
(i) $0 \in \operatorname{int}(Q)$,
(ii) edges in Q are at most as long as in P.
(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_{n}$ holds

$$
\begin{aligned}
& \sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} p_{i}\right\|^{2}+\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|p_{i}-p_{j}\right\|^{2} \\
& \sum_{i} \alpha_{i}\left\|q_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} q_{i}\right\|^{2}+\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|q_{i}-q_{j}\right\|^{2}
\end{aligned}
$$

Warmup: SIMPLICES

$P, Q \subset \mathbb{R}^{d}$ simplices,
(i) $0 \in \operatorname{int}(Q)$,
(ii) edges in Q are at most as long as in P.
(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_{n}$ holds

$$
\begin{gathered}
\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} p_{i}\right\|^{2}+\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|p_{i}-p_{j}\right\|^{2} \\
\text { VI (ii) } \\
\sum_{i} \alpha_{i}\left\|q_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} q_{i}\right\|^{2}+\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|q_{i}-q_{j}\right\|^{2}
\end{gathered}
$$

Warmup: SIMPLICES

$P, Q \subset \mathbb{R}^{d}$ simplices,
(i) $0 \in \operatorname{int}(Q)$,
(ii) edges in Q are at most as long as in P.
(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_{n}$ holds

$$
\begin{gathered}
\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} p_{i}\right\|^{2}+\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|p_{i}-p_{j}\right\|^{2} \\
\text { NI (iii) } \\
\sum_{i} \alpha_{i}\left\|q_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} q_{i}\right\|^{2}+\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|q_{i}-q_{j}\right\|^{2}
\end{gathered}
$$

Warmup: SIMPLICES

$P, Q \subset \mathbb{R}^{d}$ simplices,
(i) $0 \in \operatorname{int}(Q), \Longrightarrow 0=\sum_{i} \alpha_{i} q_{i} \ldots$ convex combination
(ii) edges in Q are at most as long as in P.
(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_{n}$ holds

$$
\begin{gathered}
\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} p_{i}\right\|^{2}+\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|p_{i}-p_{j}\right\|^{2} \\
\text { NI (iii) } \\
\sum_{i} \alpha_{i}\left\|q_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} q_{i}\right\|^{2}+\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|q_{i}-q_{j}\right\|^{2}
\end{gathered}
$$

Warmup: SIMPLICES

$P, Q \subset \mathbb{R}^{d}$ simplices,
(i) $0 \in \operatorname{int}(Q), \Longrightarrow 0=\sum_{i} \alpha_{i} q_{i} \ldots$ convex combination
(ii) edges in Q are at most as long as in P.
(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_{n}$ holds

$$
\begin{array}{rc}
\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} p_{i}\right\|^{2}+\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|p_{i}-p_{j}\right\|^{2} \\
\text { NI (iii) } \quad \text { VI (ii) } \\
\sum_{i} \alpha_{i}\left\|q_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} q_{i}\right\|^{2}+\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|q_{i}-q_{j}\right\|^{2}
\end{array}
$$

Warmup: SIMPLICES

$P, Q \subset \mathbb{R}^{d}$ simplices,
(i) $0 \in \operatorname{int}(Q), \Longrightarrow 0=\sum_{i} \alpha_{i} q_{i} \ldots$ convex combination
(ii) edges in Q are at most as long as in P.
(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_{n}$ holds

$$
\begin{array}{rc}
\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} p_{i}\right\|^{2}+\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|p_{i}-p_{j}\right\|^{2} \\
\| \text { (iii) } & \| \text { (i) } \\
\sum_{i} \alpha_{i}\left\|q_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} q_{i}\right\|^{2}+\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|q_{i}-q_{j}\right\|^{2}
\end{array}
$$

Warmup: SIMPLICES

$P, Q \subset \mathbb{R}^{d}$ simplices,
(i) $0 \in \operatorname{int}(Q), \Longrightarrow 0=\sum_{i} \alpha_{i} q_{i} \ldots$ convex combination
(ii) edges in Q are at most as long as in P.
(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_{n}$ holds

$$
\begin{array}{rc}
\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} p_{i}\right\|^{2}+\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|p_{i}-p_{j}\right\|^{2} \\
\| \text { (iii) } \| \text { (ii) } \\
\sum_{i} \alpha_{i}\left\|q_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} q_{i}\right\|^{2}+\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|q_{i}-q_{j}\right\|^{2}
\end{array}
$$

Therefore $P \simeq Q$.

Warmup: SIMPLICES

$P, Q \subset \mathbb{R}^{d}$ simplices,
(i) $0 \in \operatorname{int}(Q), \Longrightarrow 0=\sum_{i} \alpha_{i} q_{i} \ldots$ convex combination
(ii) edges in Q are at most as long as in P.
(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_{n}$ holds

$$
\begin{array}{rc}
\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} p_{i}\right\|^{2}+\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|p_{i}-p_{j}\right\|^{2} \\
\| \text { (iii) } \quad \text { VI ?? } \\
\sum_{i} \alpha_{i}\left\|q_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} q_{i}\right\|^{2}+\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|q_{i}-q_{j}\right\|^{2}
\end{array}
$$

Therefore $P \simeq Q$.

EXPANSION OF POLYTOPES

Fix $\alpha \in \Delta_{n}:=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}_{\geq 0}^{n} \mid \alpha_{1}+\cdots+\alpha_{n}=1\right\}$

$$
\alpha \text {-expansion: } \quad\|P\|_{\alpha}^{2}:=\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|p_{i}-p_{j}\right\|^{2}
$$

EXPANSION OF POLYTOPES

Fix $\alpha \in \Delta_{n}:=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}_{\geq 0}^{n} \mid \alpha_{1}+\cdots+\alpha_{n}=1\right\}$

$$
\alpha \text {-expansion: } \quad\|P\|_{\alpha}^{2}:=\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|p_{i}-p_{j}\right\|^{2}
$$

"If edges shrink, then the expansion decreases."

Expansion of polytopes

Fix $\alpha \in \Delta_{n}:=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}_{\geq 0}^{n} \mid \alpha_{1}+\cdots+\alpha_{n}=1\right\}$

$$
\alpha \text {-expansion: } \quad\|P\|_{\alpha}^{2}:=\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|p_{i}-p_{j}\right\|^{2}
$$

"If edges shrink, then the expansion decreases, if α is chosen suitably."

EXPANSION OF POLYTOPES

Fix $\alpha \in \Delta_{n}:=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}_{\geq 0}^{n} \mid \alpha_{1}+\cdots+\alpha_{n}=1\right\}$

$$
\alpha \text {-expansion: } \quad\|P\|_{\alpha}^{2}:=\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j}\left\|p_{i}-p_{j}\right\|^{2}
$$

"If edges shrink, then the expansion decreases, if α is chosen suitably."

Key theorem (W., 2023)

If α are the Wachspress coordinates of some interior point of P, and edges in $q: G_{P} \rightarrow \mathbb{R}^{e}$ are not longer than in P, then

$$
\|q\|_{\alpha} \leq\|P\|_{\alpha},
$$

with equivalence if and only if $\alpha \simeq_{\text {affine }} P$.

Consequences

Corollary.

A pointed polytope is uniquely determined (up to affine transformations) by its edge-graph, edge lengths and Wachspress coordinates.

A polytope can be reconstructed in polynomial time (via semidefinite program).

Are we done ... ?

$$
\begin{gathered}
\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} p_{i}\right\|^{2}+\|P\|_{\alpha}^{2} \\
\wedge \mathrm{VI} \\
\sum_{i} \alpha_{i}\left\|q_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} q_{i}\right\|^{2}+\|Q\|_{\alpha}^{2}
\end{gathered}
$$

ARE WE DONE ...?

$$
\begin{array}{rl}
\sum_{i} \alpha_{i} q_{i} \stackrel{?}{=} 0 \alpha_{i}\left\|p_{i}\right\|^{2} & =\left\|\sum_{i} \alpha_{i} p_{i}\right\|^{2}+\|P\|_{\alpha}^{2} \\
\wedge \mathrm{VI} & \mathrm{VI} \\
\sum_{i} \alpha_{i}\left\|q_{i}\right\|^{2} & =\left\|\sum_{i} \alpha_{i} q_{i}\right\|^{2}+\|Q\|_{\alpha}^{2}
\end{array}
$$

What is α ?

- convex coordinates of the special point in Q
... and at the same time ...
- Wachspress coordinates of some point in P

ARE WE DONE ... ?

$$
\begin{array}{rl}
\sum_{i} \alpha_{i} q_{i} \stackrel{?}{=} 0 p_{i} \|^{2} & =\left\|\sum_{i} \alpha_{i} p_{i}\right\|^{2}+\|P\|_{\alpha}^{2} \\
\wedge \mathrm{VI} & \mathrm{VI} \\
\sum_{i} \alpha_{i}\left\|q_{i}\right\|^{2} & =\left\|\sum_{i} \alpha_{i} q_{i}\right\|^{2}+\|Q\|_{\alpha}^{2}
\end{array}
$$

What is α ?

- convex coordinates of the special point in Q
... and at the same time ...
- Wachspress coordinates of some point in P

Can we have this?

The Wachspress map $\phi: P \rightarrow Q$

$$
\begin{gathered}
\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} p_{i}\right\|^{2}+\|P\|_{\alpha}^{2} \\
\mathrm{NI} \\
\sum_{i} \alpha_{i}\left\|q_{i}\right\|^{2}=\left\|\sum_{i} \alpha_{i} q_{i}\right\|^{2}+\|Q\|_{\alpha}^{2}
\end{gathered}
$$

The Wachspress map $\phi: P \rightarrow Q$ maps

$$
x \in P \longmapsto \alpha(x) \in \Delta_{n} \longmapsto \phi(x):=\sum_{i} \alpha_{i}(x) q_{i} \in Q
$$

The Wachspress map $\phi: P \rightarrow Q$

$$
\begin{array}{rcc}
\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}= & \|x\|^{2} & +\|P\|_{\alpha}^{2} \\
\wedge \mathrm{I} & \mathrm{VI} & \mathrm{VI} \\
\sum_{i} \alpha_{i}\left\|q_{i}\right\|^{2}= & \|\phi(x)\|^{2} & +\|Q\|_{\alpha}^{2}
\end{array}
$$

The Wachspress map $\phi: P \rightarrow Q$ maps

$$
x \in P \longmapsto \alpha(x) \in \Delta_{n} \longmapsto \phi(x):=\sum_{i} \alpha_{i}(x) q_{i} \in Q
$$

The Wachspress map $\phi: P \rightarrow Q$

$$
\begin{array}{rcc}
\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}= & \|x\|^{2} & +\|P\|_{\alpha}^{2} \\
\wedge \mathrm{I} & \mathrm{VI} & \mathrm{VI} \\
\sum_{i} \alpha_{i}\left\|q_{i}\right\|^{2}= & \|\phi(x)\|^{2} & +\|Q\|_{\alpha}^{2}
\end{array}
$$

The Wachspress map $\phi: P \rightarrow Q$ maps

$$
x \in P \longmapsto \alpha(x) \in \Delta_{n} \longmapsto \phi(x):=\sum_{i} \alpha_{i}(x) q_{i} \in Q
$$

The remaining question: how to find $x \in \operatorname{int}(P)$ with $\|x\| \geq\|\phi(x)\|$?

WE CAN HAVE IT IN SPECIAL CASES ...

Key lemma.
If $P \subset \mathbb{R}^{d}$ and $q: G_{P} \rightarrow \mathbb{R}^{e}$ satisfy
(i) there is $x \in \operatorname{int}(P)$ with $\|x\| \geq\|\phi(x)\|, \quad$ (e.g. if $\phi(x)=0)$
(ii) edges in q are at most as long as in P,
(iii) radii in q are at least as large as in P, then q is isometric the skeleton of P.

WE CAN HAVE IT IN SPECIAL CASES ...

Key lemma.

If $P \subset \mathbb{R}^{d}$ and $q: G_{P} \rightarrow \mathbb{R}^{e}$ satisfy
(i) there is $x \in \operatorname{int}(P)$ with $\|x\| \geq\|\phi(x)\|, \quad$ (e.g. if $\phi(x)=0)$
(ii) edges in q are at most as long as in P,
(iii) radii in q are at least as large as in P, then q is isometric the skeleton of P.

Resolved special cases:

- P and q centrally symmetric
($\phi(0)=0)$
- q a small perturbation of P 's skeleton
$\left(0 \in B_{\epsilon}(0) \subset P \longrightarrow 0 \in \phi\left(B_{\epsilon}(0)\right)\right)$
- P and Q combinatorially equivalent
($\phi: P \rightarrow Q$ is surjective)

When the Wachspress map condition fails ...

Using Wachspress COORDINATES AND IZMESTIEV MATRIX

RECALLING THE STATEMENT

Key theorem (W., 2023)

If α are the Wachspress coordinates of some interior point of P, and edges in $q: G_{P} \rightarrow \mathbb{R}^{e}$ are not longer than in P, then

$$
\|q\|_{\alpha} \leq\|P\|_{\alpha} .
$$

"The skeleton of P has the maximal α-expansion among all embeddings of G_{P} whose edges are not longer than in P."

$$
\begin{aligned}
\max & \|q\|_{\alpha} \\
\text { s.t. } & \left\|q_{i}-q_{j}\right\| \leq\left\|p_{i}-p_{j}\right\|, \quad \text { for all } i j \in E \\
& q_{1}, \ldots, q_{n} \in \mathbb{R}^{n}
\end{aligned}
$$

Proof via semidefinite programming

$$
\begin{aligned}
\max & \|q\|_{\alpha} \\
\text { s.t. } & \left\|q_{i}-q_{j}\right\| \leq\left\|p_{i}-p_{j}\right\|, \quad \text { for all } i j \in E \\
& q_{1}, \ldots, q_{n} \in \mathbb{R}^{n}
\end{aligned}
$$

Proof via semidefinite programming

$$
\begin{aligned}
\max & \|q\|_{\alpha} \\
\text { s.t. } & \left\|q_{i}-q_{j}\right\| \leq\left\|p_{i}-p_{j}\right\|, \quad \text { for all } i j \in E \\
& q_{1}, \ldots, q_{n} \in \mathbb{R}^{n} \\
& \| \quad \text { by translation invariance } \\
& \\
\max & \sum_{i} \alpha_{i}\left\|q_{i}\right\|^{2} \\
\text { s.t. } & \sum_{i} \alpha_{i} q_{i}=0 \\
& \left\|q_{i}-q_{j}\right\| \leq\left\|p_{i}-p_{j}\right\|, \quad \text { for all } i j \in E \\
& q_{1}, \ldots, q_{n} \in \mathbb{R}^{n}
\end{aligned}
$$

Proof via semidefinite Programming

$$
\begin{aligned}
\max & \|q\|_{\alpha} \\
\text { s.t. } & \left\|q_{i}-q_{j}\right\| \leq\left\|p_{i}-p_{j}\right\|, \quad \text { for all } i j \in E \\
& q_{1}, \ldots, q_{n} \in \mathbb{R}^{n} \\
& \Downarrow \quad \text { by translation invariance } \\
\max & \sum_{i} \alpha_{i}\left\|q_{i}\right\|^{2} \\
\text { s.t. } & \sum_{i} \alpha_{i} q_{i}=0 \\
& \left\|q_{i}-q_{j}\right\| \leq\left\|p_{i}-p_{j}\right\|, \quad \text { for all } i j \in E \\
& q_{1}, \ldots, q_{n} \in \mathbb{R}^{n} \\
& \Downarrow \quad \text { dual program } \\
& \\
\min & \sum_{i j \in E} w_{i j}\left\|p_{i}-p_{j}\right\|^{2} \\
\text { s.t. } & L_{w}-\operatorname{diag}(\alpha)+\mu \alpha \alpha^{\top} \succeq 0 \\
& w \geq 0, \mu \text { free }
\end{aligned}
$$

Proof ViA semidefinite Programming

$$
\begin{aligned}
\max & \|q\|_{\alpha} \\
\text { s.t. } & \left\|q_{i}-q_{j}\right\| \leq\left\|p_{i}-p_{j}\right\|, \quad \text { for all } i j \in E \\
& q_{1}, \ldots, q_{n} \in \mathbb{R}^{n} \\
\|P\|_{\alpha}^{2}=\max & \sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2} \\
\text { s.t. by translation invariance } & \sum_{i} \alpha_{i} q_{i}=0 \\
& \left\|q_{i}-q_{j}\right\| \leq\left\|p_{i}-p_{j}\right\|, \quad \text { for all } i j \in E \\
& q_{1}, \ldots, q_{n} \in \mathbb{R}^{n} \\
& \Downarrow \text { dual program } \\
\|P\|_{\alpha}^{2}=\min & \sum_{i j \in E} M_{i j}\left\|p_{i}-p_{j}\right\|^{2} \\
\text { s.t. } & L_{w}-\operatorname{diag}(\alpha)+\mu \alpha \alpha^{\top} \succeq 0 \\
& w \geq 0, \mu \text { free }
\end{aligned}
$$

IzMESTIEV'S THEOREM

Theorem. (Izmestiev, 2007)

The Izmestiev matrix satisfies

(i) $M_{i j}>0$ whenever ij $\in E$,
(ii) $M_{i j}=0$ whenever $i \neq j$ and $i j \notin E$,
(iii) $\operatorname{dim} \operatorname{ker}(M)=d$,
(iv) $M X_{P}=0$, where $X_{P}^{\top}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}^{d \times n}$,
(v) M has a single positive eigenvalue of multiplicity 1.

$$
\begin{aligned}
\sum_{i j \in E} M_{i j}\left\|p_{i}-p_{j}\right\|^{2} & =\frac{1}{2} \sum_{i, j} M_{i j}\left\|p_{i}-p_{j}\right\|^{2} \\
& =\sum_{i}\left(\sum_{j} M_{i j}\right)\left\|p_{i}\right\|^{2}-\sum_{i, j} M_{i j}\left\langle p_{i}, p_{j}\right\rangle \\
& =\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}-\operatorname{tr}(\underbrace{M X_{P}}_{=0} X_{P}^{\top})=\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}=\|P\|_{\alpha}^{2}
\end{aligned}
$$

IzMESTIEV'S THEOREM

Theorem. (Izmestiev, 2007)
The Izmestiev matrix satisfies
(i) $M_{i j}>0$ whenever $i j \in E$,
(ii) $M_{i j}=0$ whenever $i \neq j$ and $i j \notin E$,
(iii) $\operatorname{dim} \operatorname{ker}(M)=d$,
(iv) $M X_{P}=0$, where $X_{P}^{\top}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}^{d \times n}$,
(v) M has a single positive eigenvalue of multiplicity 1 .

$$
\begin{aligned}
\sum_{i j \in E} M_{i j}\left\|p_{i}-p_{j}\right\|^{2} & =\frac{1}{2} \sum_{i, j} M_{i j}\left\|p_{i}-p_{j}\right\|^{2} \\
& =\sum_{i}\left(\sum_{j} M_{i j}\right)\left\|p_{i}\right\|^{2}-\sum_{i, j} M_{i j}\left\langle p_{i}, p_{j}\right\rangle \\
& =\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}-\operatorname{tr}(\underbrace{M X_{P}}_{=0} X_{P}^{\top})=\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}=\|P\|_{\alpha}^{2}
\end{aligned}
$$

IzMESTIEV'S THEOREM

Theorem. (Izmestiev, 2007)
The Izmestiev matrix satisfies
(i) $M_{i j}>0$ whenever $i j \in E$,
(ii) $M_{i j}=0$ whenever $i \neq j$ and $i j \notin E$,
(iii) $\operatorname{dim} \operatorname{ker}(M)=d$,
(iv) $M X_{P}=0$, where $X_{P}^{\top}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}^{d \times n}$,
(v) M has a single positive eigenvalue of multiplicity 1 .

$$
\begin{aligned}
\sum_{i j \in E} M_{i j}\left\|p_{i}-p_{j}\right\|^{2} & =\frac{1}{2} \sum_{i, j} M_{i j}\left\|p_{i}-p_{j}\right\|^{2} \\
& =\sum_{i}\left(\sum_{j} M_{i j}\right)\left\|p_{i}\right\|^{2}-\sum_{i, j} M_{i j}\left\langle p_{i}, p_{j}\right\rangle \\
& =\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}-\operatorname{tr}(\underbrace{M X_{P}}_{=0} X_{P}^{\top})=\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}=\|P\|_{\alpha}^{2}
\end{aligned}
$$

IzMESTIEV's THEOREM

Theorem. (IzMESTIEv, 2007)
The Izmestiev matrix satisfies
(i) $M_{i j}>0$ whenever $i j \in E$,
(ii) $M_{i j}=0$ whenever $i \neq j$ and $i j \notin E$,
(iii) $\operatorname{dim} \operatorname{ker}(M)=d$,
(iv) $M X_{P}=0$, where $X_{P}^{\top}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}^{d \times n}$,
(v) M has a single positive eigenvalue of multiplicity 1 .

$$
\begin{aligned}
\sum_{i j \in E} M_{i j}\left\|p_{i}-p_{j}\right\|^{2} & =\frac{1}{2} \sum_{i, j} M_{i j}\left\|p_{i}-p_{j}\right\|^{2} \\
& =\sum_{i}\left(\sum_{j} M_{i j}\right)\left\|p_{i}\right\|^{2}-\sum_{i, j} M_{i j}\left\langle p_{i}, p_{j}\right\rangle \\
& =\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}-\operatorname{tr}(\underbrace{M X_{P}}_{=0} X_{P}^{\top})=\sum_{i} \alpha_{i}\left\|p_{i}\right\|^{2}=\|P\|_{\alpha}^{2}
\end{aligned}
$$

Tack!

"Rigidity, Tensegrity and Reconstruction of Polytopes under Metric Constraints" (arXiv:2302.14194, accepted at IMRN)

