

4-flat graphs and embeddability of 2-complexes in dimension four University of Warwick

On 4-flat graphs and the embeddability of 2-complexes in dimension four

Martin Winter

this is joint work with Agelos Georgakopoulos and Tam Nguyen-Phan

University of Warwick

12. January, 2023

University of Warwick · Martin Winter

$CW\text{-}COMPLEXES \hspace{0.1 cm} (\text{cellular complexes})$

Each **CW-complexes** C in this talk is 2-dimensional and composed of

vertices (0-cells)

Introduction

- edges (1-cells)
- $\left.
 ight\}$ 1-skeleton $C^{(1)}=$ a topological graph

$CW\text{-}COMPLEXES \hspace{0.1 cm} (\text{cellular complexes})$

Each **CW-complexes** C in this talk is 2-dimensional and composed of

vertices (0-cells)

Introduction

- edges (1-cells)
- $ight\}$ 1-skeleton $C^{(1)}=$ a topological graph

2-CELL ATTACHMENT (SIMPLICIAL, NOT NECESSARILY INJECTIVE)

Embedding complexes

$$\phi\colon C\to \mathbb{R}^d$$

All embeddings in this talk are piecewise linear (PL).

- every *d*-complex embeds in \mathbb{R}^{2d+1}
- ▶ some *d*-complexes embed in \mathbb{R}^{2d} (e.g. manifolds), others do not
 - \longrightarrow van Kampen obstruction
- ▶ this obstruction is "if and only if", except for embeddings $2D \rightarrow 4D$ (codimension 2 is the worst)

Example: triple cone over K_5

Introduction

CAN I TELL EMBEDDABILITY FROM THE GRAPH?

Observation: there are graphs, no matter what 2-cells we attach, the 2-complex always embeds in $\mathbb{R}^4.$

Example: trees, cycles

What about $K_4, K_5, K_6, K_7, \dots$?

van der Holst's 4-flat graphs

Full complexes and 4-flat graphs

Definition.

Let G be a graph.

- ▶ the full regular complex $C_{reg}(G)$ is the 2-complex obtained from G by attaching a 2-cell along each cycle of G.
- G is 4-flat if $\mathcal{C}_{reg}(G)$ embeds in \mathbb{R}^4 .

Full complexes and 4-flat graphs

Definition.

Let G be a graph.

- ▶ the **full regular complex** C_{reg}(G) is the 2-complex obtained from G by attaching a 2-cell along each cycle of G.
- G is 4-flat if $\mathcal{C}_{reg}(G)$ embeds in \mathbb{R}^4 .
- $\blacktriangleright \ ... \ \text{along each closed walk} \ \longrightarrow \ \mathcal{C}(G) \ \longrightarrow \ \text{strongly 4-flat}$
- ▶ ... along each cycle $\longrightarrow C_{reg}(G) \longrightarrow$ 4-flat
- \blacktriangleright ... along each induced cycle \longrightarrow $\mathcal{C}_{\mathrm{ind}}(G)$ \longrightarrow weakly 4-flat

Full complexes and 4-flat graphs

Definition.

Let G be a graph.

- ▶ the **full regular complex** C_{reg}(G) is the 2-complex obtained from G by attaching a 2-cell along each cycle of G.
- G is 4-flat if $\mathcal{C}_{reg}(G)$ embeds in \mathbb{R}^4 .
- $\blacktriangleright \ \dots \ \text{along each closed walk} \ \longrightarrow \ \mathcal{C}(G) \ \longrightarrow \ \text{strongly 4-flat}$
- $\blacktriangleright \ \dots \text{ along each cycle} \qquad \longrightarrow \ \mathcal{C}_{\mathrm{reg}}(G) \quad \longrightarrow \quad \text{4-flat}$
- ▶ ... along each induced cycle $\longrightarrow C_{ind}(G) \longrightarrow$ weakly 4-flat

Theorem. (Georgakopoulos, Nguyen-Phan, W., 2023+)

strongly 4-flat \iff 4-flat \iff weakly 4-flat

Example: K_6

How to embed $C_{ind}(K_6)$?

- ▶ the only induced cycles of K₆ are triangles
- K_6 is the edge-graph of the 5-simplex
- ▶ the 5-simplex contains a 2-face (i.e. a 2-cell) in each triangle
- ▶ the Schlegel diagram of the 5-simplex in \mathbb{R}^4 contains an embedding of $\mathcal{C}_{ind}(K_6)$

Example: K_6 AND $K_7 - e$

How to embed $C_{ind}(K_6)$?

- ▶ the only induced cycles of K₆ are triangles
- K_6 is the edge-graph of the 5-simplex
- ▶ the 5-simplex contains a 2-face (i.e. a 2-cell) in each triangle
- ▶ the Schlegel diagram of the 5-simplex in \mathbb{R}^4 contains an embedding of $\mathcal{C}_{ind}(K_6)$

How to embed $C_{ind}(K_7 - e)$?

... K₇ - e is the edge-graph of two 5-simplices glued at a facet ...

Example: K_6 AND $K_7 - e$

How to embed $C_{ind}(K_6)$?

- ▶ the only induced cycles of K₆ are triangles
- K_6 is the edge-graph of the 5-simplex
- the 5-simplex contains a 2-face (i.e. a 2-cell) in each triangle
- ▶ the Schlegel diagram of the 5-simplex in \mathbb{R}^4 contains an embedding of $\mathcal{C}_{ind}(K_6)$

How to embed $C_{ind}(K_7 - e)$?

...
K₇ - e is the edge-graph of two 5-simplices glued at a facet
...

 K_7 is <u>not</u> 4-flat ... by van Kampen obstruction.

planar graphs are 4-flat

- planar graphs are 4-flat
- linkless graphs (aka. flat graphs) are 4-flat

- planar graphs are 4-flat
- linkless graphs (aka. flat graphs) are 4-flat
- cones over linkless graphs are 4-flat (this includes K₆)
 - \rightarrow 4-flat graphs feel like a natural continuation of planar, linkless, ...

- planar graphs are 4-flat
- linkless graphs (aka. flat graphs) are 4-flat
- cones over linkless graphs are 4-flat (this includes K₆)
 - \rightarrow 4-flat graphs feel like a natural continuation of planar, linkless, ...

► 4-flat graphs form a minor-closed family → characterized by forbidden minors (Robertson-Seymour theorem)

- planar graphs are 4-flat
- linkless graphs (aka. flat graphs) are 4-flat
- cones over linkless graphs are 4-flat (this includes K₆)
 - \rightarrow 4-flat graphs feel like a natural continuation of planar, linkless, ...

4-flat graphs form a minor-closed family
 → characterized by forbidden minors (Robertson–Seymour theorem)

What are the forbidden minors? K_7 is one of them.

not planar: K_5 , $K_{3,3}$

not linkless:

not 4-flat:

not planar: K_5 , $K_{3,3}$

not linkless: K_6

not 4-flat:

not planar: K_5 , $K_{3,3}$

not linkless: K_6 , $K_{3,3,1}$

not 4-flat:

- not planar: K_5 , $K_{3,3}$
- not linkless: K_6 , $K_{3,3,1}$
- not 4-flat: K_7

- not planar: K_5 , $K_{3,3}$
- not linkless: K_6 , $K_{3,3,1}$
- not 4-flat: K_7 , $K_{3,3,1,1}$

not planar: K_5 , $K_{3,3} + \Delta Y/Y \Delta$ -trafos

not linkless: K_6 , $K_{3,3,1} + \Delta Y/Y\Delta$ -trafos \rightarrow 7 graphs

not 4-flat: K_7 , $K_{3,3,1,1}$

not planar: K_5 , $K_{3,3} + \Delta Y/Y \Delta$ -trafos

not linkless: K_6 , $K_{3,3,1} + \Delta Y / Y \Delta$ -trafos \rightarrow 7 graphs

not 4-flat: K_7 , $K_{3,3,1,1} + \Delta Y/Y \Delta$ -trafos \rightarrow 76 graphs (Heawood graphs)

INTRINSICALLY LINKED GRAPHS

THE HEAWOOD GRAPHS

Conjecture.

- (i) all Heawood graphs are forbidden minors.
- (ii) there are no other forbidden minors.

Colin de Verdière graph invariant μ

- $\blacktriangleright \ \mu \leq 0 \iff {\sf no} \ {\sf edges}$
- $\blacktriangleright \ \mu \leq 1 \iff \text{forest}$
- $\blacktriangleright \ \mu \leq 2 \iff \text{outer-planar}$
- $\blacktriangleright \ \mu \leq 3 \iff \mathsf{planar}$
- ▶ $\mu \le 4 \iff \text{linkless}$
- ▶ $\mu \leq 5 \iff$ 4-flat \leftarrow conjectured by van der Holst

Cones over linkless graphs have $\mu \leq 5$. Heawood graphs have $\mu = 6$.

VAN DER HOLST'S CONJECTURES

Conjecture.

4-flat graphs are characterized as graphs without Heawood minors.

Conjecture.

4-flat graphs are characterized by $\mu \leq 5$.

Conjecture.

4-flat graphs are closed under ...

- (i) doubling edges
- (ii) $\Delta Y / Y \Delta$ -transformations

 \longrightarrow all Heawood graphs are forbidden minors

VAN DER HOLST'S CONJECTURES

Conjecture.

4-flat graphs are characterized as graphs without Heawood minors.

Conjecture.

4-flat graphs are characterized by $\mu \leq 5$.

Conjecture.

4-flat graphs are closed under ...

- (i) doubling edges
- (ii) $\Delta Y / Y \Delta$ -transformations

 \longrightarrow all Heawood graphs are forbidden minors

Operations on 2-complexes

Doubling edges preserves 4-flat

Doubling edges preserves 4-flat

CLONING 2-CELLS

Given a 2-cell $c \subset C$.

Question: can we attach (and embed) another 2-cell with boundary ∂c ?

CLONING 2-CELLS

Given a 2-cell $c \subset C$.

Question: can we attach (and embed) another 2-cell with boundary ∂c ?

Conjecture.

Cloning is not possible as depicted here (i.e. with preserving the original 2-cell).

TRY CLONING THIS ...

TRY CLONING THIS ...

Lemma.

We can clone 2-cells, but we might need to modify the embedding of the original 2-cell.

DETACHING DISCS

Given a disc $D \subset C$ with $\partial D \subset C^{(1)}$.

Question: Can we attach (and embed) a 2-cell with boundary ∂D ?

Lemma.

Yes, if D contains no vertices of C in its interior.

"we can detach discs from edges"

ΔY -transforms preserve 4-flat

What about $Y\Delta$ -transforms?

It's complicated ...

What about $Y\Delta$ -transforms?

It's complicated ...

... because detaching from vertices is *complicated*.

VERTEX LINKS

Vertex links in \mathbb{R}^4 live in a 3-sphere and look more like this:

LINKLESS LINKS

Small links can be bad as well ...

Some complexes can force bad links, even at particular 3-vertices. **Question:** But can this happen in 4-flat graphs?

... whether $Y\Delta$ -transforms preserve 4-flat remains **open**!

4-FLAT GRAPHS WITH BAD LINKS

If there are 4-flat graphs with bad 3-links, then there are more forbidden minors.

$Y\Delta$ -transforms for complexes

$Y\Delta$ -transforms don't preserve embeddability

Let ${\boldsymbol{G}}$ be a graph with "unavoidable Borromean rings"

$Y\Delta$ -transforms don't preserve embeddability

- Let G be a graph with "intrinsic Borromean rings"
- cone (as a graph) trice over G with apices x_1, x_2, x_3
- add a 3-vertex v adjacent to x_1, x_2, x_3
- cone (as a complex) over this graph
- ▶ for each cycle $C \subset G$, edge $e \subset C$ and pair $x_i \neq x_j$, attach a 2-cell along C but with a detour replacing e = ab with the path ax_ivx_jb

$Y\Delta$ -transforms don't preserve embeddability

Thank you.

Bonus round: Smooth vs. PL

PL-EMBEDDABLE, NOT SMOOTHLY EMBEDDABLE

cone over K_7 + attach a 2-cell to every Hamiltonian cycle of K_7

PL-EMBEDDABLE, NOT SMOOTHLY EMBEDDABLE

- this complex embeds in \mathbb{R}^4
- every embedding must look essentially as follows:
 - ► K₇ "flat" in some 3-hyperplane
 - the cone is on one side of the hyperplane
 - the Hamiltonian 2-cells are on the other side of the hyperplane
- \blacktriangleright K_7 is intrinsically knotted: every 3-embedding contains a knotted cycle
- in fact, a knotted cycle with $\operatorname{arf-invariant} \neq 0$
- ► such a knot is not smoothly slice, i.e. no smooth 2-disc with this knot at the boundary can be only on one side of R³.

Thank you.