Wachspress Objects and the Reconstruction of Convex Polytopes

from Partial Data

Martin Winter

University of Warwick

07. February, 2023
The setting: convex polytopes

\[P = \text{conv}\{p_1, \ldots, p_n\} \subset \mathbb{R}^d \]

- always convex
- general dimension \(d \geq 2 \)
- general geometry & combinatorics (not only simple/simplicial/lattice/...)
- always of full dimension
Combinatorics of polytopes

edge-graph ... \(G_P := \{ \text{vertices and edges of } P \} \)

skeleton ... embedding \(p : G_P \to \mathbb{R}^d \) of the edge-graph

face lattice ... \(\mathcal{F}(P) := \{ \text{faces of } P \text{ ordered by inclusion} \} \)

or combinatorial type
Wachspress objects
WACHSPRESS OBJECTS

“A family of objects that appear as bridges between algebra, geometry and combinatorics”

- Wachspress coordinates
- Wachspress variety
- Wachspress ideal
- Wachspress map
- adjoint polynomial
- adjoint hypersurface
- Izmestiev matrix
- ...

University of Warwick · Martin Winter
Wachspress objects

WACHSPRESS OBJECTS

“A family of objects that appear as bridges between algebra, geometry and combinatorics”

- Wachspress coordinates
- Wachspress variety
- Wachspress ideal
- Wachspress map
- adjoint polynomial
- adjoint hypersurface
- Izmestiev matrix
- ...

University of Warwick · Martin Winter 3 / 27
GENERALIZED BARYCENTRIC COORDINATES

\[
\{(\alpha_1, ..., \alpha_n) \in \mathbb{R}_{\geq 0}^n \mid \alpha_1 + \cdots + \alpha_n = 1\}\]

Generalized barycentric coordinates (GBCs): \(\alpha : P \rightarrow \Delta_n\) satisfy

\[
\sum_i \alpha_i(x)p_i = x \quad \text{(linear precision)}
\]
GENERALIZED BARYCENTRIC COORDINATES

\{ (\alpha_1, \ldots, \alpha_n) \in \mathbb{R}_{\geq 0}^n \mid \alpha_1 + \cdots + \alpha_n = 1 \} \downarrow

Generalized barycentric coordinates (GBCs): \(\alpha : P \rightarrow \Delta_n \) satisfy

\[\sum_i \alpha_i(x) p_i = x \quad \text{(linear precision)} \]

There are ...

- harmonic coordinates,
- mean value coordinates,
- ...
- Wachspress coordinates (Wachspress 1975; Warren, 1996)
Generalized barycentric coordinates (GBCs): $\alpha : P \rightarrow \Delta_n$ satisfy

$$\sum_i \alpha_i(x)p_i = x \quad \text{(linear precision)}$$

There are ...

- harmonic coordinates,
- mean value coordinates,
- ...
- Wachspress coordinates (Wachspress 1975; Warren, 1996)

... have many non-trivially equivalent definitions
The many faces of Wachspress coordinates

I. Unique rational GBCs of lowest possible degree (Warren, 2003)

\[\alpha_i(x) = \frac{p_i(x)}{q(x)} \]

where \(q(x) = \sum p_i(x) \) ... adjoint polynomial

- there are not always polynomial GBCs
- degree = \#facets - \(d \)
The many faces of Wachspress coordinates

I. Unique rational GBCs of lowest possible degree (Warren, 2003)

\[\alpha_i(x) = \frac{p_i(x)}{q(x)} \]

where \(q(x) = \sum_i p_i(x) \) ... adjoint polynomial

- there are not always polynomial GBCs
- degree = \#facets − d
- Wachspress variety
 \[... V := \text{im}(\alpha) \subseteq \Delta_n \]
- Wachspress ideal ... \(I(V) \)
 \(\cong \) Stanley-Reisner ideal
II. Relative cone volumes (Ju et al., 2005)

polar dual ... \(P^\circ := \{ x \in \mathbb{R}^d \mid \langle x, p_i \rangle \leq 1 \text{ for all } i \in V(G_P) \} \).

\[\alpha_i = \frac{\text{vol}(F^\circ_i)}{\|p_i\| \text{ vol}(P^\circ)} \]
The many faces of Wachspress coordinates

III. From spectral embeddings of the edge-graph (W., 2023)

\[\theta \in \text{Spec}(A) \implies u_1, \ldots, u_d \in \text{Eig}_\theta(A) \]

\[\implies \begin{bmatrix} u_1 & \cdots & u_d \end{bmatrix} = \begin{bmatrix} p_1 & & \\
\vdots & & \\
p_n & & \\ \end{bmatrix} \in \mathbb{R}^{n \times d} \]
The many faces of Wachspress coordinates

III. From spectral embeddings of the edge-graph (W., 2023)

\[\theta \in \text{Spec}(A) \implies u_1, \ldots, u_d \in \text{Eig}_\theta(A) \]

\[\implies \begin{bmatrix} u_1 & \cdots & u_d \end{bmatrix} = \begin{bmatrix} p_1 & \cdots & \cdots & p_n \end{bmatrix} \in \mathbb{R}^{n \times d} \]

Colin de Verdière embedding

- A polytope skeleton is a spectral embedding of the edge-graph w.r.t. some weighted adjacency matrix \(M \) (Izmestiev, 2010)

\[\alpha_i := \sum_j M_{ij} \]
The many faces of Wachspress coordinates

IV. Via a variation of volume

\[P^\circ(c) := \{ x \in \mathbb{R}^d \mid \langle x, p_i \rangle \leq c_i \text{ for all } i \in V(G_P) \}. \]

where \(c = (c_1, ..., c_n) \in \mathbb{R}^n \).
THE MANY FACES OF WACHSPRESS COORDINATES

IV. Via a variation of volume

\[P^\circ(c) := \{ x \in \mathbb{R}^d \mid \langle x, p_i \rangle \leq c_i \text{ for all } i \in V(G_P) \}. \]

where \(c = (c_1, \ldots, c_n) \in \mathbb{R}^n \). Expand \(\text{vol}(P^\circ(c)) \) at \(c = 1 \):

\[\text{vol}(P^\circ(c)) = \text{vol}(P^\circ) + \langle \tilde{\alpha}, c - 1 \rangle + \frac{1}{2} (c - 1)^\top \tilde{M} (c - 1) + \cdots \]
Wachsspress objects

WACHSPRESS COORDINATES ACROSS DISCIPLINES

- **adjoint polynomial** q cuts out minimal degree surface that passes through “external non-faces”
- algebraic statistics
 - moment varieties of polytopes
 - Bayesian statistics
- intersection theory (computing Segre classes of monomial schemes)
- P with adjoint polynomial is a **positive geometry** *(cf. the amplituhedron from theoretical physics)*
- has also been defined on polycons and smooth convex bodies
- **Izmestiev matrix** has been used
 - to encode polytopal symmetries in colorings of the edge-graph
 - for progress on the Hirsch conjecture
Reconstruction of polytopes from partial data
"In how far is a polytope determined by partial combinatorial and geometric data, up to isometry, affine transformation or combinatorial equivalence?"
Reconstruction of polytopes

“\textit{In how far is a polytope determined by partial combinatorial and geometric data, up to isometry, affine transformation or combinatorial equivalence?}”

\begin{itemize}
 \item Does the edge-graph determine the combinatorics?
\end{itemize}
"In how far is a polytope determined by partial combinatorial and geometric data, up to isometry, affine transformation or combinatorial equivalence?"

Does the edge-graph determine the combinatorics? **No.**
Reconstruction of polytopes

Reconstruction of polytopes

“In how far is a polytope determined by partial combinatorial and geometric data, up to isometry, affine transformation or combinatorial equivalence?”

▶ Does the edge-graph determine the combinatorics? **No.**
▶ Does combinatorics + edge-lengths determine the geometry?
"In how far is a polytope determined by partial combinatorial and geometric data, up to isometry, affine transformation or combinatorial equivalence?"

- Does the edge-graph determine the combinatorics? **No.**
- Does combinatorics + edge-lengths determine the geometry? **No.**
Flexible polytopes
TWO OPPOSING EFFECTS ...

Simple polytopes:

▶ combinatorics can be reconstructed \((\text{Blind \& Mani; Kalai})\)
▶ geometry cannot be reconstructed

Simplicial polytopes:

▶ geometry can be reconstructed, once combinatorics is known \((\text{Cauchy})\)
▶ combinatorics cannot always be reconstructed (e.g. cyclic polytopes)
Two opposing effects …

Simple polytopes:
- combinatorics can be reconstructed \((\text{Blind & Mani; Kalai})\)
- geometry cannot be reconstructed

Simplicial polytopes:
- geometry can be reconstructed, once combinatorics is known \((\text{Cauchy})\)
- combinatorics cannot always be reconstructed (e.g. cyclic polytopes)

… what additional data is needed to permit a reconstruction?
Reconstruction of Pointed Polytopes

"Rigidity, Tensegrity and Reconstruction of Polytopes under Metric Constraints"
(arXiv:2302.14194, accepted at IMRN)
Pointed Polytopes

\[:= \text{polytope } P \subset \mathbb{R}^d + \text{point } x_P \in \mathbb{R}^d \]
Pointed Polytopes

\[:= \text{polytope } P \subset \mathbb{R}^d + \text{point } x_P \in \mathbb{R}^d \]

Conjecture. (W., 2023)

A pointed polytope \(P \) with \(x_P \in \text{int}(P) \) is uniquely determined (up to isometry) by its edge-graph, edge lengths and radii.

implies e.g. reconstruction of matroids from base exchange graph
Point in the interior is necessary ...

Conjecture. (W., 2023)

A pointed polytope P with $x_P \in \text{int}(P)$ is uniquely determined (up to isometry) by its edge-graph, edge lengths and radii.
Conjecture. (W., 2023)

If $P \subset \mathbb{R}^d$ and $Q \subset \mathbb{R}^e$ are pointed polytopes with the same edge-graph and

(i) $x_Q \in \text{int}(Q)$
(ii) edges in Q are at most as long as in P,
(iii) radii in Q are at least as large as in P,

then P and Q are isometric.

“A polytope cannot become larger if all its edges become shorter.”
Conjecture holds in special cases (W., 2023)

The conjecture holds in the following cases:

I. Q is a small perturbation of P
 - one can replace Q by a graph embedding $q : G_P \to \mathbb{R}^d$
 - locally rigid as a framework

II. P and Q are centrally symmetric
 - one can replace Q by a centrally symmetric graph embedding $q : G_P \to \mathbb{R}^e$
 - universally rigid as a centrally symmetric framework

III. P and Q are combinatorially equivalent
 - in particular true for polytope of dimension $d \leq 3$
Conjecture holds in special cases (W., 2023)

The conjecture holds in the following cases:

1. \(Q \) is a small perturbation of \(P \)
 - one can replace \(Q \) by a graph embedding \(q: G_P \to \mathbb{R}^d \)
 - \(\mathcal{R} \) locally rigid as a framework

\(P \subset \mathbb{R}^d \quad Q \subset \mathbb{R}^e \quad q : G_P \to \mathbb{R}^e \)
Conjecture holds in special cases (W., 2023)

The conjecture holds in the following cases:

I. \(Q \) is a small perturbation of \(P \)
 - one can replace \(Q \) by a graph embedding \(q : G_P \to \mathbb{R}^d \)
 - locally rigid as a framework

II. \(P \) and \(Q \) are centrally symmetric
 - one can replace \(Q \) by a centrally symmetric graph embedding \(q : G_P \to \mathbb{R}^e \)
 - universally rigid as a centrally symmetric framework

III. \(P \) and \(Q \) are combinatorially equivalent
 - in particular true for polytope of dimension \(d \leq 3 \)
General graph embedding version is false
Warmup: simplices

Let $P, Q \subset \mathbb{R}^d$ be simplices,

(i) $0 \in \text{int}(Q)$,

(ii) edges in Q are at most as long as in P.

(iii) radii in Q are at least as large as in P.

Therefore $P \simeq Q$. □
Warmup: simplices

$P, Q \subset \mathbb{R}^d$ simplices,

(i) $0 \in \text{int}(Q)$,

(ii) edges in Q are at most as long as in P.

(iii) radii in Q are at least as large as in P.

Proof.

...
Rigidity of pointed polytopes

Warmup: simplices

$P, Q \subset \mathbb{R}^d$ simplices,

(i) $0 \in \text{int}(Q)$,

(ii) edges in Q are at most as long as in P.

(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_n$ holds

$$\sum_i \alpha_i \|p_i\|^2 = \left\| \sum_i \alpha_i p_i \right\|^2 + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \|p_i - p_j\|^2$$
Warmup: simplices

$P, Q \subset \mathbb{R}^d$ simplices,

(i) $0 \in \text{int}(Q)$,

(ii) edges in Q are at most as long as in P.

(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_n$ holds

$$\sum_i \alpha_i \|p_i\|^2 = \left\| \sum_i \alpha_i p_i \right\|^2 + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \|p_i - p_j\|^2$$

$$\sum_i \alpha_i \|q_i\|^2 = \left\| \sum_i \alpha_i q_i \right\|^2 + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \|q_i - q_j\|^2$$
Warmup: simplices

$P, Q \subset \mathbb{R}^d$ simplices,

(i) $0 \in \text{int}(Q)$,

(ii) edges in Q are at most as long as in P.

(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_n$ holds

$$\sum_i \alpha_i \|p_i\|^2 = \left\| \sum_i \alpha_i p_i \right\|^2 + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \|p_i - p_j\|^2$$

\forall (\text{ii})

$$\sum_i \alpha_i \|q_i\|^2 = \left\| \sum_i \alpha_i q_i \right\|^2 + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \|q_i - q_j\|^2$$
Warmup: simplices

Let $P, Q \subset \mathbb{R}^d$ be simplices,

(i) $0 \in \text{int}(Q)$,

(ii) edges in Q are at most as long as in P.

(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_n$ holds

\[
\sum_i \alpha_i \|p_i\|^2 = \left\| \sum_i \alpha_i p_i \right\|^2 + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \|p_i - p_j\|^2
\]

\(\land (iii)\) \quad \forall (ii)

\[
\sum_i \alpha_i \|q_i\|^2 = \left\| \sum_i \alpha_i q_i \right\|^2 + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \|q_i - q_j\|^2
\]
Warmup: simplices

$P, Q \subset \mathbb{R}^d$ simplices,

(i) $0 \in \text{int}(Q)$, \quad $0 = \sum_i \alpha_i q_i$... convex combination

(ii) edges in Q are at most as long as in P.

(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_n$ holds

\[
\sum_i \alpha_i \|p_i\|^2 = \left\| \sum_i \alpha_i p_i \right\|^2 + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \|p_i - p_j\|^2 \quad \text{\wedge \ (iii)} \]

\[
\sum_i \alpha_i \|q_i\|^2 = \left\| \sum_i \alpha_i q_i \right\|^2 + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \|q_i - q_j\|^2 \quad \text{\forall \ (ii)}
\]
Warmup: simplices

$P, Q \subset \mathbb{R}^d$ simplices,

(i) $0 \in \text{int}(Q), \quad \implies \quad 0 = \sum_i \alpha_i q_i \quad \ldots \text{ convex combination}$

(ii) edges in Q are at most as long as in P.

(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_n$ holds

\[
\sum_i \alpha_i \|p_i\|^2 = \left\| \sum_i \alpha_i p_i \right\|^2 + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \|p_i - p_j\|^2
\]

$\land \ (iii) \quad \lor \ (i) \quad \lor \ (ii)$

\[
\sum_i \alpha_i \|q_i\|^2 = \left\| \sum_i \alpha_i q_i \right\|^2 + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \|q_i - q_j\|^2
\]
WARMUP: SIMPLICES

$P, Q \subset \mathbb{R}^d$ simplices,

(i) $0 \in \text{int}(Q), \implies 0 = \sum_i \alpha_i q_i$... convex combination

(ii) edges in Q are at most as long as in P.

(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_n$ holds

$$\sum_i \alpha_i \| p_i \|^2 = \left\| \sum_i \alpha_i p_i \right\|^2 + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \| p_i - p_j \|^2$$

\[\equiv (iii) \|

\left\| \sum_i \alpha_i q_i \right\|^2 + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \| q_i - q_j \|^2$$
Warmup: simplices

$P, Q \subset \mathbb{R}^d$ simplices,

(i) $0 \in \text{int}(Q)$, $\implies 0 = \sum_i \alpha_i q_i$... convex combination

(ii) edges in Q are at most as long as in P.

(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_n$ holds

\[
\sum_i \alpha_i \|p_i\|^2 = \left\| \sum_i \alpha_i p_i \right\|^2 + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \|p_i - p_j\|^2 \]

\[
\| (\text{iii}) \quad \| (\text{i}) \quad \| (\text{ii})
\]

\[
\sum_i \alpha_i \|q_i\|^2 = \left\| \sum_i \alpha_i q_i \right\|^2 + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \|q_i - q_j\|^2
\]

Therefore $P \simeq Q$. □
Warmup: simplices

$P, Q \subset \mathbb{R}^d$ simplices,

(i) $0 \in \text{int}(Q), \quad \Rightarrow \quad 0 = \sum_i \alpha_i q_i$ \ldots convex combination

(ii) edges in Q are at most as long as in P.

(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_n$ holds

$$\sum_i \alpha_i \|p_i\|^2 = \left\| \sum_i \alpha_i p_i \right\|^2 + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \|p_i - p_j\|^2$$

\| (iii) \| (i) \| ?? \\forall i ??

$$\sum_i \alpha_i \|q_i\|^2 = \left\| \sum_i \alpha_i q_i \right\|^2 + \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \|q_i - q_j\|^2$$

Therefore $P \simeq Q$. \qed
Expansion of polytopes

Fix \(\alpha \in \Delta_n := \{(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n_{\geq 0} \mid \alpha_1 + \cdots + \alpha_n = 1\} \)

\[\alpha\text{-expansion: } \|P\|^2_\alpha := \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \|p_i - p_j\|^2 \]
Expansion of polytopes

Fix $\alpha \in \Delta_n := \{(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}_{\geq 0}^n \mid \alpha_1 + \cdots + \alpha_n = 1\}$

α-expansion: $\|P\|_\alpha^2 := \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \|p_i - p_j\|^2$

"If edges shrink, then the expansion decreases."
Expansion of polytopes

Fix $\alpha \in \Delta_n := \{(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}_{\geq 0}^n \mid \alpha_1 + \cdots + \alpha_n = 1\}$

α-expansion: $\| P \|_{\alpha}^2 := \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \| p_i - p_j \|^2$

“If edges shrink, then the expansion decreases, if α is chosen suitably.”
Expansion of Polytopes

Fix \(\alpha \in \Delta_n := \{(\alpha_1, ..., \alpha_n) \in \mathbb{R}^n_{\geq 0} | \alpha_1 + \cdots + \alpha_n = 1\} \)

\(\alpha \)-expansion: \(\| P \|_\alpha^2 := \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \| p_i - p_j \|^2 \)

"If edges shrink, then the expansion decreases, if \(\alpha \) is chosen suitably."

Key theorem (W., 2023)

If \(\alpha \) are the Wachspress coordinates of some interior point of \(P \), and edges in \(q : G_P \rightarrow \mathbb{R}^e \) are not longer than in \(P \), then

\[\| q \|_\alpha \leq \| P \|_\alpha, \]

with equivalence if and only if \(\alpha \simeq_{\text{affine}} P \).
Consequences

Corollary.

A pointed polytope is uniquely determined (up to affine transformations) by its edge-graph, edge lengths and Wachspress coordinates.

A polytope can be reconstructed in polynomial time (via semidefinite program).
Are we done ... ?

\[\sum_i \alpha_i \|p_i\|^2 = \left\| \sum_i \alpha_i p_i \right\|^2 + \|P\|_\alpha^2 \]

\[\sum_i \alpha_i \|q_i\|^2 = \left\| \sum_i \alpha_i q_i \right\|^2 + \|Q\|_\alpha^2 \]
Are we done ... ?

\[
\sum_i \alpha_i \|p_i\|^2 = \left\| \sum_i \alpha_i p_i \right\|^2 + \|P\|_\alpha^2 \\
\sum_i \alpha_i q_i = 0 \\
\sum_i \alpha_i \|q_i\|^2 = \left\| \sum_i \alpha_i q_i \right\|^2 + \|Q\|_\alpha^2
\]

What is \(\alpha\)?

- convex coordinates of the special point in \(Q\)

 ... and at the same time ...

- Wachspress coordinates of some point in \(P\)
Rigidity of pointed polytopes

Are we done ... ?

\[
\sum_i \alpha_i \|p_i\|^2 = \left\| \sum_i \alpha_i p_i \right\|^2 + \|P\|^2
\]

\[
\sum_i \alpha_i q_i = 0
\]

\[
\sum_i \alpha_i \|q_i\|^2 = \left\| \sum_i \alpha_i q_i \right\|^2 + \|Q\|^2
\]

What is \(\alpha\)?

- convex coordinates of the special point in \(Q\)

 ... and at the same time ...

- Wachspress coordinates of *some* point in \(P\)

Can we have this?
The Wachspress map \(\phi : P \to Q \)

\[
\sum_i \alpha_i \|p_i\|^2 = \left\| \sum_i \alpha_i p_i \right\|^2 + \|P\|^2_{\alpha}
\]

\[
\sum_i \alpha_i \|q_i\|^2 = \left\| \sum_i \alpha_i q_i \right\|^2 + \|Q\|^2_{\alpha}
\]

The Wachspress map \(\phi : P \to Q \) maps

\[
x \in P \quad \mapsto \quad \alpha(x) \in \Delta_n \quad \mapsto \quad \phi(x) := \sum_i \alpha_i(x) q_i \in Q
\]
The Wachspress map \(\phi: P \to Q \)

\[
\sum_i \alpha_i \|p_i\|^2 = \|x\|^2 + \|P\|_\alpha^2
\]

\[
\sum_i \alpha_i \|q_i\|^2 = \|\phi(x)\|^2 + \|Q\|_\alpha^2
\]

The Wachspress map \(\phi: P \to Q \) maps

\[
x \in P \quad \mapsto \quad \alpha(x) \in \Delta_n \quad \mapsto \quad \phi(x) := \sum_i \alpha_i(x)q_i \in Q
\]
The Wachspress map $\phi: P \rightarrow Q$

\[
\sum_i \alpha_i \|p_i\|^2 = \|x\|^2 + \|P\|_\alpha^2
\]
\[
\bigwedge^\aleph \bigvee \bigvee
\]

\[
\sum_i \alpha_i \|q_i\|^2 = \|\phi(x)\|^2 + \|Q\|_\alpha^2
\]

The Wachspress map $\phi: P \rightarrow Q$ maps

\[
x \in P \quad \longmapsto \quad \alpha(x) \in \Delta_n \quad \longmapsto \quad \phi(x) := \sum_i \alpha_i(x)q_i \in Q
\]

The remaining question: how to find $x \in \text{int}(P)$ with $\|x\| \geq \|\phi(x)\|$?
Key lemma.

If $P \subset \mathbb{R}^d$ and $q : G_P \to \mathbb{R}^e$ satisfy

(i) there is $x \in \text{int}(P)$ with $\|x\| \geq \|\phi(x)\|$, (e.g. if $\phi(x) = 0$)

(ii) edges in q are at most as long as in P,

(iii) radii in q are at least as large as in P,

then q is isometric the skeleton of P.
We can have it in special cases ...

Key lemma.

If \(P \subset \mathbb{R}^d \) and \(q : G_P \rightarrow \mathbb{R}^e \) satisfy

(i) there is \(x \in \text{int}(P) \) with \(\|x\| \geq \|\phi(x)\| \), (e.g. if \(\phi(x) = 0 \))

(ii) edges in \(q \) are at most as long as in \(P \),

(iii) radii in \(q \) are at least as large as in \(P \),

then \(q \) is isometric the skeleton of \(P \).

Resolved special cases:

- \(P \) and \(q \) centrally symmetric \((\phi(0) = 0) \)
- \(q \) a small perturbation of \(P \)'s skeleton \((0 \in B_{\epsilon}(0) \subset P \rightarrow 0 \in \phi(B_{\epsilon}(0))) \)
- \(P \) and \(Q \) combinatorially equivalent \((\phi : P \rightarrow Q \) is surjective)
When the Wachspress map condition fails ...
Using Wachspress coordinates and Izmestiev matrix
Recalling the statement

Key theorem (W., 2023)

If α are the Wachspress coordinates of some interior point of P, and edges in $q : G_P \rightarrow \mathbb{R}^e$ are not longer than in P, then

$$\|q\|_\alpha \leq \|P\|_\alpha.$$

"The skeleton of P has the maximal α-expansion among all embeddings of G_P whose edges are not longer than in $P."$

$$\max_q \|q\|_\alpha \quad \text{s.t.} \quad \|q_i - q_j\| \leq \|p_i - p_j\|, \quad \text{for all } i, j \in E$$

$$q_1, \ldots, q_n \in \mathbb{R}^n$$
Proof via semidefinite programming

\[
\begin{align*}
\max \quad & \|q\|_\alpha \\
\text{s.t.} \quad & \|q_i - q_j\| \leq \|p_i - p_j\|, \quad \text{for all } ij \in E \\
& q_1, \ldots, q_n \in \mathbb{R}^n
\end{align*}
\]
Proof via Semidefinite Programming

\[
\begin{align*}
\max & \quad \|q\|_\alpha \\
\text{s.t.} & \quad \|q_i - q_j\| \leq \|p_i - p_j\|, \quad \text{for all } ij \in E \\
& \quad q_1, \ldots, q_n \in \mathbb{R}^n \\
\downarrow & \quad \text{by translation invariance} \\
\max & \quad \sum_i \alpha_i \|q_i\|^2 \\
\text{s.t.} & \quad \sum_i \alpha_i q_i = 0 \\
& \quad \|q_i - q_j\| \leq \|p_i - p_j\|, \quad \text{for all } ij \in E \\
& \quad q_1, \ldots, q_n \in \mathbb{R}^n
\end{align*}
\]
Proof via semidefinite programming

\[
\begin{align*}
\max & \quad \|q\|_\alpha \\
\text{s.t.} & \quad \|q_i - q_j\| \leq \|p_i - p_j\|, \quad \text{for all } ij \in E \\
& \quad q_1, \ldots, q_n \in \mathbb{R}^n
\end{align*}
\]

\[\downarrow \quad \text{by translation invariance}\]

\[
\begin{align*}
\max & \quad \sum_i \alpha_i \|q_i\|^2 \\
\text{s.t.} & \quad \sum_i \alpha_i q_i = 0 \\
& \quad \|q_i - q_j\| \leq \|p_i - p_j\|, \quad \text{for all } ij \in E \\
& \quad q_1, \ldots, q_n \in \mathbb{R}^n
\end{align*}
\]

\[\downarrow \quad \text{dual program}\]

\[
\begin{align*}
\min & \quad \sum_{ij \in E} w_{ij} \|p_i - p_j\|^2 \\
\text{s.t.} & \quad L_w - \text{diag}(\alpha) + \mu \alpha \alpha^\top \succeq 0 \\
& \quad w \geq 0, \mu \text{ free}
\end{align*}
\]
Proof via Semidefinite Programming

\[
\begin{align*}
\text{max} & \quad \|q\|_\alpha \\
\text{s.t.} & \quad \|q_i - q_j\| \leq \|p_i - p_j\|, \quad \text{for all } ij \in E
\end{align*}
\]

\[q_1, \ldots, q_n \in \mathbb{R}^n\]

\[\downarrow \quad \text{by translation invariance}\]

\[
\|P\|_\alpha^2 = \max \quad \sum_i \alpha_i \|p_i\|^2
\]

\[\text{s.t.} \quad \sum_i \alpha_i q_i = 0\]

\[
\|q_i - q_j\| \leq \|p_i - p_j\|, \quad \text{for all } ij \in E
\]

\[q_1, \ldots, q_n \in \mathbb{R}^n\]

\[\downarrow \quad \text{dual program}\]

\[
\|P\|_\alpha^2 = \min \quad \sum_{ij \in E} M_{ij} \|p_i - p_j\|^2
\]

\[\text{s.t.} \quad Lw - \text{diag}(\alpha) + \mu \alpha \alpha^\top \succeq 0\]

\[w \geq 0, \mu \text{ free}\]
IZMESTIEV’S THEOREM

Theorem. (IZMESTIEV, 2007)

The Izmestiev matrix satisfies

(i) \(M_{ij} > 0 \) whenever \(ij \in E \),
(ii) \(M_{ij} = 0 \) whenever \(i \neq j \) and \(ij \notin E \),
(iii) \(\dim \ker(M) = d \),
(iv) \(MX_P = 0 \), where \(X_P^\top = (p_1, \ldots, p_n) \in \mathbb{R}^{d \times n} \),
(v) \(M \) has a single positive eigenvalue of multiplicity 1.

\[
\sum_{ij \in E} M_{ij} \| p_i - p_j \|^2 = \frac{1}{2} \sum_{i,j} M_{ij} \| p_i - p_j \|^2
\]

\[
= \sum_i \left(\sum_j M_{ij} \right) \| p_i \|^2 - \sum_{i,j} M_{ij} \langle p_i, p_j \rangle
\]

\[
= \sum_i \alpha_i \| p_i \|^2 - \text{tr}(MX_P X_P^\top) = \sum_i \alpha_i \| p_i \|^2 = \| P \|^2_{\alpha}.
\]
IZMESTIEV’S THEOREM

Theorem. *(IZMESTIEV, 2007)*

The Izmestiev matrix satisfies

(i) $M_{ij} > 0$ whenever $ij \in E$,

(ii) $M_{ij} = 0$ whenever $i \neq j$ and $ij \not\in E$,

(iii) $\dim \ker(M) = d$,

(iv) $MX_P = 0$, where $X_P^\top = (p_1, ..., p_n) \in \mathbb{R}^{d \times n}$,

(v) M has a single positive eigenvalue of multiplicity 1.

\[
\sum_{ij \in E} M_{ij} \|p_i - p_j\|^2 = \frac{1}{2} \sum_{i,j} M_{ij} \|p_i - p_j\|^2
\]

\[
= \sum_i \left(\sum_j M_{ij} \right) \|p_i\|^2 - \sum_{i,j} M_{ij} \langle p_i, p_j \rangle
\]

\[
= \sum_i \alpha_i \|p_i\|^2 - \text{tr}(MX_P X_P^\top) = \sum_i \alpha_i \|p_i\|^2 = \|P\|_\alpha^2.
\]
IZMESTIEV’S THEOREM

Theorem. (IZMESTIEV, 2007)

The Izmestiev matrix satisfies

(i) $M_{ij} > 0$ whenever $ij \in E$,
(ii) $M_{ij} = 0$ whenever $i \neq j$ and $ij \not\in E$,
(iii) $\dim \ker(M) = d$,
(iv) $MX_P = 0$, where $X_P^\top = (p_1, ..., p_n) \in \mathbb{R}^{d \times n}$,
(v) M has a single positive eigenvalue of multiplicity 1.

\[\sum_{ij \in E} M_{ij} \|p_i - p_j\|^2 = \frac{1}{2} \sum_{i,j} M_{ij} \|p_i - p_j\|^2 \]
\[= \sum_i \left(\sum_j M_{ij} \right) \|p_i\|^2 - \sum_{i,j} M_{ij} \langle p_i, p_j \rangle \]
\[= \sum_i \alpha_i \|p_i\|^2 - \text{tr}(MX_P X_P^\top) = \sum_i \alpha_i \|p_i\|^2 = \|P\|^2_{\alpha}. \]
IZMESTIEV’S THEOREM

Theorem. (IZMESTIEV, 2007)

The Izmestiev matrix satisfies

(i) $M_{ij} > 0$ whenever $ij \in E$,
(ii) $M_{ij} = 0$ whenever $i \neq j$ and $ij \notin E$,
(iii) $\dim \ker(M) = d$,
(iv) $MX_P = 0$, where $X_P^\top = (p_1, ..., p_n) \in \mathbb{R}^{d \times n}$,
(v) M has a single positive eigenvalue of multiplicity 1.

\[
\sum_{ij \in E} M_{ij} \|p_i - p_j\|^2 = \frac{1}{2} \sum_{i,j} M_{ij} \|p_i - p_j\|^2 = \sum_i \left(\sum_j M_{ij} \right) \|p_i\|^2 - \sum_{i,j} M_{ij} \langle p_i, p_j \rangle = \sum_i \alpha_i \|p_i\|^2 \quad \text{tr}(MX_P X_P^\top) = \sum_i \alpha_i \|p_i\|^2 = \|P\|_\alpha^2.
\]
“Rigidity, Tensegrity and Reconstruction of Polytopes under Metric Constraints”
(arXiv:2302.14194, accepted at IMRN)