(Random) Trees of Intermediate Volume Growth

 University of Warwick
(Random) trees of intermediate VOLUME GROWTH

Martin Winter
(joint work with George Kontogeorgiou)
University of Warwick

6. December, 2022

Volume Growth in Graphs

$$
\left|B_{v}(r)\right|
$$

Volume growth

ball ... $B(v, r):=\{x \in V(G) \mid \operatorname{dist}(x, v) \leq r\}$

Volume growth

ball ... $B(v, r):=\{x \in V(G) \mid \operatorname{dist}(x, v) \leq r\}$

Volume growth

ball ... $B(v, r):=\{x \in V(G) \mid \operatorname{dist}(x, v) \leq r\}$

Volume growth

ball ... $B(v, r):=\{x \in V(G) \mid \operatorname{dist}(x, v) \leq r\}$

EXAMPLES: POLYNOMIAL AND EXPONENTIAL

Geometric group theory

Cayley graph of $\mathbb{Z}^{2}=\langle x, y \mid x y=y x\rangle$.

Geometric group theory

Cayley graph of $\mathbb{Z}^{2}=\langle x, y \mid x y=y x\rangle$.

Geometric group theory

Cayley graph of $\mathbb{Z}^{2}=\langle x, y \mid x y=y x\rangle$.

Geometric group theory

$F_{3} /\left\langle x^{2}, y^{2}, z^{2}\right\rangle$

Typical questions \& Results

Question: are there groups of intermediate growth?
$:=$ super-polynomial but sub-exponential e.g. $\exp \left(r^{1 / 2}\right)$ or $r^{\log r}$

Typical questions \& Results

Question: are there groups of intermediate growth?
$:=$ super-polynomial but sub-exponential e.g. $\exp \left(r^{1 / 2}\right)$ or $r^{\log r}$
Yes: Grigorchuk group (1984)

$$
|B(e, r)| \sim \exp \left(r^{\alpha}\right) \quad \text { with } 0.504<\alpha<0.7675
$$

Typical questions \& Results

Question: are there groups of intermediate growth?
$:=$ super-polynomial but sub-exponential e.g. $\exp \left(r^{1 / 2}\right)$ or $r^{\log r}$
Yes: Grigorchuk group (1984)

$$
|B(e, r)| \sim \exp \left(r^{\alpha}\right) \quad \text { with } 0.504<\alpha<0.7675
$$

Theorem. (Gromov; 1981)
G is of polynomial growth $\Longleftrightarrow G$ is virtually nilpotent.

Theorem. (Trofimov; 1985)
Polynomial growth of vertex-transitive graphs must have integer degree.

Beyond Cayley graphs

$|B(v, r)| \sim r^{2}$

$|B(v, r)| \in \theta\left(r^{2}\right)$

Uniform Growth

Fix a function $g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$.

Definition.

A graph G is of uniform volume growth g if there are $c_{1}, c_{2}, C_{1}, C_{2}>0$ so that

$$
C_{1} \cdot g\left(c_{1} r\right) \leq|B(v, r)| \leq C_{2} \cdot g\left(c_{2} r\right), \quad \text { for all } v \in V(G) \text { and } r \geq 0
$$

Planar triangulations

Planar triangulations

Planar triangulations

- Ambj et al. (1997); ANGEL (2003): planar triangulations of growth $\sim r^{4}$ (quantum geometry)

Planar triangulations

- Ambj et al. (1997); Angel (2003): planar triangulations of growth $\sim r^{4}$ (quantum geometry)
- Benjamini, Schramm (2001): triangulations from trees

Planar triangulations

- Ambj et al. (1997); ANGEL (2003): planar triangulations of growth $\sim r^{4}$ (quantum geometry)
- Benjamini, Schramm (2001): triangulations from trees

Planar triangulations

- Ambj et al. (1997); ANGEL (2003): planar triangulations of growth $\sim r^{4}$ (quantum geometry)
- Benjamini, Schramm (2001): triangulations from trees

Planar triangulations

- Ambj et al. (1997); ANGEL (2003): planar triangulations of growth $\sim r^{4}$ (quantum geometry)
- Benjamini, Schramm (2001): triangulations from trees

In the same paper: $\sim r^{\alpha}$ for arbitrary $\alpha \geq 1$.

Planar triangulations

- Ambj et al. (1997); ANGEL (2003): planar triangulations of growth $\sim r^{4}$ (quantum geometry)
- Benjamini, Schramm (2001): triangulations from trees

In the same paper: $\sim r^{\alpha}$ for arbitrary $\alpha \geq 1$.

- Benjamini, Georgakopoulos (2021): $\sim r^{\alpha}$ with $\alpha<2$, then quasi-tree

Planar triangulations of Growth $r^{3 / 2}$

PLANAR TRIANGULATIONS OF GROWTH $r^{3 / 2}$

PLANAR TRIANGULATIONS OF GROWTH $r^{3 / 2}$

Trees

Uniform growth of Trees

What kind of uniform growth can a tree have?

- linear \checkmark
- exponential

Uniform growth of Trees

What kind of uniform growth can a tree have?

- linear \checkmark
- exponential
- polynomial ??
- intermediate ??
- oscillating ??

Uniform growth of Trees

What kind of uniform growth can a tree have?

- linear \checkmark
- exponential
- polynomial $\sqrt{ }$
- intermediate ??
- oscillating ??

$$
|B(v, r)| \sim r^{\alpha}, \quad \text { where } \alpha=\frac{\log |E(T)|}{\log \operatorname{diam}(T)}=\frac{\log 5}{\log 3} \approx 1.464973 .
$$

The Question

super-polynomial: $e^{\omega(\log (r))}$
 sub-exponential: $e^{o(r)}$

Q: "Are there unimodular trees of uniform intermediate volume growth?"

- Itai Benjamini

The Question

super-polynomial: $e^{\omega(\log (r))}$
 sub-exponential: $e^{o(r)}$

Q: "Are there mimodula trees of uniform intermediate volume growth?"

- Itai Benjamini

The Question

super-polynomial: $e^{\omega(\log (r))}$
sub-exponential: $e^{o(r)}$
Q: "Are there mimodula trees of uniform intermediate volume growth?"

- Itai Benjamini

Idea: find them as spanning trees of known intermediate growth graphs.

Does it work ... ?

Question

Given a graph of uniform growth g. Is there a (spanning) tree $T \subseteq G$ of the same uniform growth g ?

Does it work ... ?

Question

Given a graph of uniform growth g. Is there a (spanning) tree $T \subseteq G$ of the same uniform growth g ?

Turns out we don't need the ambient graph!

The Construction

$$
T_{0} \subset T_{1} \subset T_{2} \subset T_{3} \subset \cdots
$$

Construction - A sequence of trees

Given: sequence $\delta_{1}, \delta_{2}, \delta_{3}, \ldots \in \mathbb{N}, \delta_{n} \geq 1$
T_{0}

Construction - A sequence of trees

Given: sequence $\delta_{1}, \delta_{2}, \delta_{3}, \ldots \in \mathbb{N}, \delta_{n} \geq 1$

$$
\delta_{n}:=n+2 \quad 3 \quad 4 \quad 5
$$

Construction - A sequence of trees

Given: sequence $\delta_{1}, \delta_{2}, \delta_{3}, \ldots \in \mathbb{N}, \delta_{n} \geq 1$

$$
\delta_{n}:=n+2 \quad 3 \quad 4 \quad 5
$$

Construction - A sequence of trees

Given: sequence $\delta_{1}, \delta_{2}, \delta_{3}, \ldots \in \mathbb{N}, \delta_{n} \geq 1$

$$
\delta_{n}:=n+2 \quad 3 \quad 4 \quad 5
$$

Construction - A sequence of trees

Given: sequence $\delta_{1}, \delta_{2}, \delta_{3}, \ldots \in \mathbb{N}, \delta_{n} \geq 1$

$$
\delta_{n}:=n+2 \quad 3 \quad 4 \quad 5
$$

Construction - A sequence of trees

Given: sequence $\delta_{1}, \delta_{2}, \delta_{3}, \ldots \in \mathbb{N}, \delta_{n} \geq 1$

$$
\delta_{n}:=n+2 \quad 3 \quad 4 \quad 5
$$

Construction - A sequence of trees

Given: sequence $\delta_{1}, \delta_{2}, \delta_{3}, \ldots \in \mathbb{N}, \delta_{n} \geq 1$

$$
\delta_{n}:=n+2 \quad 3 \quad 4 \quad 5
$$

Construction - A sequence of trees

Given: sequence $\delta_{1}, \delta_{2}, \delta_{3}, \ldots \in \mathbb{N}, \delta_{n} \geq 1$

$$
\delta_{n}:=n+2 \quad 3 \quad 4 \quad 5
$$

Construction - A sequence of trees

Given: sequence $\delta_{1}, \delta_{2}, \delta_{3}, \ldots \in \mathbb{N}, \delta_{n} \geq 1$

Construction - A sequence of trees

Given: sequence $\delta_{1}, \delta_{2}, \delta_{3}, \ldots \in \mathbb{N}, \delta_{n} \geq 1$

Heuristics argument

Properties of T_{n} :

- number of vertices: $\left(\delta_{1}+1\right) \cdots\left(\delta_{n}+1\right)$

- distance from center to an apocentric vertex: $2^{n}-1$

Heuristics argument

Properties of T_{n} :

- number of vertices: $\left(\delta_{1}+1\right) \cdots\left(\delta_{n}+1\right)$
- distance from center to an apocentric vertex: $2^{n}-1$

$$
\left|B\left(v, 2^{n}-1\right)\right|=\left(\delta_{1}+1\right) \cdots\left(\delta_{n}+1\right)
$$

Heuristics argument

Properties of T_{n} :

- number of vertices: $\left(\delta_{1}+1\right) \cdots\left(\delta_{n}+1\right)$
- distance from center to an apocentric vertex: $2^{n}-1$

$$
\left|B\left(v, 2^{n}-1\right)\right|=\left(\delta_{1}+1\right) \cdots\left(\delta_{n}+1\right) \sim n!
$$

Heuristics argument

Properties of T_{n} :

- distance from center to an apocentric vertex: $2^{n}-1$

$$
|B(v, \underbrace{2^{n}-1}_{r})|=\left(\delta_{1}+1\right) \cdots\left(\delta_{n}+1\right) \sim n!\sim(\log r)!\sim r^{\log \log r}
$$

Heuristics argument

Properties of T_{n} :

- number of vertices: $\left(\delta_{1}+1\right) \cdots\left(\delta_{n}+1\right)$

- distance from center to an apocentric vertex: $2^{n}-1$

$$
g\left(2^{n}-1\right) \stackrel{!}{\approx}\left(\delta_{1}+1\right) \cdots\left(\delta_{n}+1\right)
$$

Heuristics argument

Properties of T_{n} :

- number of vertices: $\left(\delta_{1}+1\right) \cdots\left(\delta_{n}+1\right)$

- distance from center to an apocentric vertex: $2^{n}-1$

$$
g\left(2^{n}-1\right) \stackrel{!}{\approx}\left(\delta_{1}+1\right) \cdots\left(\delta_{n}+1\right) \quad \Longrightarrow \quad \delta_{n} \approx \frac{g\left(2^{n}-1\right)}{g\left(2^{n-1}-1\right)}-1
$$

EXAMPLE: POLYNOMIAL GROWTH

$$
|B(v, r)| \stackrel{!}{=}(r+1)^{2}
$$

ExAMPLE: POLYNOMIAL GROWTH

$$
|B(v, r)| \stackrel{!}{=}(r+1)^{2} \Longrightarrow\left|B\left(v, 2^{n}-1\right)\right|=\left(2^{n}\right)^{2}=4^{n}=(3+1) \cdots(3+1)
$$

ExAMPLE: EXPONENTIAL GROWTH

$$
\delta_{n}:=2^{2^{n}}
$$

$$
\begin{aligned}
\left|B\left(v, 2^{n}-1\right)\right|=\left(\delta_{1}+1\right) \cdots\left(\delta_{n}+1\right)=\prod_{k=1}^{n}\left(2^{2^{k-1}}+1\right)=\sum_{i=0}^{2^{n}-1} 2^{i} & =2^{2^{n}}-1 \\
& \sim 2^{r+1}-1
\end{aligned}
$$

Main Result

For every "nice" function $g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ there is a tree of uniform growth g.

What are "Nice" Functions?

- g is increasing
- g grows at least linearly
- g grows at most exponentially
- g does not oscillate between growth rates in unfortunate ways

What are "Nice" Functions?

- g is increasing
- g grows at least linearly $\left(\delta_{n} \geq 1\right)$
- g grows at most exponentially
- g does not oscillate between growth rates in unfortunate ways

What are "Nice" Functions?

- g is increasing
- g grows at least linearly $\left(\delta_{n} \geq 1\right)$
- g grows at most exponentially
- g does not oscillate between growth rates in unfortunate ways

$$
\begin{aligned}
g \text { super-additive } & \Longrightarrow g(a+b) \geq g(a)+g(b) \\
& \Longrightarrow g\left(2^{n+1}\right) \geq 2 g\left(2^{n}\right) \Longrightarrow \delta_{n} \approx \frac{g\left(2^{n+1}\right)}{g\left(2^{n}\right)}-1 \geq 1 .
\end{aligned}
$$

What are "nice" Functions?

- g is increasing
- g grows at least linearly $\left(\delta_{n} \geq 1\right)$
- g grows at most exponentially (bounded degree)
- g does not oscillate between growth rates in unfortunate ways

$$
\begin{aligned}
g \text { super-additive } & \Longrightarrow g(a+b) \geq g(a)+g(b) \\
& \Longrightarrow g\left(2^{n+1}\right) \geq 2 g\left(2^{n}\right) \Longrightarrow \delta_{n} \approx \frac{g\left(2^{n+1}\right)}{g\left(2^{n}\right)}-1 \geq 1 .
\end{aligned}
$$

Main Result: T has uniform growth

$$
\Delta(n):=\frac{\delta_{n}}{\delta_{1} \cdots \delta_{n-1}}, \quad \bar{\Delta}:=\sup _{n}\lceil\Delta(n)\rceil, \quad \Gamma:=\sup _{m \geq n}\left\lceil\frac{\Delta(m)}{\Delta(n)}\right\rceil
$$

Theorem. (Kontogeorgiou, W.; 2022)
For super-additive $g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ exists a tree T so that for all $v \in V(T)$ and $r \geq 0$

$$
\begin{aligned}
& |B(v, r)| \geq C_{1} \cdot g(r / 4) \\
& \text { if } \bar{\Delta}<\infty \text { then } \quad|B(v, r)| \leq C_{2} \cdot g(2 r)^{2} \\
& \text { if } \Gamma<\infty \text { then }|B(v, r)| \leq C_{3} \cdot g(4 r)
\end{aligned}
$$

In particular, if $\Gamma<\infty$, then T is of uniform growth g.

MAIn RESULT: T HAS UNIFORM GROWTH

$$
\Delta(n):=\frac{\delta_{n}}{\delta_{1} \cdots \delta_{n-1}}, \quad \bar{\Delta}:=\sup _{n}\lceil\Delta(n)\rceil, \quad \Gamma:=\sup _{m \geq n}\left\lceil\frac{\Delta(m)}{\Delta(n)}\right\rceil .
$$

Theorem. (Kontogeorgiou, W.; 2022)
For super-additive $g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R} \geq 0$ exists a tree T so that for all $v \in V(T)$ and $r \geq 0$

$$
\left.\begin{array}{rl}
& |B(v, r)|
\end{array} \frac{C_{1} \cdot g(r / 4)}{} \begin{array}{rl}
\text { if } \bar{\Delta}<\infty \text { then } & |B(v, r)|
\end{array} \leq C_{2} \cdot g(2 r)^{2}\right)
$$

In particular, if $\Gamma<\infty$, then T is of uniform growth g.

Theorem.

If g is super-additive and (eventually) log-concave, then there is a tree of uniform volume growth g.

Unimodular Trees

The original question

Q: "Are there unimodular trees of uniform intermediate volume growth?" "unimodular random rooted trees"

- Itai Benjamini

Alternative limits

Alternative limits

Apocentric limit

Benjamini-Schramm Limits

Benjamini-SCHRAMM Limits

$$
T_{0}, T_{1}, T_{2}, T_{3}, \ldots \quad \stackrel{\mathrm{BS}}{\longrightarrow} \mathcal{T}
$$

- Benjamini-Schramm limits are unimodular
- a set of graphs of uniformly bounded degree is compact
- every sequence of uniformly bounded degree has a convergent subsequence.

Theorem.

If g is super-additive and (eventually) log-concave, then there is a unimodular random rooted tree of uniform volume growth g.

A THRESHOLD PHENOMENON

Theorem. (structure theorem)

(i) if $g \in \Omega\left(r^{\log \log r}\right)$, then \mathcal{T} is a.s. an apocentric limit.
(ii) if $g \in \mathcal{O}\left(r^{\alpha \log \log r}\right)$ for some $\alpha>1$, then \mathcal{T} is a.s. a mixed limit.

- if growth is fast enough the Benjamini-Schramm limit can be a deterministic tree.

$$
\left|B_{T}(v, r)\right| \sim \exp \left(r^{\alpha}\right) \quad \text { where } \alpha=\log (\phi) \approx 0.6942
$$

Question

Do general unimodular trees of uniform growth show a similar threshold phenomenon?

Google

Ähnliche Fragen

What are the stages of tree growth?

What is the growth of a tree called?

Why do plants have indeterminate growth?

What might different species of trees in a forest compete for?
® Bilder zu Trees of intermediate growth

apical meristem

tree trunk

canopy closure

Thank you.

G. Kontogeorgiou and M. Winter (2022), arXiv "(Random) Trees of Intermediate Volume Growth"

