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Minor closed families



Minor closed families

Example: planar graphs

planar := can be drawn in R2 without crossing edges

� �� �

Theorem. (Kuratowski, 1930)

A graph is planar if and only if it “contains” no K5 or K3,3.

There are only finitely many finite reasons to be non-planar.
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Minor closed families

Forbidden minors

Minor := obtained by repeated edge deletion and contraction

Theorem. (Kuratowski, 1930)

A graph is planar if and only if it contains no K5- or K3,3-minor.

=: “forbidden minor characterization” of planarity
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Minor closed families

Other topological graph classes

linkless := can be embedded into R3 without linking cycles

knotless := can be embedded into R3 without knotted cycles

flat := can be embedded into R3 so that every cycle can be filled in by a disc

4-flat := can be embedded into R4 so that all cycles can be filled in by discs
simultaneously

Theorem. (Robertson, Seymour, Thomas, 1993)

G is linkless ⇐⇒ G is flat
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Minor closed families

Robertson-Seymour Theorem

Theorem. (Robertson, Seymour, 1983-2004)

Every minor-closed family of finite graphs has a finite forbidden minor
characterization (i.e. is characterized by finitely many forbidden minors, each of which

is finite)

University of Warwick · Martin Winter 4 / 15



Infinite graphs



Infinite graphs

Infinite graphs

......

...

For our purpose, you might think of graphs that are

I countable

I locally finite

The Robertson-Seymour theorem does not apply to infinite graphs.

Still we hope ...

An (infinite) graph is X, if and only if every finite subgraph is X.

=⇒ same forbidden minors as finite graphs
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Infinite graphs

Example: infinite planar graphs

Theorem. (Erdős)

An (infinite) graph G is planar, if and only if every finite subgraph is planar.

=⇒ infinite planar graphs have no K5- and K3,3-minors

Proof idea:
I choose an increasing sequence G1 ⊂ G2 ⊂ G3 ⊂ · · · of finite subgraphs that

cover all of G, i.e.
⋃
Gi = G

I choose an embedding φ1 of G1

I extend the embedding φi of Gi to an embedding

How??

φi+1 of Gi+1

I φ :=
⋃
φi is an embedding of G
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Infinite graphs

Example: infinite planar graphs

Theorem. (Erdős)

An (infinite) graph G is planar, if and only if every finite subgraph is planar.

Proof. (compactness argument)

I there are only finitely many distinct planar drawings up to ambient isotopy
(Whitney)

I Kőnig’s Lemma

...

...

...
...
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Infinite graphs

Beyond planar graphs

...

...

...
...

Question: Can we do the same for other graphs classes?

We need ... (an equivalent of Whitney’s theorem)

... if G can be embedded with property X, then there are there only finitely
many ways to do so (up to ambient isotopy).

University of Warwick · Martin Winter 8 / 15



Infinite
linkless & flat graphs



Infinite linkless & flat graphs

How many linkless embeddings? (∞ many)

But: this is not a flat embedding !
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Infinite linkless & flat graphs

Finitely many flat embeddings

Theorem. (Robertson, Seymour, Thomas, 1993)

I K5 and K3,3 have exactly two flat embeddings. (up to ambient isotopy)

I Different flat embeddings of G differ in a K5- or K3,3-minor.

Corollary.

If G is finite and linkless and its number of K5- and K3,3-minors is N , then it
has at most 2N different flat embeddings.
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Infinite linkless & flat graphs

Characterizing infinite linkless graphs

Theorem. (Kontogeorgiou, W., 2023+)

A graph is linkless if and only if every finite subgraph is linkless.

Corollary.

(Infinite) linkless graphs are characterized by the Petersen minors.

Two “flaws”:
I the proof does not show that G is flat
I there could be “infinite linked cycles”

......

...

...
...

...
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Infinite linkless & flat graphs

Ends & the Freudenthal compactification

end := equivalence class of infinite rays that “go in the same direction”

Freudenthal compactification
:= topological space that contains G and a new point for each end

Freundenthal embedding := embedding of the Freudenthal compactification

Questions:

I How to construct a Freudenthal embedding?

...

...
...

...

I Is it still linkless?

I Can it be made flat?
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Infinite linkless & flat graphs

Decompositions and good graphs

Definition.

A graph is good if it has a decomposition V (G) = S1 ·∪ S2 ·∪ · · · of its vertex
set satisfying the following:

I the induced subgraphs G[Si] are finite and connected,

I contracting the subgraphs G[Si] yields a forest.

Examples: locally finite graphs

Counterexample: the infinite clique

... ...
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Infinite linkless & flat graphs

Linkless Freundenthal embeddings

Theorem. (Kontogeorgiou, W., 2023+)

A good linkless graph has a linkless Freudenthal embedding.

......

...
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Infinite linkless & flat graphs

Infinite flat embeddings

Theorem. (Kontogeorgiou, W., 2023+)

A good graph is flat if and only if every finite subgraph is flat.

Corollary.

Also for infinite graphs holds: linkless ⇐⇒ flat.

linkless flat

finite cycles only X X

infinite cycles included X ???

Question: has a (good) flat graph a flat Freudenthal embedding?
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Thank you.
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