

(RANDOM) TREES OF INTERMEDIATE VOLUME GROWTH

Martin Winter

(joint work with George Kontogeorgiou)

University of Warwick

06. December, 2022

University of Warwick · Martin Winter

Volume Growth in Graphs

 $|B_v(r)|$

ball ...
$$B(v,r) := \left\{ x \in V(G) \mid \operatorname{dist}(x,v) \le r \right\}$$

ball ...
$$B(v,r) := \left\{ x \in V(G) \mid \operatorname{dist}(x,v) \le r \right\}$$

ball ...
$$B(v,r) := \left\{ x \in V(G) \mid \operatorname{dist}(x,v) \le r \right\}$$

ball ...
$$B(v,r) := \left\{ x \in V(G) \mid \operatorname{dist}(x,v) \le r \right\}$$

EXAMPLES: POLYNOMIAL AND EXPONENTIAL

Cayley graph of
$$\mathbb{Z}^2 = \langle x, y \mid xy = yx \rangle$$
.

Cayley graph of
$$\mathbb{Z}^2 = \langle x, y \mid xy = yx \rangle$$
.

Cayley graph of
$$\mathbb{Z}^2 = \langle x, y \mid xy = yx \rangle$$
.

Typical questions & results

Question: are there groups of *intermediate growth*? := super-polynomial but sub-exponential e.g. $\exp(r^{1/2})$ or $r^{\log r}$

Typical questions & results

Question: are there groups of *intermediate growth*? := super-polynomial but sub-exponential e.g. $\exp(r^{1/2})$ or $r^{\log r}$

Yes: Grigorchuk group (1984)

 $|B(e,r)|\sim \exp(r^{\alpha}) \quad \text{with } 0.504 < \alpha < 0.7675$

Typical questions & results

Question: are there groups of *intermediate growth*? := super-polynomial but sub-exponential e.g. $\exp(r^{1/2})$ or $r^{\log r}$

Yes: Grigorchuk group (1984)

 $|B(e,r)| \sim \exp(r^{\alpha})$ with $0.504 < \alpha < 0.7675$

Theorem. (GROMOV; 1981)

G is of polynomial growth \iff G is virtually nilpotent.

Theorem. (TROFIMOV; 1985)

Polynomial growth of vertex-transitive graphs must have integer degree.

BEYOND CAYLEY GRAPHS

UNIFORM GROWTH

Fix a function $g \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$.

Definition.

A graph G is of uniform volume growth g if there are $c_1, c_2, C_1, C_2 > 0$ so that

 $C_1 \cdot g(c_1 r) \ \leq \ |B(v,r)| \ \leq \ C_2 \cdot g(c_2 r), \quad \text{for all } v \in V(G) \text{ and } r \geq 0.$

▶ AMBJ et al. (1997); ANGEL (2003): planar triangulations of growth $\sim r^4$ (quantum geometry)

- AMBJ et al. (1997); ANGEL (2003): planar triangulations of growth ~ r⁴ (quantum geometry)
- BENJAMINI, SCHRAMM (2001): triangulations from trees

- AMBJ et al. (1997); ANGEL (2003): planar triangulations of growth ~ r⁴ (quantum geometry)
- BENJAMINI, SCHRAMM (2001): triangulations from trees

- AMBJ et al. (1997); ANGEL (2003): planar triangulations of growth ~ r⁴ (quantum geometry)
- BENJAMINI, SCHRAMM (2001): triangulations from trees

- AMBJ et al. (1997); ANGEL (2003): planar triangulations of growth ~ r⁴ (quantum geometry)
- BENJAMINI, SCHRAMM (2001): triangulations from trees

In the same paper: $\sim r^{\alpha}$ for arbitrary $\alpha \geq 1$.

- AMBJ et al. (1997); ANGEL (2003): planar triangulations of growth ~ r⁴ (quantum geometry)
- BENJAMINI, SCHRAMM (2001): triangulations from trees

In the same paper: $\sim r^{\alpha}$ for arbitrary $\alpha \geq 1$.

BENJAMINI, GEORGAKOPOULOS (2021): $\sim r^{\alpha}$ with $\alpha < 2$, then quasi-tree

Planar triangulations of growth $r^{3/2}$

Planar triangulations of growth $r^{3/2} \,$

Planar triangulations of growth $r^{3/2}$

UNIFORM GROWTH OF TREES

What kind of uniform growth can a tree have?

- 🕨 linear 🗸
- 🕨 exponential 🗸

Trees

UNIFORM GROWTH OF TREES

What kind of uniform growth can a tree have?

- 🕨 linear 🗸
- 🕨 exponential 🗸

Trees

- ▶ polynomial ??
- intermediate ??
- oscillating ??

UNIFORM GROWTH OF TREES

Trees

What kind of uniform growth can a tree have?

▶ linear √ (BENJAMINI, SCHRAMM; 2001) exponential 🗸 🕨 polynomial 🗸 intermediate ?? oscillating ?? $|B(v,r)| \sim r^{\alpha}$, where $\alpha = \frac{\log |E(T)|}{\log \operatorname{diam}(T)} = \frac{\log 5}{\log 3} \approx 1.464973.$

Trees

super-polynomial: $e^{\omega(\log(r))}$ sub-exponential: $e^{o(r)}$

Q: "Are there unimodular trees of uniform intermediate volume growth?"

– Itai Benjamini

Trees

 $\begin{array}{c} \text{super-polynomial: } e^{\omega(\log(r))} \\ \text{sub-exponential: } e^{o(r)} \\ \downarrow \\ \mathbf{Q: "Are there unimodular trees of uniform intermediate volume growth?"} \\ - Itai Benjamini \end{array}$

THE QUESTION

Trees

- Itai Benjamini

Idea: find them as spanning trees of known intermediate growth graphs.

Question

Given a graph of uniform growth g. Is there a (spanning) tree $T \subseteq G$ of the same uniform growth g?

Question

Given a graph of uniform growth g. Is there a (spanning) tree $T \subseteq G$ of the same uniform growth g?

Turns out we don't need the ambient graph!

The Construction $T_0 \subset T_1 \subset T_2 \subset T_3 \subset \cdots$

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}, \ \delta_n \ge 1$

 $\overset{\bullet}{T_0}$

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}, \ \delta_n \ge 1$

 $\delta_n := n + 2 \quad 3 \quad 4 \quad 5$

 $\overset{\bullet}{T_0}$

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}, \ \delta_n \ge 1$

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}, \ \delta_n \ge 1$

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}, \ \delta_n \ge 1$

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}, \ \delta_n \ge 1$

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}, \ \delta_n \ge 1$

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}, \ \delta_n \ge 1$

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}, \ \delta_n \geq 1$ $\delta_n := n + 2 - 3 - 4 - 5$ \mathbf{O} T_0 T_2 T_3 12

The Construction

Given: sequence $\delta_1, \delta_2, \delta_3, \ldots \in \mathbb{N}, \ \delta_n \geq 1$ $\delta_n := n + 2 - 3 - 4 - 5$ \mathbf{O} T_0 T_2 T_3 D $T:=\bigcup T_n$

The Construction

- number of vertices: $(\delta_1 + 1) \cdots (\delta_n + 1)$
- distance from center to an apocentric vertex: $2^n 1$

- number of vertices: $(\delta_1 + 1) \cdots (\delta_n + 1)$
- ▶ distance from center to an apocentric vertex: $2^n 1$

$$|B(v, 2^{n} - 1)| = (\delta_{1} + 1) \cdots (\delta_{n} + 1)$$

- number of vertices: $(\delta_1 + 1) \cdots (\delta_n + 1)$
- ▶ distance from center to an apocentric vertex: $2^n 1$

$$|B(v, 2^{n} - 1)| = (\delta_{1} + 1) \cdots (\delta_{n} + 1) \sim n!$$

- number of vertices: $(\delta_1 + 1) \cdots (\delta_n + 1)$
- ▶ distance from center to an apocentric vertex: $2^n 1$

$$|B(v, \underbrace{2^n - 1}_r)| = (\delta_1 + 1) \cdots (\delta_n + 1) \sim n! \sim (\log r)! \sim r^{\log \log r}$$

HEURISTICS ARGUMENT \mathbf{O} T_0 T_2 **Properties of** T_n : • number of vertices: $(\delta_1 + 1) \cdots (\delta_n + 1)$

• distance from center to an apocentric vertex: $2^n - 1$

$$g(2^n-1) \stackrel{!}{\approx} (\delta_1+1)\cdots(\delta_n+1)$$

- number of vertices: $(\delta_1 + 1) \cdots (\delta_n + 1)$
- ▶ distance from center to an apocentric vertex: $2^n 1$

$$g(2^n - 1) \stackrel{!}{\approx} (\delta_1 + 1) \cdots (\delta_n + 1) \implies \delta_n \approx \frac{g(2^n - 1)}{g(2^{n-1} - 1)} - 1$$

EXAMPLE: POLYNOMIAL GROWTH

 $|B(v,r)| \stackrel{!}{=} (r+1)^2$ T_1 T_4 T_2 T_3 . 0`0 $\delta_n := 3$

EXAMPLE: POLYNOMIAL GROWTH

 $|B(v,r)| \stackrel{!}{=} (r+1)^2 \implies |B(v,2^n-1)| = (2^n)^2 = 4^n = (3+1)\cdots(3+1)$

EXAMPLE: EXPONENTIAL GROWTH

Main Result

For every "nice" function $g: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ there is a tree of uniform growth g.

- ► g grows at least linearly
- \blacktriangleright g grows at most exponentially
- \blacktriangleright g does not oscillate between growth rates in unfortunate ways

- g grows at least linearly $(\delta_n \ge 1)$
- \blacktriangleright g grows at most exponentially
- \blacktriangleright g does not oscillate between growth rates in unfortunate ways

- g grows at least linearly $(\delta_n \ge 1)$
- \blacktriangleright g grows at most exponentially
- \blacktriangleright g does not oscillate between growth rates in unfortunate ways

$$\begin{array}{rcl} g \text{ super-additive } & \Longrightarrow & g(a+b) \geq g(a) + g(b) \\ & \Longrightarrow & g(2^{n+1}) \geq 2g(2^n) & \Longrightarrow & \delta_n \approx \frac{g(2^{n+1})}{g(2^n)} - 1 \geq 1 \end{array}$$

- g grows at least linearly $(\delta_n \ge 1)$
- ▶ g grows at most exponentially (bounded degree)
- \blacktriangleright g does not oscillate between growth rates in unfortunate ways

$$\begin{array}{rcl} g \text{ super-additive } & \Longrightarrow & g(a+b) \geq g(a) + g(b) \\ & \implies & g(2^{n+1}) \geq 2g(2^n) & \Longrightarrow & \delta_n \approx \frac{g(2^{n+1})}{g(2^n)} - 1 \geq 1. \end{array}$$

Main result: T has uniform growth

$$\Delta(n) := \frac{\delta_n}{\delta_1 \cdots \delta_{n-1}}, \quad \bar{\Delta} := \sup_n \lceil \Delta(n) \rceil, \quad \Gamma := \sup_{m \ge n} \left\lceil \frac{\Delta(m)}{\Delta(n)} \right\rceil.$$

Theorem. (Kontogeorgiou, W.; 2022)

Main Result

For super-additive $g \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ exists a tree T so that for all $v \in V(T)$ and $r \geq 0$

$$egin{aligned} &|B(v,r)|\geq C_1\cdot g(r/4)\ & ext{if }ar{\Delta}<\infty ext{ then } &|B(v,r)|\leq C_2\cdot g(2r)^2\ & ext{if }\Gamma<\infty ext{ then } &|B(v,r)|\leq C_3\cdot g(4r) \end{aligned}$$

In particular, if $\Gamma < \infty$, then T is of uniform growth g.

Main result: T has uniform growth

$$\Delta(n) := \frac{\delta_n}{\delta_1 \cdots \delta_{n-1}}, \quad \bar{\Delta} := \sup_n \lceil \Delta(n) \rceil, \quad \Gamma := \sup_{m \ge n} \left\lceil \frac{\Delta(m)}{\Delta(n)} \right\rceil.$$

Theorem. (Kontogeorgiou, W.; 2022)

Main Result

For super-additive $g \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ exists a tree T so that for all $v \in V(T)$ and $r \geq 0$

$$egin{aligned} &|B(v,r)|\geq C_1\cdot g(r/4)\ & ext{if }ar{\Delta}<\infty ext{ then } &|B(v,r)|\leq C_2\cdot g(2r)^2\ & ext{if }\Gamma<\infty ext{ then } &|B(v,r)|\leq C_3\cdot g(4r) \end{aligned}$$

In particular, if $\Gamma < \infty$, then T is of uniform growth g.

Theorem.

If g is super-additive and (eventually) log-concave, then there is a tree of uniform volume growth g.

Unimodular Trees

THE ORIGINAL QUESTION

ALTERNATIVE LIMITS

ALTERNATIVE LIMITS

 T_1

APOCENTRIC LIMIT

÷

$$T_0, T_1, T_2, T_3, \dots \xrightarrow{\mathsf{BS}} \mathcal{T}$$

Benjamini-Schramm limits are unimodular

- a set of graphs of uniformly bounded degree is compact
- every sequence of uniformly bounded degree has a convergent subsequence.

Theorem.

If g is super-additive and (eventually) log-concave, then there is a unimodular random rooted tree of uniform volume growth g.

A THRESHOLD PHENOMENON

Theorem. (structure theorem)

- (i) if $g \in \Omega(r^{\log \log r})$, then \mathcal{T} is a.s. an apocentric limit.
- (ii) if $g \in \mathcal{O}(r^{\alpha \log \log r})$ for some $\alpha > 1$, then \mathcal{T} is a.s. a mixed limit.

 if growth is fast enough the Benjamini-Schramm limit can be a deterministic tree.

 $|B_T(v,r)| \sim \exp(r^{\alpha})$ where $\alpha = \log(\phi) \approx 0.6942$.

Question

Do general unimodular trees of uniform growth show a similar threshold phenomenon?

Google	Trees of intermediate growth	× 🎐	٩
Ähnliche Fragen			
What are the stages of tree growth?			~
What is the growth of a tree called?			~
Why do plants have indeterminate growth?			~
What might different species of trees in a forest compete for?			~
		- Feedback	geben
Bilder zu Trees of intermediate growth			
apical meristem	n 🥘 tree trunk 🎆 canopy closure 🦲 tree ring		•
Performance (Sperf)		Concentration attemption that the second sec	And the Co Monty

Thank you.

G. Kontogeorgiou and M. Winter (2022), arXiv "(Random) Trees of Intermediate Volume Growth"