Rigidity of Polyhedral Spheres beyond Triangulations University of Warwick

RIGIDITY OF POLYHEDRAL SPHERES BEYOND TRIANGULATIONS

Martin Winter

University of Warwick

March 6, 2024

Joint work with Bernd Schulze, Matthias Himmelmann, Albert Zhang

Triangular and Polyhedral spheres

Non-convex and self-intersecting

POLYHEDRAL SPHERES

"A polyhedral sphere is a bunch of polygons glued edge to edge so that they form a topological sphere."

polyhedral graph

- ightharpoonup a **polyhedral sphere** $\mathcal{P}=(V,E)$ is a 3-connected planar graph.
- ▶ its faces we denote by $F_1, ..., F_m \subset V$.
- ▶ a **realization** of \mathcal{P} is a map $p: V \to \mathbb{R}^3$ so that the points $p_i, i \in F_k$ lie on a common plane.
- in a triangulated sphere all faces are triangles.

FLEXING POLYHEDRAL SPHERES

- preserving edge lengths but also
- preserve planarity of faces

FLEXING POLYHEDRAL SPHERES

- preserving edge lengths but also
- preserve planarity of faces

#DOFs - #constraints =
$$3|V| - \left(|E| + \sum_{k} \left(|F_k| - 3\right)\right) = 6$$
.

... good old frameworks

TRIANGULATED SPHERES

RIGIDITY OF TRIANGULATED SPHERES

Core results

Convex triangulated spheres are globally rigid.

Convex triangulated spheres are first-order rigid.

Triangulated spheres are generically first-order rigid.

(Gluck)

Flexible triangulated spheres exist. (BRICARD, CONNELLY, STEFFEN)

MOVING BEYOND TRIANGULATIONS

RIGIDITY OF GENERAL POLYHEDRAL SPHERES

Core results

- ► <u>Convex</u> polyhedra with <u>fixed face shapes</u> are <u>globally</u> rigid. (CAUCHY)

 (also in higher dimensions) (ALEXANDROV)
- ► <u>Triangulating</u> a convex polyhedron makes it <u>first-order</u> rigid. (ALEXANDROV)

Moving beyond triangulations

Minkowski sums $A + B := \{a + b \mid a \in A, b \in B\}$

MINKOWSKI SUMS $A + B := \{a + b \mid a \in A, b \in B\}$

Only Minkowski sums?

Question: Are all flexible convex polyhedra Minkowski sums?

Notes:

- ► This includes rotating/flexing a proper Minkowski summand.
- Not all Minkowski sums are flexible.

AFFINE FLEXES := A FLEX REALIZED BY AN AFFINE TRANSFORMATION

Question: Are all affinely flexible polyhedra Minkowski sums?

Theorem. (HIMMELMANN, SCHULZE, W., ZHANG, 2024+)

The regular dodecahedron is ...

- X not first-order rigid. (5-dimensional space of first-order flexes)
- X <u>not</u> prestress stable.
- ✓ second-order rigid.

NO GENERIC GLOBAL RIGIDITY

MANY OPEN QUESTIONS

Question: (about convex spheres)

- ► Is second order rigidity always sufficient?
- Does flexibility need parallel edges?
- ▶ Is polytope rigidity preserved under affine transformations?

(first-order flexibility is not)

GENERIC FIRST-ORDER RIGIDITY

Generic first-order rigidity

Main result

Theorem. (Himmelmann, Schulze, W., Zhang, 2024)

Convex polyhedral spheres are generically first-order rigid.

Theorem. (Himmelmann, Schulze, W., Zhang, 2024)

Convex polyhedral spheres are generically first-order rigid.

$$Real(\mathcal{P}) := \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \langle p_i, n_k \rangle = 1 \text{ if } i \in F_k \end{array} \right\}$$

Theorem. (Himmelmann, Schulze, W., Zhang, 2024)

Convex polyhedral spheres are generically first-order rigid.

$$\operatorname{Real}(\mathcal{P}) := \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \langle p_i, n_k \rangle = 1 \quad \text{if } i \in F_k \right.$$

$$\operatorname{Real-CVX}(\mathcal{P}) := \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{aligned} \middle| \langle p_i, n_k \rangle = 1 \quad \text{if } i \in F_k \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \middle| \langle p_i, n_k \rangle < 1 \quad \text{if } i \notin F_k \right.$$

Theorem. (Himmelmann, Schulze, W., Zhang, 2024)

Convex polyhedral spheres are generically first-order rigid.

$$\operatorname{Real}(\mathcal{P}) := \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \langle p_i, n_k \rangle = 1 \quad \text{if } i \in F_k \end{array} \right\}$$

$$\operatorname{Real-CVX}(\mathcal{P}) := \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \langle p_i, n_k \rangle = 1 \quad \text{if } i \in F_k \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \middle| \langle p_i, n_k \rangle < 1 \quad \text{if } i \notin F_k \end{array} \right\}$$

A finite flex preserves

$$\|p_i - p_j\| \stackrel{!}{=} \ell_{ij} = \mathrm{const}$$
 for $ij \in E$ $\langle p_i, n_k \rangle \stackrel{!}{=} 1$ for $i \in F_k$

Theorem. (HIMMELMANN, SCHULZE, W., ZHANG, 2024)

Convex polyhedral spheres are generically first-order rigid.

$$\operatorname{Real}(\mathcal{P}) := \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \left\langle p_i, n_k \right\rangle = 1 \quad \text{if } i \in F_k \right. \\
\operatorname{Real-CVX}(\mathcal{P}) := \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \left\langle p_i, n_k \right\rangle = 1 \quad \text{if } i \in F_k \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \middle| \left\langle p_i, n_k \right\rangle < 1 \quad \text{if } i \notin F_k \end{array} \right\}$$

A finite flex preserves

$$\|p_i - p_j\| \stackrel{!}{=} \ell_{ij} = \text{const}$$
 for $ij \in E$
 $\langle p_i, n_k \rangle \stackrel{!}{=} 1$ for $i \in F_k$

A first-order flex $(\dot{\boldsymbol{p}},\dot{\boldsymbol{n}})$ satisfies

$$\langle p_i - p_j, \dot{p}_i - \dot{p}_j \rangle = 0$$
 for $ij \in E$
 $\langle p_i, \dot{n}_k \rangle + \langle \dot{p}_i, n_k \rangle = 0$ for $i \in F_k$

The Proof

the triangular case —

"Triangular spheres are generically first-order rigid."

RIGIDITY MATRIX $\mathcal{R}(G, p)$

 $\dot{\boldsymbol{p}}$ is a first-order flex $\iff \mathcal{R}(G,\boldsymbol{p})\dot{\boldsymbol{p}}=0$

RIGIDITY MATRIX $\mathcal{R}(G, \boldsymbol{p})$

$$\dot{p}$$
 is a first-order flex $\iff \mathcal{R}(G, p)\dot{p} = 0$ (G, p) is first-order rigid $\iff \operatorname{corank} \mathcal{R}(G, p) = 6$

RIGIDITY MATRIX $\mathcal{R}(G, \boldsymbol{p})$

$$i \in V$$
 $j \in V$ $i \in V$ $j \in$

$$\dot{\boldsymbol{p}}$$
 is a first-order flex $\iff \mathcal{R}(G,\boldsymbol{p})\dot{\boldsymbol{p}}=0$
$$(G,\boldsymbol{p}) \text{ is first-order rigid} \iff \operatorname{corank} \mathcal{R}(G,\boldsymbol{p})=6$$
 $\#\operatorname{columns} - \#\operatorname{rows} = 3|V|-|E|=6=\#\operatorname{trivial} \text{ first-order flexes.}$

RIGIDITY MATRIX $\mathcal{R}(G, p)$

$$i \in V$$
 $j \in V$ $j \in$

$$\dot{p}$$
 is a first-order flex $\iff \mathcal{R}(G, p)\dot{p} = 0$
$$(G, p) \text{ is first-order rigid} \iff \operatorname{corank} \mathcal{R}(G, p)^{\top} = 0$$
 $\#\operatorname{columns} - \#\operatorname{rows} = 3|V| - |E| = 6 = \#\operatorname{trivial first-order flexes.}$

STRESSES

$$\mathcal{R}(G, \boldsymbol{p})^{\mathsf{T}} \boldsymbol{\omega} = 0.$$

$$\forall i \in V : \sum_{j:ij \in E} \omega_{ij} (p_j - p_i) = 0.$$

first-order flexible $\iff \ker \mathcal{R}(G, \boldsymbol{p})^{\top} = \{0\} \iff \exists \text{ non-zero stress}$

GENERIC FIRST-ORDER RIGIDITY

```
\begin{split} \operatorname{REAL}(G) &:= \big\{\operatorname{3-dimensional\ frameworks\ on}\ G\big\} = \mathbb{R}^{3V} \\ \operatorname{FLEX}(G) &:= \big\{\operatorname{first-order\ flexible\ frameworks\ on}\ G\big\} \\ &= \big\{\operatorname{\boldsymbol{p}} \in \mathbb{R}^{3V} \mid \operatorname{rank} \mathcal{R}(G, \operatorname{\boldsymbol{p}}) < |E|\big\} \\ &= \big\{\operatorname{\boldsymbol{p}} \in \mathbb{R}^{3V} \mid \det(A) = 0 \text{ for all } |E| \times |E| \text{ submatrices\ } A \text{ of\ } \mathcal{R}(G, \operatorname{\boldsymbol{p}})\big\}. \end{split}
```

GENERIC FIRST-ORDER RIGIDITY

```
\begin{split} \operatorname{REAL}(G) &:= \big\{ \operatorname{3-dimensional frameworks on } G \big\} = \mathbb{R}^{3V} \\ \operatorname{FLEX}(G) &:= \big\{ \operatorname{first-order flexible frameworks on } G \big\} \\ &= \big\{ \boldsymbol{p} \in \mathbb{R}^{3V} \mid \operatorname{rank} \mathcal{R}(G, \boldsymbol{p}) < |E| \big\} \\ &= \big\{ \boldsymbol{p} \in \mathbb{R}^{3V} \mid \det(A) = 0 \text{ for all } |E| \times |E| \text{ submatrices } A \text{ of } \mathcal{R}(G, \boldsymbol{p}) \big\}. \end{split}
```

- \implies FLEX $(G) \subseteq \mathbb{R}^{3V}$ is the zero set of polynomials.
- \implies either $FLEX(G) = \mathbb{R}^{3V}$ or FLEX(G) has measure zero.

GENERIC FIRST-ORDER RIGIDITY

$$\begin{split} \operatorname{REAL}(G) &:= \big\{ \operatorname{3-dimensional frameworks on } G \big\} = \mathbb{R}^{3V} \\ \operatorname{FLEX}(G) &:= \big\{ \operatorname{first-order flexible frameworks on } G \big\} \\ &= \big\{ \boldsymbol{p} \in \mathbb{R}^{3V} \mid \operatorname{rank} \mathcal{R}(G, \boldsymbol{p}) < |E| \big\} \\ &= \big\{ \boldsymbol{p} \in \mathbb{R}^{3V} \mid \det(A) = 0 \text{ for all } |E| \times |E| \text{ submatrices } A \text{ of } \mathcal{R}(G, \boldsymbol{p}) \big\}. \end{split}$$

- \implies FLEX $(G) \subseteq \mathbb{R}^{3V}$ is the zero set of polynomials.
- \implies either $FLEX(G) = \mathbb{R}^{3V}$ or FLEX(G) has measure zero.

Recall: a convex realization is first-order rigid. (Dehn)

- \implies FLEX $(G) \neq \mathbb{R}^{3V}$.
- \implies FLEX(G) has measure zero.

THE PROOF

the polyhedral case -

"Convex polyhedral spheres are generically first-order rigid."

RIGIDITY MATRIX $\mathcal{R}(P)$

RIGIDITY MATRIX $\mathcal{R}(P)$

$$\#\text{columns} - \#\text{rows} = (3|V| + 3|F|) - (|E| + |VF|) = 6$$

STRESSES

$$\mathcal{R}(P)^{\mathsf{T}}(\boldsymbol{\omega}, \boldsymbol{\alpha}) = 0$$

$$\forall i \in V \colon \quad 0 = \sum_{j:ij \in E} \frac{\omega_{ij}}{\omega_{ij}} (p_j - p_i) + \sum_{k:i \in F_k} \alpha_{ik} n_k$$

$$\forall k \in F \colon \ 0 = \sum_{i \in F_k} \alpha_{ik} p_i$$

STRESSES

$$\mathcal{R}(P)^{\mathsf{T}}(\boldsymbol{\omega}, \boldsymbol{\alpha}) = 0$$

$$\forall i \in V \colon \quad 0 = \sum_{j:ij \in E} \underline{\omega_{ij}}(p_j - p_i) + \sum_{k:i \in F_k} \underline{\alpha_{ik}} n_k$$

$$\forall k \in F \colon \ 0 = \sum_{i \in F_k} \alpha_{ik} p_i$$

STRESSES

$$\mathcal{R}(P)^{\mathsf{T}}(\boldsymbol{\omega}, \boldsymbol{\alpha}) = 0$$

$$\begin{aligned} \forall i \in V \colon & 0 = \sum_{j:ij \in E} \omega_{ij} (p_j - p_i) + \sum_{k:i \in F_k} \alpha_{ik} n_k \\ \forall k \in F \colon & 0 = \sum_{j:ij \in E} \alpha_{ik} p_i \end{aligned}$$

 $i \in F_k$

Observation: If F_k is triangular face, then $\alpha_{ik} = 0$.

Theorem. (Himmelmann, Schulze, W., Zhang)

Convex polyhedral spheres are generically first-order rigid.

 $\forall \mathcal{P} \quad \text{Flex}(\mathcal{P}) \text{ has measure zero in } \text{Real-cvx}(\mathcal{P}).$

Theorem. (Himmelmann, Schulze, W., Zhang)

Convex polyhedral spheres are generically first-order rigid.

 $\forall \mathcal{P} \quad \text{Flex}(\mathcal{P}) \text{ has measure zero in } \text{Real-cvx}(\mathcal{P}).$

Question: What about potentially non-convex polyhedral spheres?

Theorem. (Himmelmann, Schulze, W., Zhang)

Convex polyhedral spheres are generically first-order rigid.

 $\forall \mathcal{P} \quad \text{FLEX}(\mathcal{P}) \text{ has measure zero in } \text{Real-cvx}(\mathcal{P}).$

Question: What about potentially non-convex polyhedral spheres?

Strategy:

- 1. Polynomial method: $FLEX(\mathcal{P}) \subseteq REAL(\mathcal{P})$ is a sub-variety.
 - $\longrightarrow \ \mathrm{FLEX}(\mathcal{P}) = \mathrm{REAL}(\mathcal{P}) \ \text{ or } \\ \mathrm{FLEX}(\mathcal{P}) \ \text{has measure zero in } \mathrm{REAL}(\mathcal{P}).$
- 2. Show: there exists at least one realization that is first-order rigid.

Theorem. (Himmelmann, Schulze, W., Zhang)

Convex polyhedral spheres are generically first-order rigid.

 $\forall \mathcal{P} \quad \text{Flex}(\mathcal{P}) \text{ has measure zero in } \text{Real-cvx}(\mathcal{P}).$

 $\label{eq:Question: What about $\underline{\text{potentially non-convex}}$ polyhedral spheres?}$

Strategy:

- 1. Polynomial method: $FLEX(\mathcal{P}) \subseteq REAL-CVX(\mathcal{P})$ is a sub-variety.
 - $\longrightarrow \ \mathrm{FLEX}(\mathcal{P}) = \mathrm{REAL\text{-}CVX}(\mathcal{P}) \ \ \text{or}$ $\mathrm{FLEX}(\mathcal{P}) \ \text{has measure zero in } \mathrm{REAL\text{-}CVX}(\mathcal{P}).$
- 2. Show: there exists at least one convex realization that is first-order rigid.

Theorem. (Steinitz)

REAL-CVX(\mathcal{P}) $\subset \mathbb{R}^{3V} \times \mathbb{R}^{3F}$ is (an open subset of) a smooth, irreducible, contractible variety of dimension |E|+6.

REDUCTION TO EXISTENCE

$$\operatorname{REAL}(\mathcal{P}) := \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \langle p_i, n_k \rangle = 1 \quad \text{if } i \in F_k \end{array} \right\}$$

$$\operatorname{REAL-CVX}(\mathcal{P}) := \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \left\langle p_i, n_k \right\rangle = 1 \quad \text{if } i \in F_k \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \middle| \left\langle p_i, n_k \right\rangle < 1 \quad \text{if } i \notin F_k \end{array} \right\}$$

$$\begin{split} \text{Flex}(\mathcal{P}) &:= \big\{\, (\boldsymbol{p}, \boldsymbol{n}) \in \text{Real-cvx}(P) \mid (\mathcal{P}, \boldsymbol{p}, \boldsymbol{n}) \text{ is first-order flexible} \, \big\} \\ &= \big\{\, (\boldsymbol{p}, \boldsymbol{n}) \in \text{Real-cvx}(P) \mid \text{rank}\, \mathcal{R}(\mathcal{P}, \boldsymbol{p}, \boldsymbol{n}) < |E| + |VF| \, \big\} \end{split}$$

- \implies FLEX $(G) \subseteq \text{Real-CVX}(P)$ is the zero set of polynomials.
- \implies either $FLEX(\mathcal{P}) = REAL-CVX(P)$ or $FLEX(\mathcal{P})$ has measure zero in REAL-CVX(P).

REDUCTION TO EXISTENCE

$$\operatorname{REAL}(\mathcal{P}) := \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \langle p_i, n_k \rangle = 1 \text{ if } i \in F_k \right.$$

$$\operatorname{REAL-CVX}(\mathcal{P}) := \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \langle p_i, n_k \rangle = 1 \text{ if } i \in F_k \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \middle| \langle p_i, n_k \rangle < 1 \text{ if } i \notin F_k \right.$$

$$\begin{aligned} \text{Flex}(\mathcal{P}) &:= \big\{\, (\boldsymbol{p}, \boldsymbol{n}) \in \text{Real-CVX}(P) \mid (\mathcal{P}, \boldsymbol{p}, \boldsymbol{n}) \text{ is first-order flexible} \, \big\} \\ &= \big\{\, (\boldsymbol{p}, \boldsymbol{n}) \in \text{Real-CVX}(P) \mid \text{rank}\, \mathcal{R}(\mathcal{P}, \boldsymbol{p}, \boldsymbol{n}) < |E| + |VF| \, \big\} \end{aligned}$$

$$\implies$$
 FLEX $(G) \subseteq \text{REAL-CVX}(P)$ is the zero set of polynomials.

$$\implies$$
 either $FLEX(\mathcal{P}) = REAL-CVX(P)$ or $FLEX(\mathcal{P})$ has measure zero in $REAL-CVX(P)$.

It remains to show: there exists a first-order rigid convex realization.

The Proof

proving existence -

"There exists at least one first-order rigid realization."

Decreasing the edge number by contraction:

Theorem. (Tutte)

If $G \neq K_4$ is 3-connected, there is an edge $e \in E$ for which G/e is 3-connected.

Induction base:

|E| = 6 (simplex) is clearly rigid.

Induction step:

- ▶ Choose an edge $e \in E$ for which G_P/e is polyhedral.
- ▶ Induction hypothesis: there is a first-order rigid realizations P' of G_P/e .
- ▶ Choose a sequence of realizations $P_1, P_2, P_3, ... \longrightarrow P'$.
- ▶ Show: if each P_i has a non-zero stress, so does P'. $\frac{1}{2}$
 - \longrightarrow some P_i must be first-order rigid.

Induction base:

|E| = 6 (simplex) is clearly rigid.

Induction step:

- ▶ Choose an edge $e \in E$ for which G_P/e is polyhedral.
- ▶ Induction hypothesis: there is a first-order rigid realizations P' of G_P/e .
- ? \triangleright Choose a sequence of realizations $P_1, P_2, P_3, ... \longrightarrow P'$.
- ? \triangleright Show: if each P_i has a non-zero stress, so does P'. \oint
 - \longrightarrow some P_i must be first-order rigid.

STRESSES SURVIVE CONTRACTION

Given a sequence $P_1, P_2, P_3, ... \longrightarrow P'$ realizing the contracting $\hat{i}\hat{j} \longrightarrow \hat{\hat{y}}$.

Lemma.

If each P_n has a non-zero stress (ω^n, α^n) , then P' also has a non-zero stress (ω', α') .

$$\begin{split} \omega_{ij}^n &\longrightarrow \omega_{ij}' &\quad \text{if } i,j \not\in \{\hat{\imath},\hat{\jmath}\} \\ \omega_{i\hat{\imath}}^n + \omega_{i\hat{\jmath}}^n &\longrightarrow \omega_{i\hat{y}}' &\quad \text{if } i \not\in \{\hat{\imath},\hat{\jmath}\} \\ \omega_{\hat{\imath}\hat{\jmath}}^n &\longrightarrow - \\ \alpha_{ik}^n &\longrightarrow \alpha_{ik}' &\quad \text{if } i \not\in \{\hat{\imath},\hat{\jmath}\} \\ \alpha_{\hat{\imath}k}^n + \alpha_{\hat{\jmath}k}^n &\longrightarrow \alpha_{\hat{\imath}k}' &\quad \end{split}$$

STRESSES SURVIVE CONTRACTION

Given a sequence $P_1, P_2, P_3, ... \longrightarrow P'$ realizing the contracting $\hat{i}\hat{j} \longrightarrow \hat{\hat{y}}$.

Lemma.

If each P_n has a non-zero stress (ω^n, α^n) , then P' also has a non-zero stress (ω', α') .

$$\begin{array}{ccc} \omega_{ij}^n \longrightarrow \omega_{ij}' & & \text{if } i,j \not \in \{\hat{\imath},\hat{\jmath}\} \\ \omega_{i\hat{\imath}}^n + \omega_{i\hat{\jmath}}^n \longrightarrow \omega_{i\hat{g}}' & & \text{if } i \not \in \{\hat{\imath},\hat{\jmath}\} \\ & & & & \\ \omega_{i\hat{\jmath}}^n \longrightarrow - & & \\ & & & \\ \alpha_{ik}^n \longrightarrow \alpha_{ik}' & & \text{if } i \not \in \{\hat{\imath},\hat{\jmath}\} \\ & & \\ \alpha_{ik}^n + \alpha_{ik}^n \longrightarrow \alpha_{\hat{g}_k}' & & & \end{array}$$

Note: if F_k is a triangle, then $\alpha_{ik} = 0$.

Induction base:

|E| = 6 (simplex) is clearly rigid.

Induction step:

- ▶ Choose an edge $e \in E$ for which G_P/e is polyhedral.
- ▶ Induction hypothesis: there is a first-order rigid realizations P' of G_P/e .
- ? \triangleright Choose a sequence of realizations $P_1, P_2, P_3, ... \longrightarrow P'$.
- ✓ ► Show: if each P_i has a non-zero stress, so does P'. $\frac{1}{2}$
 - \longrightarrow some P_i must be first-order rigid.

Contracting edges geometrically

How to find the sequence $P_1, P_2, P_3, ... \longrightarrow P'$?

- Maxwell-Cremona correspondence
 - "Polyhedral realizations are in 1:1 relation with planar stressed frameworks."
- ► Tutte embedding

"One can prescribe the stresses of a planar framework."

Input: P'

Input: P'

Input: P'

Input: P'

Input: P'

Input: P'

Input: P'

Input: P'

Induction base:

|E| = 6 (simplex) is clearly rigid.

Induction step:

- ▶ Choose an edge $e \in E$ for which G_P/e is polyhedral.
- ▶ Induction hypothesis: there is a first-order rigid realizations P' of G_P/e .
- ✓ ► Choose a sequence of realizations $P_1, P_2, P_3, ... \longrightarrow P'$.
- ✓ ► Show: if each P_i has a non-zero stress, so does P'. $\frac{1}{2}$
 - \longrightarrow some P_i must be first-order rigid.

Induction base:

|E| = 6 (simplex) is clearly rigid.

Induction step:

- ▶ Choose an edge $e \in E$ for which G_P/e is polyhedral.
- ▶ Induction hypothesis: there is a first-order rigid realizations P' of G_P/e .
- ✓ ► Choose a sequence of realizations $P_1, P_2, P_3, ... \longrightarrow P'$.
- ✓ ► Show: if each P_i has a non-zero stress, so does P'. \oint
 - \longrightarrow some P_i must be first-order rigid.

Many open questions

HIGHER DIMENSIONS

Question: Are polytopes of dimension $d \ge 4$ generically first-order rigid?

Problems:

- first-order rigid \neq no non-zero stresses
- ► realization space is no longer contractible/connected/irreducible/...
- there are no useful analogues of Maxwell-Cremona/Tutte/...

HIGHER DIMENSIONS

Question: Are polytopes of dimension $d \ge 4$ generically first-order rigid?

Problems:

- ightharpoonup first-order rigid \neq no non-zero stresses
- realization space is no longer contractible/connected/irreducible/...
- ▶ there are no useful analogues of Maxwell-Cremona/Tutte/...

However ... can we pull the result up from dimension three?

- Fix a generic realization $P \subset \mathbb{R}^4$.
 - \longrightarrow all facets (= 3-dimensional faces) are generic.
- Suppose P has a first-order flex.
 - → induces a first-order flex on each facet.
- ► Since the facets are generic + 3D, the flexes on each facet must be trivial.
- ▶ Show: the flex of P must therefore be trivial as well. (CAUCHY, DEHN)

HIGHER DIMENSIONS

Question: Are polytopes of dimension $d \ge 4$ generically first-order rigid?

Problems:

- ightharpoonup first-order rigid \neq no non-zero stresses
- ► realization space is no longer contractible/connected/irreducible/...
- ▶ there are no useful analogues of Maxwell-Cremona/Tutte/...

However ... can we pull the result up from dimension three?

- Fix a generic realization $P \subset \mathbb{R}^4$.
- ? \longrightarrow all facets (= 3-dimensional faces) are generic.
 - ightharpoonup Suppose P has a first-order flex.
 - → induces a first-order flex on each facet.
 - ▶ Since the facets are generic + 3D, the flexes on each facet must be trivial.
- ? \triangleright Show: the flex of P must therefore be trivial as well. (CAUCHY, DEHN)

BEYOND CONVEXITY

$$\begin{aligned} \operatorname{Real}(\mathcal{P}) &:= \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \begin{array}{l} \langle p_i, n_k \rangle = 1 & \text{if } i \in F_k \end{array} \right\} \\ \operatorname{Real-cvx}(\mathcal{P}) &:= \left\{ \begin{array}{l} \boldsymbol{p} \colon V \to \mathbb{R}^3 \\ \boldsymbol{n} \colon F \to \mathbb{R}^3 \setminus \{0\} \end{array} \middle| \begin{array}{l} \langle p_i, n_k \rangle = 1 & \text{if } i \in F_k \\ \langle p_i, n_k \rangle < 1 & \text{if } i \notin F_k \end{array} \right\} \end{aligned}$$

Question: Is Real(P) irreducible?

or, alternatively,

Question: Can we run the "convex proof" once per irreducible component of $\operatorname{Real}(\mathcal{P})$?

Thank you.

