

Wachspress Objects and the Reconstruction of Convex Polytopes University of Warwick

WACHSPRESS OBJECTS AND THE RECONSTRUCTION OF CONVEX POLYTOPES FROM PARTIAL DATA

Martin Winter

University of Warwick

07. February, 2023

$$P = \operatorname{conv}\{p_1, \dots, p_n\} \subset \mathbb{R}^d$$

- always convex
- general dimension $d \ge 2$
- general geometry & combinatorics (not only simple/simplicial/lattice/...)
- always of full dimension

COMBINATORICS OF POLYTOPES

WACHSPRESS OBJECTS

WACHSPRESS OBJECTS

"A family of objects that appear as bridges between algebra, geometry and combinatorics"

- Wachspress coordinates
- Wachspress variety
- Wachspress ideal
- Wachspress map
- adjoint polynomial
- adjoint hypersurface
- Izmestiev matrix

WACHSPRESS OBJECTS

"A family of objects that appear as bridges between algebra, geometry and combinatorics"

Wachspress coordinates

- Wachspress variety
- Wachspress ideal
- Wachspress map
- adjoint polynomial
- adjoint hypersurface
- Izmestiev matrix

GENERALIZED BARYCENTRIC COORDINATES

Generalized barycentric coordinates (GBCs): $\alpha: P \to \Delta_n$ satisfy

$$\sum_{i} \alpha_i(x) p_i = x \quad (\text{linear precision})$$

 $\{(\alpha_1, ..., \alpha_n) \in \mathbb{R}^n_{>0} \mid \alpha_1 + \dots + \alpha_n = 1)\}$

GENERALIZED BARYCENTRIC COORDINATES

Generalized barycentric coordinates (GBCs): $\alpha: P \to \Delta_n$ satisfy

$$\sum_{i} \alpha_i(x) p_i = x \quad (\text{linear precision})$$

 $\{(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n_{>0} \mid \alpha_1 + \dots + \alpha_n = 1)\}$

There are ...

- harmonic coordinates,
- mean value coordinates,
- ...

• Wachspress coordinates (Wachspress 1975; Warren, 1996)

GENERALIZED BARYCENTRIC COORDINATES

Generalized barycentric coordinates (GBCs): $\alpha: P \to \Delta_n$ satisfy

$$\sum_{i} \alpha_i(x) p_i = x \quad (\text{linear precision})$$

 $\{(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n_{>0} \mid \alpha_1 + \dots + \alpha_n = 1)\}$

There are ...

...

- harmonic coordinates,
- mean value coordinates,
- Wachspress coordinates (Wachspress 1975; Warren, 1996)
 - ... have many non-trivially equivalent definitions

I. Unique rational GBCs of lowest possible degree (WARREN, 2003)

$$lpha_{m{i}}(x)=rac{\mathrm{p}_{m{i}}(x)}{\mathrm{q}(x)}$$
 where $\mathrm{q}(x)=\sum_{i}\mathrm{p}_{i}(x)$... adjoint polynomial

- there are not always polynomial GBCs
- degree = #facets d

Wachspress objects

The many faces of Wachspress coordinates

I. Unique rational GBCs of lowest possible degree (WARREN, 2003)

$$lpha_i(x) = rac{\mathrm{p}_i(x)}{\mathrm{q}(x)}$$
 where $\mathrm{q}(x) = \sum_i \mathrm{p}_i(x)$... adjoint polynomial

- there are not always polynomial GBCs
- degree = #facets d
- Wachspress variety
 - ... $V := \operatorname{im}(\alpha) \subseteq \Delta_n$
- ► Wachspress ideal ... *I*(*V*)

 \cong Stanley-Reisner ideal

II. Relative cone volumes (JU et al., 2005)

polar dual ... $P^{\circ} := \{ x \in \mathbb{R}^d \mid \langle x, p_i \rangle \leq 1 \text{ for all } i \in V(G_P) \}.$

III. From spectral embeddings of the edge-graph (W., 2023)

$$\begin{aligned} \theta \in \operatorname{Spec}(A) &\implies u_1, \dots, u_d \in \operatorname{Eig}_{\theta}(A) \\ &\implies \begin{bmatrix} | & | \\ u_1 & \cdots & u_d \\ | & | \end{bmatrix} = \begin{bmatrix} - & p_1 & - \\ & \vdots \\ - & p_n & - \end{bmatrix} \in \mathbb{R}^{n \times d} \end{aligned}$$

III. From spectral embeddings of the edge-graph (W., 2023)

$$\begin{split} \theta \in \operatorname{Spec}(A) &\implies u_1, \dots, u_d \in \operatorname{Eig}_{\theta}(A) \\ &\implies \begin{bmatrix} | & | \\ u_1 & \cdots & u_d \\ | & | \end{bmatrix} = \begin{bmatrix} - & p_1 & - \\ & \vdots \\ - & p_n & - \end{bmatrix} \in \mathbb{R}^{n \times d} \end{split}$$

Colin de Verdière embedding

A polytope skeleton is a spectral embedding of the edge-graph w.r.t. some weighted adjacency matrix M (IZMESTIEV, 2010)

$$\alpha_i := \sum_j M_{ij}$$

IV. Via a variation of volume

$$P^{\circ}(\mathbf{c}) := \{ x \in \mathbb{R}^d \mid \langle x, p_i \rangle \le c_i \text{ for all } i \in V(G_P) \}.$$

where $\mathbf{c} = (c_1, ..., c_n) \in \mathbb{R}^n$.

IV. Via a variation of volume

Wachspress objects

$$P^{\circ}(\mathbf{c}) := \{ x \in \mathbb{R}^d \mid \langle x, p_i \rangle \le c_i \text{ for all } i \in V(G_P) \}.$$

where $\mathbf{c} = (c_1, ..., c_n) \in \mathbb{R}^n$. Expand $\operatorname{vol}(P^{\circ}(\mathbf{c}))$ at $\mathbf{c} = \mathbf{1}$:

WACHSPRESS COORDINATES ACROSS DISCIPLINES

- adjoint polynomial q cuts out minimal degree surface that passes through "external non-faces"
- algebraic statistics
 - moment varieties of polytopes
 - Bayesian statistics

- intersection theory (computing Segre classes of monomial schemes)
- P with adjoint polynomial is a **positive geometry** (cf. the amplituhedron from theoretical physics)
- has also been defined on polycons and smooth convex bodies
- Izmestiev matrix has been used
 - to encode polytopal symmetries in colorings of the edge-gaph
 - for progress on the Hirsch conjecture

RECONSTRUCTION OF POLYTOPES FROM PARTIAL DATA

"In how far is a polytope determined by partial combinatorial and geometric data, up to isometry, affine transformation or combinatorial equivalence?"

"In how far is a polytope determined by partial combinatorial and geometric data, up to isometry, affine transformation or combinatorial equivalence?"

Does the edge-graph determine the combinatorics?

"In how far is a polytope determined by partial combinatorial and geometric data, up to isometry, affine transformation or combinatorial equivalence?"

Does the edge-graph determine the combinatorics? No.

"In how far is a polytope determined by partial combinatorial and geometric data, up to isometry, affine transformation or combinatorial equivalence?"

- Does the edge-graph determine the combinatorics? No.
- Does combinatorics + edge-lengths determine the geometry?

"In how far is a polytope determined by partial combinatorial and geometric data, up to isometry, affine transformation or combinatorial equivalence?"

Does the edge-graph determine the combinatorics? No.

Does combinatorics + edge-lengths determine the geometry? No.

FLEXIBLE POLYTOPES

Two opposing effects ...

Simple polytopes:

- combinatorics can be reconstructed (BLIND & MANI; KALAI)
- geometry cannot be reconstructed

Simplicial polytopes:

- geometry can be reconstructed, once combinatorics is known (CAUCHY)
- combinatorics cannot always be reconstructed (e.g. cyclic polytopes)

Two opposing effects ...

Simple polytopes:

- combinatorics can be reconstructed (BLIND & MANI; KALAI)
- geometry cannot be reconstructed

Simplicial polytopes:

- ▶ geometry can be reconstructed, once combinatorics is known (CAUCHY)
- combinatorics cannot always be reconstructed (e.g. cyclic polytopes)

... what additional data is needed to permit a reconstruction?

RECONSTRUCTION OF POINTED POLYTOPES

"Rigidity, Tensegrity and Reconstruction of Polytopes under Metric Constraints" (arXiv:2302.14194, accepted at IMRN)

POINTED POLYTOPES

:= polytope $P \subset \mathbb{R}^d$ + point $x_P \in \mathbb{R}^d$

POINTED POLYTOPES

:= polytope $P \subset \mathbb{R}^d$ + point $x_P \in \mathbb{R}^d$

Conjecture. (W., 2023)

A pointed polytope P with $x_P \in int(P)$ is uniquely determined (up to isometry) by its edge-graph, edge lengths and radii.

implies e.g. reconstruction of matroids from base exchange graph

POINT IN THE INTERIOR IS NECESSARY ...

Conjecture. (W., 2023)

A pointed polytope P with $x_P \in int(P)$ is uniquely determined (up to isometry) by its edge-graph, edge lengths and radii.

TENSEGRITY VERSION

Conjecture. (W., 2023)

If $P \subset \mathbb{R}^d$ and $Q \subset \mathbb{R}^e$ are pointed polytopes with the same edge-graph and

- (i) $x_Q \in int(Q)$
- (ii) edges in Q are <u>at most</u> as long as in P,
- (iii) radii in Q are <u>at least</u> as large as in P,

then P and Q are isometric.

"A polytope cannot become larger if all its edges become shorter."

CONJECTURE HOLDS IN SPECIAL CASES (W., 2023)

The conjecture holds in the following cases:

- I. Q is a small perturbation of P
 - one can replace Q by a graph embedding $q \colon G_P \to \mathbb{R}^d$
 - \cong locally rigid as a framework

II. P and Q are centrally symmetric

- ▶ one can replace Q by a centrally symmetric graph embedding $q: G_P \to \mathbb{R}^e$
- \cong universally rigid as a centrally symmetric framework

III. P and Q are combinatorially equivalent

▶ in particular true for polytope of dimension $d \leq 3$

CONJECTURE HOLDS IN SPECIAL CASES (W., 2023)

The conjecture holds in the following cases:

- I. Q is a small perturbation of P
 - ▶ one can replace Q by a graph embedding $q: G_P \to \mathbb{R}^d$
 - \cong locally rigid as a framework

CONJECTURE HOLDS IN SPECIAL CASES (W., 2023)

The conjecture holds in the following cases:

- I. Q is a small perturbation of P
 - one can replace Q by a graph embedding $q \colon G_P \to \mathbb{R}^d$
 - \cong locally rigid as a framework

II. P and Q are centrally symmetric

- ▶ one can replace Q by a centrally symmetric graph embedding $q: G_P \to \mathbb{R}^e$
- \cong universally rigid as a centrally symmetric framework

III. P and Q are combinatorially equivalent

▶ in particular true for polytope of dimension $d \leq 3$

GENERAL GRAPH EMBEDDING VERSION IS FALSE

WARMUP: SIMPLICES

- $P,Q \subset \mathbb{R}^d$ simplices,
 - (i) $0 \in int(Q)$,
 - (ii) edges in Q are at most as long as in P.
- (iii) radii in Q are at least as large as in P.

- $P,Q \subset \mathbb{R}^d$ simplices,
 - (i) $0 \in int(Q)$,
 - (ii) edges in Q are at most as long as in P.
- (iii) radii in Q are at least as large as in P.

Proof.

- $P,Q \subset \mathbb{R}^d$ simplices,
 - (i) $0 \in int(Q)$,
- (ii) edges in Q are at most as long as in P.
- (iii) radii in Q are at least as large as in P.
- *Proof.* For $\alpha \in \Delta_n$ holds

$$\sum_{i} \alpha_{i} \|p_{i}\|^{2} = \left\|\sum_{i} \alpha_{i} p_{i}\right\|^{2} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \|p_{i} - p_{j}\|^{2}$$

- $P,Q \subset \mathbb{R}^d$ simplices,
 - (i) $0 \in int(Q)$,
- (ii) edges in Q are at most as long as in P.
- (iii) radii in Q are at least as large as in P.
- *Proof.* For $\alpha \in \Delta_n$ holds

$$\sum_{i} \alpha_{i} \|p_{i}\|^{2} = \left\|\sum_{i} \alpha_{i} p_{i}\right\|^{2} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \|p_{i} - p_{j}\|^{2}$$
$$\sum_{i} \alpha_{i} \|q_{i}\|^{2} = \left\|\sum_{i} \alpha_{i} q_{i}\right\|^{2} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \|q_{i} - q_{j}\|^{2}$$

- $P,Q \subset \mathbb{R}^d$ simplices,
 - (i) $0 \in int(Q)$,
- (ii) edges in Q are at most as long as in P.
- (iii) radii in Q are at least as large as in P.
- *Proof.* For $\alpha \in \Delta_n$ holds

$$\sum_{i} \alpha_{i} \|p_{i}\|^{2} = \left\|\sum_{i} \alpha_{i} p_{i}\right\|^{2} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \|p_{i} - p_{j}\|^{2}$$

$$\forall | \text{(ii)}$$

$$\sum_{i} \alpha_{i} \|q_{i}\|^{2} = \left\|\sum_{i} \alpha_{i} q_{i}\right\|^{2} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \|q_{i} - q_{j}\|^{2}$$

- $P,Q \subset \mathbb{R}^d$ simplices,
 - (i) $0 \in int(Q)$,
- (ii) edges in Q are at most as long as in P.
- (iii) radii in Q are at least as large as in P.
- *Proof.* For $\alpha \in \Delta_n$ holds

$$\sum_{i} \alpha_{i} \|p_{i}\|^{2} = \left\|\sum_{i} \alpha_{i} p_{i}\right\|^{2} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \|p_{i} - p_{j}\|^{2}$$

$$\land |(iii) \qquad \lor |(ii)$$

$$\sum_{i} \alpha_{i} \|q_{i}\|^{2} = \left\|\sum_{i} \alpha_{i} q_{i}\right\|^{2} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \|q_{i} - q_{j}\|^{2}$$

 $P,Q \subset \mathbb{R}^d$ simplices,

(i) $0 \in int(Q)$, $\implies 0 = \sum_i \alpha_i q_i \dots$ convex combination

(ii) edges in Q are at most as long as in P.

(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_n$ holds

$$\sum_{i} \alpha_{i} \|p_{i}\|^{2} = \left\| \sum_{i} \alpha_{i} p_{i} \right\|^{2} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \|p_{i} - p_{j}\|^{2}$$

$$\wedge | \text{(iii)} \qquad \qquad \vee | \text{(iii)}$$

$$\sum_{i} \alpha_{i} \|q_{i}\|^{2} = \left\| \sum_{i} \alpha_{i} q_{i} \right\|^{2} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \|q_{i} - q_{j}\|^{2}$$

 $P,Q \subset \mathbb{R}^d$ simplices,

(i) $0 \in int(Q)$, $\implies 0 = \sum_i \alpha_i q_i \dots$ convex combination

(ii) edges in Q are at most as long as in P.

(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_n$ holds

$$\sum_{i} \alpha_{i} \|p_{i}\|^{2} = \left\| \sum_{i} \alpha_{i} p_{i} \right\|^{2} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \|p_{i} - p_{j}\|^{2}$$

$$\land | \text{(iii)} \qquad \lor | \text{(i)} \qquad \lor | \text{(ii)}$$

$$\sum_{i} \alpha_{i} \|q_{i}\|^{2} = \left\| \sum_{i} \alpha_{i} q_{i} \right\|^{2} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \|q_{i} - q_{j}\|^{2}$$

 $P,Q \subset \mathbb{R}^d$ simplices,

(i) $0 \in int(Q)$, $\implies 0 = \sum_i \alpha_i q_i \dots$ convex combination

(ii) edges in Q are at most as long as in P.

(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_n$ holds

$$\sum_{i} \alpha_{i} \|p_{i}\|^{2} = \left\| \sum_{i} \alpha_{i} p_{i} \right\|^{2} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \|p_{i} - p_{j}\|^{2}$$

$$\| \text{ (iii)} \quad \| \text{ (i)} \quad \| \text{ (ii)}$$

$$\sum_{i} \alpha_{i} \|q_{i}\|^{2} = \left\| \sum_{i} \alpha_{i} q_{i} \right\|^{2} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \|q_{i} - q_{j}\|^{2}$$

 $P,Q \subset \mathbb{R}^d$ simplices,

(i) $0 \in int(Q)$, $\implies 0 = \sum_i \alpha_i q_i \dots$ convex combination

(ii) edges in Q are at most as long as in P.

(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_n$ holds

$$\sum_{i} \alpha_{i} \|p_{i}\|^{2} = \left\| \sum_{i} \alpha_{i} p_{i} \right\|^{2} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \|p_{i} - p_{j}\|^{2}$$

$$\| \text{ (iii)} \quad \| \text{ (i)} \quad \| \text{ (ii)} \quad \\ \sum_{i} \alpha_{i} \|q_{i}\|^{2} = \left\| \sum_{i} \alpha_{i} q_{i} \right\|^{2} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \|q_{i} - q_{j}\|^{2}$$

Therefore $P \simeq Q$.

 $P,Q \subset \mathbb{R}^d$ simplices,

(i) $0 \in int(Q)$, $\implies 0 = \sum_i \alpha_i q_i \dots$ convex combination

(ii) edges in Q are at most as long as in P.

(iii) radii in Q are at least as large as in P.

Proof. For $\alpha \in \Delta_n$ holds

$$\sum_{i} \alpha_{i} \|p_{i}\|^{2} = \left\| \sum_{i} \alpha_{i} p_{i} \right\|^{2} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \|p_{i} - p_{j}\|^{2}$$

$$\| \text{ (iii)} \quad \| \text{ (i)} \quad \forall ! ??$$

$$\sum_{i} \alpha_{i} \|q_{i}\|^{2} = \left\| \sum_{i} \alpha_{i} q_{i} \right\|^{2} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \|q_{i} - q_{j}\|^{2}$$

Therefore $P \simeq Q$.

Fix
$$\alpha \in \Delta_n := \{(\alpha_1, ..., \alpha_n) \in \mathbb{R}^n_{\geq 0} \mid \alpha_1 + \dots + \alpha_n = 1\}$$

$$lpha$$
-expansion: $\|P\|^2_lpha := rac{1}{2} \sum_{i,j} lpha_i lpha_j \|p_i - p_j\|^2$

Fix $\alpha \in \Delta_n := \{(\alpha_1, ..., \alpha_n) \in \mathbb{R}^n_{\geq 0} \mid \alpha_1 + \dots + \alpha_n = 1\}$

$$lpha$$
-expansion: $\|P\|_{lpha}^2 := rac{1}{2} \sum_{i,j} lpha_i lpha_j \|p_i - p_j\|^2$

"If edges shrink, then the expansion decreases."

Fix $\alpha \in \Delta_n := \{(\alpha_1, ..., \alpha_n) \in \mathbb{R}^n_{\geq 0} \mid \alpha_1 + \dots + \alpha_n = 1\}$

$$\alpha\text{-expansion:} \quad \|P\|_{\alpha}^2 := \frac{1}{2}\sum_{i,j} \alpha_i \alpha_j \|p_i - p_j\|^2$$

"If edges shrink, then the expansion decreases, if α is chosen suitably."

Fix $\alpha \in \Delta_n := \{(\alpha_1, ..., \alpha_n) \in \mathbb{R}^n_{\geq 0} \mid \alpha_1 + \dots + \alpha_n = 1\}$

$$lpha$$
-expansion: $\|P\|^2_{lpha} := rac{1}{2} \sum_{i,j} lpha_i lpha_j \|p_i - p_j\|^2$

"If edges shrink, then the expansion decreases, if α is chosen suitably."

Key theorem (W., 2023)

If α are the Wachspress coordinates of some interior point of P, and edges in $q: G_P \to \mathbb{R}^e$ are not longer than in P, then

 $\|q\|_{\alpha} \le \|P\|_{\alpha},$

with equivalence if and only if $\alpha \simeq_{\text{affine}} P$.

CONSEQUENCES

Corollary.

A pointed polytope is uniquely determined (up to affine transformations) by its edge-graph, edge lengths and Wachspress coordinates.

A polytope can be reconstructed in polynomial time (via semidefinite program).

Rigidity of pointed polytopes

Are we done ... ?

$$\sum_{i} \alpha_{i} ||p_{i}||^{2} = \left\| \sum_{i} \alpha_{i} p_{i} \right\|^{2} + ||P||_{\alpha}^{2}$$

$$\land | \qquad \lor | \qquad \lor |$$

$$\sum_{i} \alpha_{i} ||q_{i}||^{2} = \left\| \sum_{i} \alpha_{i} q_{i} \right\|^{2} + ||Q||_{\alpha}^{2}$$

Are we done ... ?

$$\sum_{i} \alpha_{i} \|p_{i}\|^{2} = \left\| \sum_{i} \alpha_{i} p_{i} \right\|^{2} + \|P\|_{\alpha}^{2}$$
$$\sum_{i} \alpha_{i} q_{i} \stackrel{?}{=} 0 \qquad \land \land \lor \qquad \lor \lor \qquad \lor \lor$$
$$\sum_{i} \alpha_{i} \|q_{i}\|^{2} = \left\| \sum_{i} \alpha_{i} q_{i} \right\|^{2} + \|Q\|_{\alpha}^{2}$$

What is α ?

- convex coordinates of the special point in Q ... and at the same time ...
- ▶ Wachspress coordinates of *some* point in *P*

Are we done ... ?

$$\sum_{i} \alpha_{i} \|p_{i}\|^{2} = \left\| \sum_{i} \alpha_{i} p_{i} \right\|^{2} + \|P\|_{\alpha}^{2}$$
$$\sum_{i} \alpha_{i} q_{i} \stackrel{?}{=} 0 \qquad \land \land \lor \qquad \lor \lor \qquad \lor \lor$$
$$\sum_{i} \alpha_{i} \|q_{i}\|^{2} = \left\| \sum_{i} \alpha_{i} q_{i} \right\|^{2} + \|Q\|_{\alpha}^{2}$$

What is α ?

- convex coordinates of the special point in Q ... and at the same time ...
- \blacktriangleright Wachspress coordinates of *some* point in P

Can we have this?

The Wachspress map $\phi \colon P \to Q$

$$\sum_{i} \alpha_{i} ||p_{i}||^{2} = \left\| \sum_{i} \alpha_{i} p_{i} \right\|^{2} + ||P||_{\alpha}^{2}$$

$$\land | \qquad \lor | \qquad \lor |$$

$$\sum_{i} \alpha_{i} ||q_{i}||^{2} = \left\| \sum_{i} \alpha_{i} q_{i} \right\|^{2} + ||Q||_{\alpha}^{2}$$

The Wachspress map $\phi: P \to Q$ maps

$$x \in P \longmapsto \alpha(x) \in \Delta_n \longmapsto \phi(x) := \sum_i \alpha_i(x) q_i \in Q$$

The Wachspress map $\phi \colon P \to Q$

$$\sum_{i} \alpha_{i} \|p_{i}\|^{2} = \|x\|^{2} + \|P\|_{\alpha}^{2}$$

$$\land | \qquad \lor | \qquad \lor |$$

$$\sum_{i} \alpha_{i} \|q_{i}\|^{2} = \|\phi(x)\|^{2} + \|Q\|_{\alpha}^{2}$$

The Wachspress map $\phi: P \to Q$ maps

$$x \in P \longmapsto \alpha(x) \in \Delta_n \longmapsto \phi(x) := \sum_i \alpha_i(x) q_i \in Q$$

The Wachspress map $\phi \colon P \to Q$

$$\sum_{i} \alpha_{i} \|p_{i}\|^{2} = \|x\|^{2} + \|P\|_{\alpha}^{2}$$

$$\land | \qquad \lor | \qquad \lor |$$

$$\sum_{i} \alpha_{i} \|q_{i}\|^{2} = \|\phi(x)\|^{2} + \|Q\|_{\alpha}^{2}$$

The Wachspress map $\phi: P \rightarrow Q$ maps

$$x \in P \longmapsto \alpha(x) \in \Delta_n \longmapsto \phi(x) := \sum_i \alpha_i(x) q_i \in Q$$

The remaining question: how to find $x \in int(P)$ with $||x|| \ge ||\phi(x)||$?

WE CAN HAVE IT IN SPECIAL CASES ...

Key lemma.

If $P \subset \mathbb{R}^d$ and $q: G_P \to \mathbb{R}^e$ satisfy

- (i) there is $x \in int(P)$ with $||x|| \ge ||\phi(x)||$, (e.g. if $\phi(x) = 0$)
- (ii) edges in q are <u>at most</u> as long as in P,
- (iii) radii in q are <u>at least</u> as large as in P,

then q is isometric the skeleton of P.

WE CAN HAVE IT IN SPECIAL CASES ...

Key lemma.

If $P \subset \mathbb{R}^d$ and $q: G_P \to \mathbb{R}^e$ satisfy

(i) there is $x \in int(P)$ with $||x|| \ge ||\phi(x)||$, (e.g. if $\phi(x) = 0$)

(ii) edges in q are at most as long as in P,

(iii) radii in q are at least as large as in P,

then q is isometric the skeleton of P.

Resolved special cases:

- P and q centrally symmetric
- ▶ q a small perturbation of P's skeleton $(0 \in B_{\epsilon}(0) \subset P \longrightarrow 0 \in \phi(B_{\epsilon}(0)))$
- ▶ P and Q combinatorially equivalent $(\phi: P \to Q)$ is surjective)

 $(\phi(0) = 0)$

WHEN THE WACHSPRESS MAP CONDITION FAILS ...

USING WACHSPRESS COORDINATES AND IZMESTIEV MATRIX

RECALLING THE STATEMENT

Key theorem (W., 2023)

If α are the Wachspress coordinates of some interior point of P, and edges in $q: G_P \to \mathbb{R}^e$ are not longer than in P, then

 $\|q\|_{\alpha} \le \|P\|_{\alpha}.$

"The skeleton of P has the maximal α -expansion among all embeddings of G_P whose edges are not longer than in P."

$$\begin{array}{ll} \max & \|q\|_{\alpha} \\ \text{s.t.} & \|q_i - q_j\| \le \|p_i - p_j\|, \quad \text{for all } ij \in E \\ & q_1, \dots, q_n \in \mathbb{R}^n \end{array}$$

$$\begin{array}{ll} \max & \|q\|_{\alpha} \\ \text{s.t.} & \|q_i - q_j\| \leq \|p_i - p_j\|, \quad \text{for all } ij \in E \\ & q_1, \dots, q_n \in \mathbb{R}^n \end{array}$$

$$\begin{array}{ll} \max & \|q\|_{\alpha} \\ \text{s.t.} & \|q_i - q_j\| \le \|p_i - p_j\|, \quad \text{for all } ij \in E \\ & q_1, \dots, q_n \in \mathbb{R}^n \\ & & & \downarrow \quad \text{by translation invariance} \\ \\ \max & \sum_i \alpha_i \|q_i\|^2 \\ \text{s.t.} & \sum_i \alpha_i q_i = 0 \\ & \|q_i - q_j\| \le \|p_i - p_j\|, \quad \text{for all } ij \in E \\ & q_1, \dots, q_n \in \mathbb{R}^n \end{array}$$

$$\begin{array}{ll} \max & \|q\|_{\alpha} \\ \text{s.t.} & \|q_i - q_j\| \leq \|p_i - p_j\|, \quad \text{for all } ij \in E \\ q_1, \dots, q_n \in \mathbb{R}^n \\ & & \downarrow \quad \text{by translation invariance} \\ \\ \max & \sum_i \alpha_i \|q_i\|^2 \\ \text{s.t.} & \sum_i \alpha_i q_i = 0 \\ & \|q_i - q_j\| \leq \|p_i - p_j\|, \quad \text{for all } ij \in E \\ q_1, \dots, q_n \in \mathbb{R}^n \\ & & \downarrow \quad \text{dual program} \\ \\ \min & \sum_{ij \in E} w_{ij} \|p_i - p_j\|^2 \\ \text{s.t.} & L_w - \text{diag}(\alpha) + \mu \alpha \alpha^\top \succeq 0 \\ & w \geq 0, \mu \text{ free} \end{array}$$

Theorem. (IZMESTIEV, 2007)

The Izmestiev matrix satisfies

- (i) $M_{ij} > 0$ whenever $ij \in E$,
- (ii) $M_{ij} = 0$ whenever $i \neq j$ and $ij \notin E$,
- (iii) $\dim \ker(M) = d$,

(iv)
$$MX_P = 0$$
, where $X_P^{ op} = (p_1, ..., p_n) \in \mathbb{R}^{d imes n}$,

(v) M has a single positive eigenvalue of multiplicity 1.

$$\sum_{ij\in E} M_{ij} \|p_i - p_j\|^2 = \frac{1}{2} \sum_{i,j} M_{ij} \|p_i - p_j\|^2$$
$$= \sum_i \left(\sum_j M_{ij}\right) \|p_i\|^2 - \sum_{i,j} M_{ij} \langle p_i, p_j \rangle$$
$$= \sum_i \alpha_i \|p_i\|^2 - \operatorname{tr}(\underbrace{MX_P}_{=0} X_P^{\top}) = \sum_i \alpha_i \|p_i\|^2 = \|P\|_{\alpha}^2.$$

Theorem. (IZMESTIEV, 2007)

The Izmestiev matrix satisfies

(i) $M_{ij} > 0$ whenever $ij \in E$,

(ii)
$$M_{ij} = 0$$
 whenever $i \neq j$ and $ij \notin E$,

(iii)
$$\dim \ker(M) = d$$
,

(iv)
$$MX_P = 0$$
, where $X_P^{ op} = (p_1, ..., p_n) \in \mathbb{R}^{d imes n}$,

(v) M has a single positive eigenvalue of multiplicity 1.

$$\sum_{ij\in E} M_{ij} \|p_i - p_j\|^2 = \frac{1}{2} \sum_{i,j} M_{ij} \|p_i - p_j\|^2$$
$$= \sum_i \left(\sum_j M_{ij}\right) \|p_i\|^2 - \sum_{i,j} M_{ij} \langle p_i, p_j \rangle$$
$$= \sum_i \alpha_i \|p_i\|^2 - \operatorname{tr}(\underbrace{MX_P}_{=0} X_P^{\top}) = \sum_i \alpha_i \|p_i\|^2 = \|P\|_{\alpha}^2.$$

Theorem. (IZMESTIEV, 2007)

The Izmestiev matrix satisfies

- (i) $M_{ij} > 0$ whenever $ij \in E$,
- (ii) $M_{ij} = 0$ whenever $i \neq j$ and $ij \notin E$,
- (iii) $\dim \ker(M) = d$,

(iv)
$$MX_P = 0$$
, where $X_P^{\top} = (p_1, ..., p_n) \in \mathbb{R}^{d \times n}$

(v) M has a single positive eigenvalue of multiplicity 1.

$$\sum_{ij\in E} M_{ij} \|p_i - p_j\|^2 = \frac{1}{2} \sum_{i,j} M_{ij} \|p_i - p_j\|^2$$
$$= \sum_i \left(\sum_j M_{ij}\right) \|p_i\|^2 - \sum_{i,j} M_{ij} \langle p_i, p_j \rangle$$
$$= \sum_i \alpha_i \|p_i\|^2 - \operatorname{tr}(\underbrace{MX_P}_{=0} X_P^{\top}) = \sum_i \alpha_i \|p_i\|^2 = \|P\|_{\alpha}^2.$$

Theorem. (IZMESTIEV, 2007)

The Izmestiev matrix satisfies

- (i) $M_{ij} > 0$ whenever $ij \in E$,
- (ii) $M_{ij} = 0$ whenever $i \neq j$ and $ij \notin E$,
- (iii) $\dim \ker(M) = d$,

(iv)
$$MX_P = 0$$
, where $X_P^{\top} = (p_1, ..., p_n) \in \mathbb{R}^{d \times n}$,

(v) M has a single positive eigenvalue of multiplicity 1.

$$\sum_{ij\in E} M_{ij} \|p_i - p_j\|^2 = \frac{1}{2} \sum_{i,j} M_{ij} \|p_i - p_j\|^2$$
$$= \sum_i \left(\sum_j M_{ij}\right) \|p_i\|^2 - \sum_{i,j} M_{ij} \langle p_i, p_j \rangle$$
$$= \sum_i \alpha_i \|p_i\|^2 - \operatorname{tr}(\underbrace{MX_P}_{=0} X_P^{\top}) = \sum_i \alpha_i \|p_i\|^2 = \|P\|_{\alpha}^2.$$

Tack!

"Rigidity, Tensegrity and Reconstruction of Polytopes under Metric Constraints" (arXiv:2302.14194, accepted at IMRN)