Rigidity of Polyhedral Spheres beyond Triangulations University of Warwick

Rigidity of Polyhedral Spheres beyond Triangulations

Martin Winter
University of Warwick
March 6, 2024

Joint work with Bernd Schulze, Matthias Himmelmann, Albert Zhang

Triangular and polyhedral spheres

Non-CONVEX AND SELF-INTERSECTING

Polyhedral spheres

"A polyhedral sphere is a bunch of polygons glued edge to edge so that they form a topological sphere."

polyhedral graph

- a polyhedral sphere $\mathcal{P}=(V, E)$ is a 3-connected planar graph.
- its faces we denote by $F_{1}, \ldots, F_{m} \subset V$.
- a realization of \mathcal{P} is a map $\boldsymbol{p}: V \rightarrow \mathbb{R}^{3}$ so that the points $p_{i}, i \in F_{k}$ lie on a common plane.
- in a triangulated sphere all faces are triangles.

FLEXING POLYHEDRAL SPHERES

- preserving edge lengths but also
- preserve planarity of faces

FLEXING POLYHEDRAL SPHERES

- preserving edge lengths but also
- preserve planarity of faces

$$
\text { \#DOFs }-\# \text { constraints }=3|V|-\left(|E|+\sum_{k}\left(\left|F_{k}\right|-3\right)\right)=6 .
$$

Triangulated Spheres

... good old frameworks

Rigidity of TRIANGULATED SPHERES

Core results

- Convex triangulated spheres are globally rigid.
- Convex triangulated spheres are first-order rigid.
- Triangulated spheres are generically first-order rigid.
- Flexible triangulated spheres exist.

Moving beyond TRIANGULATIONS

Rigidity of general polyhedral spheres

Core results

- Convex polyhedra with fixed face shapes are globally rigid.
- Triangulating a convex polyhedron makes it first-order rigid. (Alexandrov)

MinkOWSKI SUMS $A+B:=\{a+b \mid a \in A, b \in B\}$

MinkOWSKI SUMS $A+B:=\{a+b \mid a \in A, b \in B\}$

Only Minkowski sums?

Question: Are all flexible convex polyhedra Minkowski sums?

Notes:

- This includes rotating/flexing a proper Minkowski summand.
- Not all Minkowski sums are flexible.

AFFINE FLEXES := A flex realized by an affine transformation

Question: Are all affinely flexible polyhedra Minkowski sums?

Is The Regular dodecahedron Rigid?

Theorem. (Himmelmann, Schulze, W., Zhang, 2024+)
The regular dodecahedron is ...
X not first-order rigid. (5-dimensional space of first-order flexes)
X not prestress stable.
\checkmark second-order rigid.

No generic global RIGidity

Many open questions

Question: (about convex spheres)

- Is second order rigidity always sufficient?
- Does flexibility need parallel edges?
- Is polytope rigidity preserved under affine transformations?
(first-order flexibility is not)

Generic

FIRST-ORDER RIGIDITY

Main Result

Theorem. (Himmelmann, Schulze, W., Zhang, 2024)
Convex polyhedral spheres are generically first-order rigid.

Main Result

Theorem. (Himmelmann, Schulze, W., Zhang, 2024)
Convex polyhedral spheres are generically first-order rigid.

$$
\operatorname{REAL}(\mathcal{P}):=\left\{\left.\begin{array}{l}
\boldsymbol{p}: V \rightarrow \mathbb{R}^{3} \\
\boldsymbol{n}: F \rightarrow \mathbb{R}^{3} \backslash\{0\}
\end{array} \right\rvert\,\left\langle p_{i}, n_{k}\right\rangle=1 \text { if } i \in F_{k}\right\}
$$

Main Result

Theorem. (Himmelmann, Schulze, W., Zhang, 2024)
Convex polyhedral spheres are generically first-order rigid.

$$
\begin{aligned}
& \operatorname{REAL}(\mathcal{P}):=\left\{\left.\begin{array}{l}
\boldsymbol{p}: V \rightarrow \mathbb{R}^{3} \\
\boldsymbol{n}: F \rightarrow \mathbb{R}^{3} \backslash\{0\}
\end{array} \right\rvert\,\left\langle p_{i}, n_{k}\right\rangle=1 \text { if } i \in F_{k}\right\} \\
& \operatorname{Real-Cvx}(\mathcal{P}):=\left\{\begin{array}{l|l}
\boldsymbol{p}: V \rightarrow \mathbb{R}^{3} & \left\langle p_{i}, n_{k}\right\rangle=1 \text { if } i \in F_{k} \\
\boldsymbol{n}: F \rightarrow \mathbb{R}^{3} \backslash\{0\} & \left\langle p_{i}, n_{k}\right\rangle<1 \text { if } i \notin F_{k}
\end{array}\right\}
\end{aligned}
$$

Main Result

Theorem. (Himmelmann, Schulze, W., Zhang, 2024)

Convex polyhedral spheres are generically first-order rigid.

$$
\begin{aligned}
& \operatorname{ReAL}(\mathcal{P}):=\left\{\left.\begin{array}{l}
\boldsymbol{p}: V \rightarrow \mathbb{R}^{3} \\
\boldsymbol{n}: F \rightarrow \mathbb{R}^{3} \backslash\{0\}
\end{array} \right\rvert\,\left\langle p_{i}, n_{k}\right\rangle=1 \text { if } i \in F_{k}\right\} \\
& \operatorname{Real-Cvx}(\mathcal{P}):=\left\{\begin{array}{l|l}
\boldsymbol{p}: V \rightarrow \mathbb{R}^{3} & \left\langle p_{i}, n_{k}\right\rangle=1 \text { if } i \in F_{k} \\
\boldsymbol{n}: F \rightarrow \mathbb{R}^{3} \backslash\{0\} & \left\langle p_{i}, n_{k}\right\rangle<1 \text { if } i \notin F_{k}
\end{array}\right\}
\end{aligned}
$$

A finite flex preserves

$$
\begin{aligned}
\left\|p_{i}-p_{j}\right\| \| \stackrel{!}{=} \ell_{i j}=\text { const } & \text { for } i j \in E \\
\left\langle p_{i}, n_{k}\right\rangle \stackrel{!}{=} 1 & \text { for } i \in F_{k}
\end{aligned}
$$

Main Result

Theorem. (Himmelmann, Schulze, W., Zhang, 2024)

Convex polyhedral spheres are generically first-order rigid.

$$
\begin{aligned}
& \operatorname{REAL}(\mathcal{P}):=\left\{\left.\begin{array}{l}
\boldsymbol{p}: V \rightarrow \mathbb{R}^{3} \\
\boldsymbol{n}: F \rightarrow \mathbb{R}^{3} \backslash\{0\}
\end{array} \right\rvert\,\left\langle p_{i}, n_{k}\right\rangle=1 \text { if } i \in F_{k}\right\} \\
& \operatorname{ReaL-Cvx}(\mathcal{P}):=\left\{\begin{array}{l|l}
\boldsymbol{p}: V \rightarrow \mathbb{R}^{3} & \left|p_{i}, n_{k}\right\rangle=1 \text { if } i \in F_{k} \\
\boldsymbol{n}: F \rightarrow \mathbb{R}^{3} \backslash\{0\} & \left.\begin{array}{l}
\left\langle p_{i}, n_{k}\right\rangle<1 \\
\text { if } i \notin F_{k}
\end{array}\right\}
\end{array}\right\}
\end{aligned}
$$

A finite flex preserves

$$
\begin{aligned}
\left\|p_{i}-p_{j}\right\| \| \stackrel{!}{=} \ell_{i j}=\text { const } & \text { for } i j \in E \\
\left\langle p_{i}, n_{k}\right\rangle \stackrel{!}{=} 1 & \text { for } i \in F_{k}
\end{aligned}
$$

A first-order flex $(\dot{\boldsymbol{p}}, \dot{\boldsymbol{n}})$ satisfies

$$
\begin{aligned}
\left\langle p_{i}-p_{j}, \dot{p}_{i}-\dot{p}_{j}\right\rangle=0 & \text { for } i j \in E \\
\left\langle p_{i}, \dot{n}_{k}\right\rangle+\left\langle\dot{p}_{i}, n_{k}\right\rangle=0 & \text { for } i \in F_{k}
\end{aligned}
$$

The Proof

- the triangular case -
"Triangular spheres are generically first-order rigid."

Rigidity matrix $\mathcal{R}(G, \boldsymbol{p})$

$\dot{\boldsymbol{p}}$ is a first-order flex $\Longleftrightarrow \mathcal{R}(G, \boldsymbol{p}) \dot{\boldsymbol{p}}=0$

Rigidity matrix $\mathcal{R}(G, \boldsymbol{p})$

$\dot{\boldsymbol{p}}$ is a first-order flex $\Longleftrightarrow \mathcal{R}(G, \boldsymbol{p}) \dot{\boldsymbol{p}}=0$
(G, \boldsymbol{p}) is first-order rigid $\Longleftrightarrow \operatorname{corank} \mathcal{R}(G, \boldsymbol{p})=6$

Rigidity matrix $\mathcal{R}(G, \boldsymbol{p})$

$\dot{\boldsymbol{p}}$ is a first-order flex $\Longleftrightarrow \mathcal{R}(G, \boldsymbol{p}) \dot{\boldsymbol{p}}=0$
(G, \boldsymbol{p}) is first-order rigid $\Longleftrightarrow \operatorname{corank} \mathcal{R}(G, \boldsymbol{p})=6$ \#columns - \#rows $=3|V|-|E|=6=$ \#trivial first-order flexes.

Rigidity matrix $\mathcal{R}(G, \boldsymbol{p})$

$\dot{\boldsymbol{p}}$ is a first-order flex $\Longleftrightarrow \mathcal{R}(G, \boldsymbol{p}) \dot{\boldsymbol{p}}=0$
(G, \boldsymbol{p}) is first-order rigid $\Longleftrightarrow \operatorname{corank} \mathcal{R}(G, p)^{\top}=0$
\#columns - \#rows $=3|V|-|E|=6=$ \#trivial first-order flexes.

Stresses

$$
\begin{gathered}
\mathcal{R}(G, \boldsymbol{p})^{\top} \boldsymbol{\omega}=0 \\
\forall i \in V: \sum_{j: i j \in E} \omega_{i j}\left(p_{j}-p_{i}\right)=0
\end{gathered}
$$

first-order flexible $\Longleftrightarrow \operatorname{ker} \mathcal{R}(G, \boldsymbol{p})^{\top}=\{0\} \Longleftrightarrow \exists$ non-zero stress

Generic first-order Rigidity

$\operatorname{ReaL}(G):=\{$ 3-dimensional frameworks on $G\}=\mathbb{R}^{3 V}$
$\operatorname{Flex}(G):=\{$ first-order flexible frameworks on $G\}$

$$
\begin{aligned}
& =\left\{\boldsymbol{p} \in \mathbb{R}^{3 V}|\operatorname{rank} \mathcal{R}(G, \boldsymbol{p})<|E|\}\right. \\
& =\left\{\boldsymbol{p} \in \mathbb{R}^{3 V} \mid \operatorname{det}(A)=0 \text { for all }|E| \times|E| \text { submatrices } A \text { of } \mathcal{R}(G, \boldsymbol{p})\right\} .
\end{aligned}
$$

Generic first-order Rigidity

$\operatorname{REAL}(G):=\{$ 3-dimensional frameworks on $G\}=\mathbb{R}^{3 V}$
$\operatorname{Flex}(G):=\{$ first-order flexible frameworks on $G\}$

$$
\begin{aligned}
& =\left\{\boldsymbol{p} \in \mathbb{R}^{3 V}|\operatorname{rank} \mathcal{R}(G, \boldsymbol{p})<|E|\}\right. \\
& =\left\{\boldsymbol{p} \in \mathbb{R}^{3 V} \mid \operatorname{det}(A)=0 \text { for all }|E| \times|E| \text { submatrices } A \text { of } \mathcal{R}(G, \boldsymbol{p})\right\} .
\end{aligned}
$$

$\Longrightarrow \operatorname{FLEX}(G) \subseteq \mathbb{R}^{3 V}$ is the zero set of polynomials.
\Longrightarrow either $\operatorname{Flex}(G)=\mathbb{R}^{3 V}$ or $\operatorname{Flex}(G)$ has measure zero.

GENERIC FIRST-ORDER RIGIDITY

$\operatorname{REAL}(G):=\{$ 3-dimensional frameworks on $G\}=\mathbb{R}^{3 V}$
$\operatorname{Flex}(G):=\{$ first-order flexible frameworks on $G\}$

$$
\begin{aligned}
& =\left\{\boldsymbol{p} \in \mathbb{R}^{3 V}|\operatorname{rank} \mathcal{R}(G, \boldsymbol{p})<|E|\}\right. \\
& =\left\{\boldsymbol{p} \in \mathbb{R}^{3 V} \mid \operatorname{det}(A)=0 \text { for all }|E| \times|E| \text { submatrices } A \text { of } \mathcal{R}(G, \boldsymbol{p})\right\} .
\end{aligned}
$$

$\Longrightarrow \operatorname{FLEX}(G) \subseteq \mathbb{R}^{3 V}$ is the zero set of polynomials.
\Longrightarrow either $\operatorname{Flex}(G)=\mathbb{R}^{3 V}$ or $\operatorname{Flex}(G)$ has measure zero.
Recall: a convex realization is first-order rigid. (Dehi)
$\Longrightarrow \operatorname{FLEX}(G) \neq \mathbb{R}^{3 V}$.
$\Longrightarrow \operatorname{Flex}(G)$ has measure zero.

The Proof

- the polyhedral case -
"Convex polyhedral spheres are generically first-order rigid."

Rigidity matrix $\mathcal{R}(P)$

Rigidity matrix $\mathcal{R}(P)$

		$i \in V \quad j \in V$	$k \in F$
\#edges	$i j \in E$		λ
\#vertex-face incidences	$i \in F_{k}$	 	$p_{i} \ldots \ldots$

$$
\# \text { columns }-\# \text { rows }=(3|V|+3|F|)-(|E|+|V F|)=6
$$

Stresses

$$
\begin{gathered}
\mathcal{R}(P)^{\top}(\boldsymbol{\omega}, \boldsymbol{\alpha})=0 \\
\forall i \in V: \quad 0=\sum_{j: i j \in E} \omega_{i j}\left(p_{j}-p_{i}\right)+\sum_{k: i \in F_{k}} \alpha_{i k} n_{k} \\
\forall k \in F: \quad 0=\sum_{i \in F_{k}} \alpha_{i k} p_{i}
\end{gathered}
$$

Stresses

Stresses

$\mathcal{R}(P)^{\top}(\boldsymbol{\omega}, \boldsymbol{\alpha})=0$

$$
\forall i \in V: \quad 0=\sum_{j: i j \in E} \omega_{i j}\left(p_{j}-p_{i}\right)+\sum_{k: i \in F_{k}} \alpha_{i k} n_{k}
$$

$$
\forall k \in F: \quad 0=\sum_{i \in F_{k}} \alpha_{i k} p_{i}
$$

Observation: If F_{k} is triangular face, then $\alpha_{i k}=0$.

GENERIC RIGIDITY OF POLYHEDRAL SPHERES

Theorem. (Himmelmann, Schulze, W., Zhang)
Convex polyhedral spheres are generically first-order rigid.
$\forall \mathcal{P} \quad \operatorname{Flex}(\mathcal{P})$ has measure zero in $\operatorname{Real-Cvx}(\mathcal{P})$.

GEnERIC RIGIDITY OF POLYHEDRAL SPHERES

Theorem. (Himmelmann, Schulze, W., Zhang)
Convex polyhedral spheres are generically first-order rigid.
$\forall \mathcal{P} \quad \operatorname{Flex}(\mathcal{P})$ has measure zero in $\operatorname{Real-cvx}(\mathcal{P})$.
Question: What about potentially non-convex polyhedral spheres?

GEnERIC RIGIDITY OF POLYHEDRAL SPHERES

Theorem. (Himmelmann, Schulze, W., Zhang)
Convex polyhedral spheres are generically first-order rigid.
$\forall \mathcal{P} \quad \operatorname{Flex}(\mathcal{P})$ has measure zero in $\operatorname{Real-Cvx}(\mathcal{P})$.
Question: What about potentially non-convex polyhedral spheres?

Strategy:

1. Polynomial method: $\operatorname{Flex}(\mathcal{P}) \subseteq \operatorname{Real}(\mathcal{P})$ is a sub-variety.
$\longrightarrow \operatorname{Flex}(\mathcal{P})=\operatorname{Real}(\mathcal{P})$ or
$\operatorname{Flex}(\mathcal{P})$ has measure zero in $\operatorname{Real}(\mathcal{P})$.
2. Show: there exists at least one realization that is first-order rigid.

Generic Rigidity of polyhedral spheres

Theorem. (Himmelmann, Schulze, W., Zhang)
Convex polyhedral spheres are generically first-order rigid.
$\forall \mathcal{P} \quad \operatorname{Flex}(\mathcal{P})$ has measure zero in $\operatorname{Real-Cvx}(\mathcal{P})$.
Question: What about potentially non-convex polyhedral spheres?

Strategy:

1. Polynomial method: $\operatorname{Flex}(\mathcal{P}) \subseteq \operatorname{Real-Cvx}(\mathcal{P})$ is a sub-variety.

$$
\begin{aligned}
\longrightarrow & \operatorname{Flex}(\mathcal{P})=\operatorname{Real-Cvx}(\mathcal{P}) \text { or } \\
& \operatorname{Flex}(\mathcal{P}) \text { has measure zero in Real-cvx }(\mathcal{P}) .
\end{aligned}
$$

2. Show: there exists at least one convex realization that is first-order rigid.

Theorem. (Steinitz)

$\operatorname{REAL}-\operatorname{CVx}(\mathcal{P}) \subset \mathbb{R}^{3 V} \times \mathbb{R}^{3 F}$ is (an open subset of) a smooth, irreducible, contractible variety of dimension $|E|+6$.

Reduction to existence

$$
\begin{aligned}
\operatorname{ReaL}(\mathcal{P}) & :=\left\{\left.\begin{array}{l}
\boldsymbol{p}: V \rightarrow \mathbb{R}^{3} \\
\boldsymbol{n}: F \rightarrow \mathbb{R}^{3} \backslash\{0\}
\end{array} \right\rvert\,\left\langle p_{i}, n_{k}\right\rangle=1 \text { if } i \in F_{k}\right\} \\
\operatorname{ReAL-CVX}(\mathcal{P}) & :=\left\{\begin{array}{l}
\boldsymbol{p}: V \rightarrow \mathbb{R}^{3} \\
\boldsymbol{n}: F \rightarrow \mathbb{R}^{3} \backslash\{0\}
\end{array} \left\lvert\, \begin{array}{l}
\left\langle p_{i}, n_{k}\right\rangle=1 \\
\left\langle p_{i}, n_{k}\right\rangle<1 \\
\text { if } i \in F_{k} \\
i \notin F_{k}
\end{array}\right.\right\}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Flex}(\mathcal{P}): & :=\{(\boldsymbol{p}, \boldsymbol{n}) \in \operatorname{Real-Cvx}(P) \mid(\mathcal{P}, \boldsymbol{p}, \boldsymbol{n}) \text { is first-order flexible }\} \\
& =\{(\boldsymbol{p}, \boldsymbol{n}) \in \operatorname{REAL-Cvx}(P)|\operatorname{rank} \mathcal{R}(\mathcal{P}, \boldsymbol{p}, \boldsymbol{n})<|E|+|V F|\}
\end{aligned}
$$

$\Longrightarrow \operatorname{Flex}(G) \subseteq \operatorname{Real-Cvx}(P)$ is the zero set of polynomials.
\Longrightarrow either $\operatorname{Flex}(\mathcal{P})=\operatorname{Real-Cvx}(P)$
or $\operatorname{Flex}(\mathcal{P})$ has measure zero in Real-cvx (P).

Reduction to existence

$$
\left.\begin{array}{rl}
\operatorname{ReAL}(\mathcal{P}) & :=\left\{\left.\begin{array}{l}
\boldsymbol{p}: V \rightarrow \mathbb{R}^{3} \\
\boldsymbol{n}: F \rightarrow \mathbb{R}^{3} \backslash\{0\}
\end{array} \right\rvert\,\left\langle p_{i}, n_{k}\right\rangle=1 \text { if } i \in F_{k}\right\}
\end{array}\right\}, \begin{aligned}
& \left\langle p_{i}, n_{k}\right\rangle=1 \text { if } i \in F_{k} \\
& \operatorname{ReAL-Cvx}(\mathcal{P})
\end{aligned}:=\left\{\begin{array}{l}
\boldsymbol{p}: V \rightarrow \mathbb{R}^{3} \\
\left.\boldsymbol{n}: F \rightarrow \mathbb{R}^{3} \backslash\{0\} \left\lvert\, \begin{array}{l}
\left\langle p_{i}, n_{k}\right\rangle<1 \\
\text { if } i \notin F_{k}
\end{array}\right.\right\}
\end{array}\right.
$$

$$
\begin{aligned}
\operatorname{Flex}(\mathcal{P}): & :=\{(\boldsymbol{p}, \boldsymbol{n}) \in \operatorname{Real-CVx}(P) \mid(\mathcal{P}, \boldsymbol{p}, \boldsymbol{n}) \text { is first-order flexible }\} \\
& =\{(\boldsymbol{p}, \boldsymbol{n}) \in \operatorname{Real-cvx}(P)|\operatorname{rank} \mathcal{R}(\mathcal{P}, \boldsymbol{p}, \boldsymbol{n})<|E|+|V F|\}
\end{aligned}
$$

$\Longrightarrow \operatorname{Flex}(G) \subseteq \operatorname{Real-Cvx}(P)$ is the zero set of polynomials.
\Longrightarrow either $\operatorname{Flex}(\mathcal{P})=\operatorname{Real-Cvx}(P)$
or $\operatorname{Flex}(\mathcal{P})$ has measure zero in Real-cyx (P).
It remains to show: there exists a first-order rigid convex realization.

The Proof

- proving existence -
"There exists at least one first-order rigid realization."

Strategy: Induction ON \#EDGES

Decreasing the edge number by contraction:

Theorem. (Tutte)
If $G \neq K_{4}$ is 3-connected, there is an edge $e \in E$ for which G / e is 3-connected.

Strategy: Induction on \#EDGES

Induction base:

$\rightarrow|E|=6$ (simplex) is clearly rigid.

Induction step:

- Choose an edge $e \in E$ for which G_{P} / e is polyhedral.
- Induction hypothesis: there is a first-order rigid realizations P^{\prime} of G_{P} / e.
- Choose a sequence of realizations $P_{1}, P_{2}, P_{3}, \ldots \longrightarrow P^{\prime}$.
- Show: if each P_{i} has a non-zero stress, so does P^{\prime}.
\longrightarrow some P_{i} must be first-order rigid.

Strategy: induction ON \#EDGES

Induction base:

$\rightarrow|E|=6$ (simplex) is clearly rigid.

Induction step:

- Choose an edge $e \in E$ for which G_{P} / e is polyhedral.
- Induction hypothesis: there is a first-order rigid realizations P^{\prime} of G_{P} / e.
? - Choose a sequence of realizations $P_{1}, P_{2}, P_{3}, \ldots \longrightarrow P^{\prime}$.
? Show: if each P_{i} has a non-zero stress, so does P^{\prime}. \mathcal{Z}
\longrightarrow some P_{i} must be first-order rigid.

STRESSES SURVIVE CONTRACTION

Given a sequence $P_{1}, P_{2}, P_{3}, \ldots \longrightarrow P^{\prime}$ realizing the contracting $\hat{\imath} \jmath \longrightarrow \hat{\hat{y}}$.

Lemma.

If each P_{n} has a non-zero stress $\left(\boldsymbol{\omega}^{n}, \boldsymbol{\alpha}^{n}\right)$, then P^{\prime} also has a non-zero stress ($\left.\boldsymbol{\omega}^{\prime}, \boldsymbol{\alpha}^{\prime}\right)$.

$$
\begin{aligned}
\omega_{i j}^{n} \longrightarrow \omega_{i j}^{\prime} & \text { if } i, j \notin\{\hat{\imath}, \hat{\jmath}\} \\
\omega_{i \hat{\imath}}^{n}+\omega_{i \hat{\jmath}}^{n} \longrightarrow \omega_{i \hat{\jmath}}^{\prime} & \text { if } i \notin\{\hat{\imath}, \hat{\jmath}\} \\
\omega_{\hat{\imath} \hat{\jmath}} \longrightarrow- & \\
\alpha_{i k} \longrightarrow \alpha_{i k}^{\prime} & \text { if } i \notin\{\hat{\imath}, \hat{\jmath}\} \\
\alpha_{\hat{\imath} k}^{n}+\alpha_{\hat{j} k}^{n} \longrightarrow \alpha_{\hat{\jmath} k}^{\prime} &
\end{aligned}
$$

STRESSES SURVIVE CONTRACTION

Given a sequence $P_{1}, P_{2}, P_{3}, \ldots \longrightarrow P^{\prime}$ realizing the contracting $\hat{\imath} \hat{\jmath} \longrightarrow \hat{\eta}$.

Lemma.

If each P_{n} has a non-zero stress $\left(\boldsymbol{\omega}^{n}, \boldsymbol{\alpha}^{n}\right)$, then P^{\prime} also has a non-zero stress ($\left.\boldsymbol{\omega}^{\prime}, \boldsymbol{\alpha}^{\prime}\right)$.

$$
\begin{aligned}
\omega_{i j}^{n} \longrightarrow \omega_{i j}^{\prime} & \text { if } i, j \notin\{\hat{\imath}, \hat{\jmath}\} \\
\omega_{i \hat{\imath}}^{n}+\omega_{i \hat{\jmath}}^{n} \longrightarrow \omega_{i \hat{\jmath}}^{\prime} & \text { if } i \notin\{\hat{\imath}, \hat{\jmath}\} \\
\omega_{\hat{\imath} \hat{\jmath}} \longrightarrow- & \\
\alpha_{i k}^{n} \longrightarrow \alpha_{i k}^{\prime} & \text { if } i \notin\{\hat{\imath}, \hat{\jmath}\} \\
\alpha_{\hat{\imath} k}^{n}+\alpha_{\hat{j} k}^{n} \longrightarrow \alpha_{\hat{\jmath} k}^{\prime} &
\end{aligned}
$$

Note: if F_{k} is a triangle, then $\alpha_{i k}=0$.

Strategy: Induction on \#EDGES

Induction base:

$\rightarrow|E|=6$ (simplex) is clearly rigid.

Induction step:

- Choose an edge $e \in E$ for which G_{P} / e is polyhedral.
- Induction hypothesis: there is a first-order rigid realizations P^{\prime} of G_{P} / e.
? Choose a sequence of realizations $P_{1}, P_{2}, P_{3}, \ldots \longrightarrow P^{\prime}$.
\checkmark Show: if each P_{i} has a non-zero stress, so does P^{\prime}. \downarrow

$$
\longrightarrow \text { some } P_{i} \text { must be first-order rigid. }
$$

Contracting EdGES GEOMETRICALLY

How to find the sequence $P_{1}, P_{2}, P_{3}, \ldots \longrightarrow P^{\prime \prime}$?

- Maxwell-Cremona correspondence
"Polyhedral realizations are in 1:1 relation with planar stressed frameworks."
- Tutte embedding
"One can prescribe the stresses of a planar framework."

Project and lift

Input: P^{\prime}
Output: sequence $P_{1}, P_{2}, P_{3}, \ldots \longrightarrow P^{\prime}$

Project and lift

Input: P^{\prime}
Output: sequence $P_{1}, P_{2}, P_{3}, \ldots \longrightarrow P^{\prime}$

Project and lift

Input: P^{\prime}
Output: sequence $P_{1}, P_{2}, P_{3}, \ldots \longrightarrow P^{\prime}$

Project and lift

Input: P^{\prime}
Output: sequence $P_{1}, P_{2}, P_{3}, \ldots \longrightarrow P^{\prime}$

Project and lift

Input: P^{\prime}
Output: sequence $P_{1}, P_{2}, P_{3}, \ldots \longrightarrow P^{\prime}$

Project and lift

Input: P^{\prime}
Output: sequence $P_{1}, P_{2}, P_{3}, \ldots \longrightarrow P^{\prime}$

Project and lift

Input: P^{\prime}
Output: sequence $P_{1}, P_{2}, P_{3}, \ldots \longrightarrow P^{\prime}$

Project and lift

Input: P^{\prime}
Output: sequence $P_{1}, P_{2}, P_{3}, \ldots \longrightarrow P^{\prime}$

Strategy: Induction on \#EDGES

Induction base:

$\rightarrow|E|=6$ (simplex) is clearly rigid.

Induction step:

- Choose an edge $e \in E$ for which G_{P} / e is polyhedral.
- Induction hypothesis: there is a first-order rigid realizations P^{\prime} of G_{P} / e.
\checkmark Choose a sequence of realizations $P_{1}, P_{2}, P_{3}, \ldots \longrightarrow P^{\prime}$.
\checkmark Show: if each P_{i} has a non-zero stress, so does $P^{\prime} . \downarrow$

$$
\longrightarrow \text { some } P_{i} \text { must be first-order rigid. }
$$

Strategy: Induction on \#EDGES

Induction base:

$\rightarrow|E|=6$ (simplex) is clearly rigid.

Induction step:

- Choose an edge $e \in E$ for which G_{P} / e is polyhedral.
- Induction hypothesis: there is a first-order rigid realizations P^{\prime} of G_{P} / e.
\checkmark Choose a sequence of realizations $P_{1}, P_{2}, P_{3}, \ldots \longrightarrow P^{\prime}$.
\checkmark Show: if each P_{i} has a non-zero stress, so does $P^{\prime} . \downarrow$
\longrightarrow some P_{i} must be first-order rigid.

Many open questions

Higher Dimensions

Question: Are polytopes of dimension $d \geq 4$ generically first-order rigid?

Problems:

- first-order rigid \neq no non-zero stresses
- realization space is no longer contractible/connected/irreducible/...
- there are no useful analogues of Maxwell-Cremona/Tutte/...

Higher Dimensions

Question: Are polytopes of dimension $d \geq 4$ generically first-order rigid?

Problems:

- first-order rigid \neq no non-zero stresses
- realization space is no longer contractible/connected/irreducible/...
- there are no useful analogues of Maxwell-Cremona/Tutte/...

However ... can we pull the result up from dimension three?

- Fix a generic realization $P \subset \mathbb{R}^{4}$.
\longrightarrow all facets (=3-dimensional faces) are generic.
- Suppose P has a first-order flex.
\longrightarrow induces a first-order flex on each facet.
- Since the facets are generic $+3 D$, the flexes on each facet must be trivial.
- Show: the flex of P must therefore be trivial as well.

Higher Dimensions

Question: Are polytopes of dimension $d \geq 4$ generically first-order rigid?

Problems:

- first-order rigid \neq no non-zero stresses
- realization space is no longer contractible/connected/irreducible/...
- there are no useful analogues of Maxwell-Cremona/Tutte/...

However ... can we pull the result up from dimension three?

- Fix a generic realization $P \subset \mathbb{R}^{4}$.
? $\quad \longrightarrow$ all facets (= 3-dimensional faces) are generic.
- Suppose P has a first-order flex.
\longrightarrow induces a first-order flex on each facet.
- Since the facets are generic $+3 D$, the flexes on each facet must be trivial
? Show: the flex of P must therefore be trivial as well.

BEYOND CONVEXITY

$$
\begin{aligned}
& \operatorname{ReaL}(\mathcal{P}):=\left\{\left.\begin{array}{l}
\boldsymbol{p}: V \rightarrow \mathbb{R}^{3} \\
\boldsymbol{n}: F \rightarrow \mathbb{R}^{3} \backslash\{0\}
\end{array} \right\rvert\,\left\langle p_{i}, n_{k}\right\rangle=1 \text { if } i \in F_{k}\right\} \\
& \operatorname{ReaL-CVX}(\mathcal{P}):=\left\{\begin{array}{l|l}
\boldsymbol{p}: V \rightarrow \mathbb{R}^{3} & \left\langle p_{i}, n_{k}\right\rangle=1 \text { if } i \in F_{k} \\
\boldsymbol{n}: F \rightarrow \mathbb{R}^{3} \backslash\{0\} & \left\langle p_{i}, n_{k}\right\rangle<1 \text { if } i \notin F_{k}
\end{array}\right\}
\end{aligned}
$$

Question: Is $\operatorname{ReAL}(\mathcal{P})$ irreducible?
or, alternatively,
Question: Can we run the "convex proof" once per irreducible component of $\operatorname{Real}(\mathcal{P})$?

Thank you.

