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Volume Growth in Graphs

|Bv(r)|



Volume Growth in Graphs

Volume growth

ball ... B(v, r) :=
{
x ∈ V (G)

∣∣ dist(x, v) ≤ r
}

|B(v, 0)| = 1
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Volume Growth in Graphs

Volume growth

ball ... B(v, r) :=
{
x ∈ V (G)

∣∣ dist(x, v) ≤ r
}

|B(v, 3)| = 25
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Volume Growth in Graphs

Examples: polynomial and exponential
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Volume Growth in Graphs

Geometric group theory

Cayley graph of Z2 = 〈x, y | xy = yx〉.
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Volume Growth in Graphs

Geometric group theory

Z Z2 F3/〈x2, y2, z2〉
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Volume Growth in Graphs

Typical questions & results

Question: are there groups of intermediate growth?
:= super-polynomial but sub-exponential e.g. exp(r1/2) or rlog r

Yes: Grigorchuk group (1984)

|B(e, r)| ∼ exp(rα) with 0.504 < α < 0.7675

Theorem. (Gromov; 1981)

G is of polynomial growth ⇐⇒ G is virtually nilpotent.

Theorem. (Trofimov; 1985)

Polynomial growth of vertex-transitive graphs must have integer degree.
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Volume Growth in Graphs

Beyond Cayley graphs

|B(v, r)| ∼ r2 |B(v, r)| ∈ θ(r2)
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Volume Growth in Graphs

Uniform growth

Fix a function g : R≥0 → R≥0.

Definition.

A graph G is of uniform volume growth g if there are c1, c2, C1, C2 > 0 so that

C1 · g(c1r) ≤ |B(v, r)| ≤ C2 · g(c2r), for all v ∈ V (G) and r ≥ 0.
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Volume Growth in Graphs

Planar triangulations
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Volume Growth in Graphs

Planar triangulations

...
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Volume Growth in Graphs

Planar triangulations

I Ambj et al. (1997); Angel (2003): planar triangulations of growth ∼ r4
(quantum geometry)

I Benjamini, Schramm (2001): triangulations from trees

In the same paper: ∼ rα for arbitrary α ≥ 1.

I Benjamini, Georgakopoulos (2021): ∼ rα with α < 2, then quasi-tree
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Volume Growth in Graphs

Planar triangulations of growth r3/2
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Trees



Trees

Uniform growth of trees

What kind of uniform growth can a tree have?

I linear X

I exponential X

I polynomial ??

I intermediate ??

I oscillating ??

(Benjamini, Schramm; 2001)

|B(v, r)| ∼ rα, where α =
log |E(T )|

log diam(T )
=

log 5

log 3
≈ 1.464973.
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Trees

The Question

Q: “Are there unimodular trees of uniform

super-polynomial: eω(log(r))

sub-exponential: eo(r)

↓
intermediate volume growth?”

– Itai Benjamini

Idea: find them as spanning trees of
known intermediate growth graphs.
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Trees
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Trees

Does it work ... ?

Question

Given a graph of uniform growth g. Is there a (spanning) tree T ⊆ G of the
same uniform growth g?

Turns out we don’t need the ambient graph!
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The Construction

T0 ⊂ T1 ⊂ T2 ⊂ T3 ⊂ · · ·



The Construction

Construction – a sequence of trees

Given: sequence δ1, δ2, δ3, ... ∈ N, δn ≥ 1

δn := n+ 2 3 4 5

T :=
⋃
n

Tn

University of Warwick · Martin Winter 16 / 30



The Construction

Construction – a sequence of trees

Given: sequence δ1, δ2, δ3, ... ∈ N, δn ≥ 1

δn := n+ 2 3 4 5

T :=
⋃
n

Tn

University of Warwick · Martin Winter 16 / 30



The Construction

Construction – a sequence of trees

Given: sequence δ1, δ2, δ3, ... ∈ N, δn ≥ 1

δn := n+ 2 3 4 5

T :=
⋃
n

Tn

University of Warwick · Martin Winter 16 / 30



The Construction

Construction – a sequence of trees

Given: sequence δ1, δ2, δ3, ... ∈ N, δn ≥ 1

δn := n+ 2 3 4 5

T :=
⋃
n

Tn

University of Warwick · Martin Winter 16 / 30



The Construction

Construction – a sequence of trees

Given: sequence δ1, δ2, δ3, ... ∈ N, δn ≥ 1

δn := n+ 2 3 4 5

T :=
⋃
n

Tn

University of Warwick · Martin Winter 16 / 30



The Construction

Construction – a sequence of trees

Given: sequence δ1, δ2, δ3, ... ∈ N, δn ≥ 1

δn := n+ 2 3 4 5

T :=
⋃
n

Tn

University of Warwick · Martin Winter 16 / 30



The Construction

Construction – a sequence of trees

Given: sequence δ1, δ2, δ3, ... ∈ N, δn ≥ 1

δn := n+ 2 3 4 5

T :=
⋃
n

Tn

University of Warwick · Martin Winter 16 / 30



The Construction

Construction – a sequence of trees

Given: sequence δ1, δ2, δ3, ... ∈ N, δn ≥ 1

δn := n+ 2 3 4 5

T :=
⋃
n

Tn

University of Warwick · Martin Winter 16 / 30



The Construction

Construction – a sequence of trees

Given: sequence δ1, δ2, δ3, ... ∈ N, δn ≥ 1

δn := n+ 2 3 4 5

T :=
⋃
n

Tn

University of Warwick · Martin Winter 16 / 30



The Construction

Construction – a sequence of trees

Given: sequence δ1, δ2, δ3, ... ∈ N, δn ≥ 1

δn := n+ 2 3 4 5

T :=
⋃
n

Tn

University of Warwick · Martin Winter 16 / 30



The Construction

Heuristics argument

Properties of Tn:

I number of vertices: (δ1 + 1) · · · (δn + 1)

I distance from center to an apocentric vertex: 2n − 1

|B(v, 2n − 1)| = (δ1 + 1) · · · (δn + 1)

∼ n! ∼ (log r)! ∼ rlog log r︸ ︷︷ ︸
r
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The Construction

Heuristics argument

Properties of Tn:

I number of vertices: (δ1 + 1) · · · (δn + 1)
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!
≈ (δ1 + 1) · · · (δn + 1)

=⇒ δn ≈
g(2n − 1)

g(2n−1 − 1)
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The Construction

Example: polynomial growth

(δ1 + 1) · · · (δn + 1)

|B(v, r)| !
= (r + 1)2

=⇒ |B(v, 2n − 1)| = (2n)2 = 4n = (3 + 1) · · · (3 + 1)

δn := 3
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The Construction
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The Construction

Example: exponential growth

δn := 22
n

...

|B(v, 2n − 1)| = (δ1 + 1) · · · (δn + 1) =

n∏
k=1

(
22k−1

+ 1
)

=

2n−1∑
i=0

2i = 22n − 1

∼ 2r+1 − 1
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Main Result

For every “nice” function g : R≥0 → R≥0 there
is a tree of uniform growth g.



Main Result

What are “nice” functions?

I g is increasing

I g grows at least linearly

I g grows at most exponentially

I g does not oscillate between growth rates in unfortunate ways

g super-additive =⇒ g(a+ b) ≥ g(a) + g(b)

=⇒ g(2n+1) ≥ 2g(2n) =⇒ δn ≈
g(2n+1)

g(2n)
− 1 ≥ 1.
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Main Result

What are “nice” functions?

I g is increasing

I g grows at least linearly (δn ≥ 1)

I g grows at most exponentially (bounded degree)

I g does not oscillate between growth rates in unfortunate ways
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Main Result

Main result: T has uniform growth
max-degree− 1

∆(n) :=
δn

δ1 · · · δn−1
, ∆̄ := sup

n
d∆(n)e, Γ := sup

m≥n

⌈∆(m)

∆(n)

⌉
.

Theorem. (Kontogeorgiou, W.; 2022)

For super-additive g : R≥0 → R≥0 exists a tree T so that for all v ∈ V (T ) and r ≥ 0

|B(v, r)| ≥ C1 · g(r/4)

if ∆̄ <∞ then |B(v, r)| ≤ C2 · g(2r)2

if Γ <∞ then |B(v, r)| ≤ C3 · g(4r)

In particular, if Γ <∞, then T is of uniform growth g.

Theorem.
If g is super-additive and (eventually) log-concave, then there is a tree of uniform
volume growth g.
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Unimodular Trees



Unimodular Trees

The original question

Q: “Are there unimodular
↑

“unimodular random rooted trees”

trees of uniform intermediate volume growth?”

– Itai Benjamini
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Unimodular Trees

Alternative limits
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Unimodular Trees

Apocentric limit

...
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Unimodular Trees

Benjamini-Schramm limits

...
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Benjamini-Schramm limits
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Unimodular Trees

Benjamini-Schramm limits

...

...... ... ...... ...
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Unimodular Trees

Benjamini-Schramm limits

T0, T1, T2, T3, ...
BS−−−→ T

I Benjamini-Schramm limits are unimodular

I a set of graphs of uniformly bounded degree is compact

I every sequence of uniformly bounded degree has a convergent subsequence.

Theorem.
If g is super-additive and (eventually) log-concave, then there is a unimodular random
rooted tree of uniform volume growth g.
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Unimodular Trees

A threshold phenomenon

Theorem. (structure theorem)

(i) if g ∈ Ω(rlog log r), then T is a.s. an apocentric limit.

(ii) if g ∈ O(rα log log r) for some α > 1, then T is a.s. a mixed limit.

I if growth is fast enough the Benjamini-Schramm limit can be a
deterministic tree.

|BT (v, r)| ∼ exp(rα) where α = log(φ) ≈ 0.6942.

Question

Do general unimodular trees of uniform growth show a similar threshold phenomenon?
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Thank you.

G. Kontogeorgiou and M. Winter (2022), arXiv

“(Random) Trees of Intermediate Volume Growth”
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