4-flat graphs and embeddability of 2 -complexes in dimension four University of Warwick

On 4-FLAT GRAPHS AND THE EMBEDDABILITY OF 2-COMPLEXES IN DIMENSION FOUR

Martin Winter

this is joint work with Agelos Georgakopoulos and Tam Nguyen-Phan

University of Warwick
12. January, 2023

CW-COMPLEXES (cellular complexes)

Each CW-complexes C in this talk is 2-dimensional and composed of

- vertices (0 -cells)
- edges (1-cells)

1-skeleton $C^{(1)}=$ a topological graph

- 2-cells

CW-COMPLEXES (cellular complexes)

Each CW-complexes C in this talk is 2-dimensional and composed of

- vertices (0 -cells)
- edges (1-cells) 1-skeleton $C^{(1)}=$ a topological graph
- 2-cells \leftarrow 2-discs glued to the 1-skeleton

2-CELL ATTACHMENT (simplicial, not necessarily injective)

Embedding COMPLEXES

$$
\phi: C \rightarrow \mathbb{R}^{d}
$$

All embeddings in this talk are piecewise linear (PL).

- every d-complex embeds in $\mathbb{R}^{2 d+1}$
- some d-complexes embed in $\mathbb{R}^{2 d}$ (e.g. manifolds), others do not \longrightarrow van Kampen obstruction
- this obstruction is "if and only if", except for embeddings 2D $\rightarrow 4 \mathrm{D}$ (codimension 2 is the worst)

Non-EMBEDDABLE in \mathbb{R}^{4}

Example: triple cone over K_{5}

Can I tell embeddability from the graph?

Observation: there are graphs, no matter what 2-cells we attach, the 2-complex always embeds in \mathbb{R}^{4}.
Example: trees, cycles
What about $K_{4}, K_{5}, K_{6}, K_{7}, \ldots$?

van der Holst's 4-flat graphs

Full COMPLEXES AND 4-FLAT GRAPHS

Definition.

Let G be a graph.

- the full regular complex $\mathcal{C}_{\text {reg }}(G)$ is the 2-complex obtained from G by attaching a 2 -cell along each cycle of G.
- G is 4-flat if $\mathcal{C}_{\text {reg }}(G)$ embeds in \mathbb{R}^{4}.

FULL COMPLEXES AND 4-FLAT GRAPHS

Definition.

Let G be a graph.

- the full regular complex $\mathcal{C}_{\text {reg }}(G)$ is the 2-complex obtained from G by attaching a 2 -cell along each cycle of G.
- G is 4-flat if $\mathcal{C}_{\text {reg }}(G)$ embeds in \mathbb{R}^{4}.
- ... along each closed walk
$\longrightarrow \mathcal{C}(G) \quad \longrightarrow$ strongly 4-flat
- ... along each cycle
$\longrightarrow \mathcal{C}_{\text {reg }}(G) \longrightarrow$ 4-flat
$\triangleright \ldots$ along each induced cycle $\longrightarrow \mathcal{C}_{\text {ind }}(G) \longrightarrow$ weakly 4-flat

FULL COMPLEXES AND 4-FLAT GRAPHS

Definition.

Let G be a graph.

- the full regular complex $\mathcal{C}_{\text {reg }}(G)$ is the 2-complex obtained from G by attaching a 2 -cell along each cycle of G.
- G is 4-flat if $\mathcal{C}_{\text {reg }}(G)$ embeds in \mathbb{R}^{4}.
- ... along each closed walk
- ... along each cycle
$\longrightarrow \mathcal{C}(G) \quad$ strongly 4-flat
- ... along each induced cycle
$\longrightarrow \mathcal{C}_{\text {reg }}(G) \longrightarrow$ 4-flat
$\longrightarrow \mathcal{C}_{\text {ind }}(G) \longrightarrow$ weakly 4-flat
Theorem. (Georgakopoulos, Nguyen-Phan, W., 2023+)

$$
\text { strongly 4-flat } \Longleftrightarrow \text { 4-flat } \Longleftrightarrow \text { weakly 4-flat }
$$

Example: K_{6}

How to embed $\mathcal{C}_{\text {ind }}\left(K_{6}\right)$?

- the only induced cycles of K_{6} are triangles
- K_{6} is the edge-graph of the 5 -simplex
- the 5-simplex contains a 2 -face (i.e. a 2 -cell) in each triangle
- the Schlegel diagram of the 5-simplex in \mathbb{R}^{4} contains an embedding of $\mathcal{C}_{\text {ind }}\left(K_{6}\right)$

Example: K_{6} AND $K_{7}-e$

How to embed $\mathcal{C}_{\text {ind }}\left(K_{6}\right)$?

- the only induced cycles of K_{6} are triangles
- K_{6} is the edge-graph of the 5 -simplex
- the 5-simplex contains a 2 -face (i.e. a 2 -cell) in each triangle
- the Schlegel diagram of the 5 -simplex in \mathbb{R}^{4} contains an embedding of $\mathcal{C}_{\text {ind }}\left(K_{6}\right)$

How to embed $\mathcal{C}_{\text {ind }}\left(K_{7}-e\right)$?

- $K_{7}-e$ is the edge-graph of two 5 -simplices glued at a facet

Example: K_{6} AND $K_{7}-e$

How to embed $\mathcal{C}_{\text {ind }}\left(K_{6}\right)$?

- the only induced cycles of K_{6} are triangles
- K_{6} is the edge-graph of the 5 -simplex
- the 5-simplex contains a 2 -face (i.e. a 2-cell) in each triangle
- the Schlegel diagram of the 5 -simplex in \mathbb{R}^{4} contains an embedding of $\mathcal{C}_{\text {ind }}\left(K_{6}\right)$

How to embed $\mathcal{C}_{\text {ind }}\left(K_{7}-e\right)$?

- $K_{7}-e$ is the edge-graph of two 5 -simplices glued at a facet
K_{7} is not 4-flat ... by van Kampen obstruction.

FACTS ABOUT 4-FLAT GRAPHS

- planar graphs are 4-flat

FACTS ABOUT 4-FLAT GRAPHS

- planar graphs are 4-flat
- linkless graphs (aka. flat graphs) are 4-flat

Facts about 4-FLAT GRAPHS

- planar graphs are 4-flat
- linkless graphs (aka. flat graphs) are 4-flat

- cones over linkless graphs are 4-flat (this includes K_{6})
\rightarrow 4-flat graphs feel like a natural continuation of planar, linkless, ...

Facts about 4-FLAT GRAPHS

- planar graphs are 4-flat
- linkless graphs (aka. flat graphs) are 4-flat

- cones over linkless graphs are 4-flat (this includes K_{6})
\rightarrow 4-flat graphs feel like a natural continuation of planar, linkless, ...
- 4-flat graphs form a minor-closed family
\rightarrow characterized by forbidden minors (Robertson-Seymour theorem)

Facts about 4-FLAT GRAPHS

- planar graphs are 4-flat
- linkless graphs (aka. flat graphs) are 4-flat

- cones over linkless graphs are 4-flat (this includes K_{6})
\rightarrow 4-flat graphs feel like a natural continuation of planar, linkless, ...
- 4-flat graphs form a minor-closed family
\rightarrow characterized by forbidden minors (Robertson-Seymour theorem)
What are the forbidden minors? K_{7} is one of them.

Forbidden minors

not planar: $K_{5}, K_{3,3}$
not linkless:

not 4-flat:

Forbidden minors

not planar: $K_{5}, K_{3,3}$

not linkless: K_{6}
not 4-flat:

Forbidden minors

not planar: $\quad K_{5}, K_{3,3}$
not linkless: $\quad K_{6}, K_{3,3,1}$
not 4-flat:

Forbidden minors

not planar: $K_{5}, K_{3,3}$

not linkless: $\quad K_{6}, K_{3,3,1}$
not 4-flat: $\quad K_{7}$

Forbidden minors

not planar: $\quad K_{5}, K_{3,3}$
not linkless: $\quad K_{6}, K_{3,3,1}$
not 4-flat: $\quad K_{7}, K_{3,3,1,1}$

Forbidden minors

not planar: $\quad K_{5}, K_{3,3}+\Delta Y / Y \Delta$-trafos
not linkless: $\quad K_{6}, K_{3,3,1}+\Delta Y / Y \Delta$-trafos $\quad \rightarrow 7$ graphs
not 4-flat: $\quad K_{7}, K_{3,3,1,1}$

Forbidden minors

not planar: $\quad K_{5}, K_{3,3}+\Delta Y / Y \Delta$-trafos
not linkless: $\quad K_{6}, K_{3,3,1}+\Delta Y / Y \Delta$-trafos $\quad \rightarrow 7$ graphs
not 4-flat: $\quad K_{7}, K_{3,3,1,1}+\Delta Y / Y \Delta$-trafos $\rightarrow 76$ graphs (Heawood graphs)

InTRINSICALLY LINKED GRAPHS

The K_{7} Family

The $K_{3,3,1,1}$ FAMILY

The Heawood graphs

K_{7}

$K_{3,3,1,1}$

Heawood graph

Conjecture.

(i) all Heawood graphs are forbidden minors.
(ii) there are no other forbidden minors.

Colin de Verdière graph invariant μ

- $\mu \leq 0 \Longleftrightarrow$ no edges
- $\mu \leq 1 \Longleftrightarrow$ forest
- $\mu \leq 2 \Longleftrightarrow$ outer-planar
- $\mu \leq 3 \Longleftrightarrow$ planar
- $\mu \leq 4 \Longleftrightarrow$ linkless
- $\mu \leq 5 \stackrel{?}{\Longleftrightarrow}$ 4-flat \leftarrow conjectured by van der Holst

Cones over linkless graphs have $\mu \leq 5$. Heawood graphs have $\mu=6$.

VAN DER HOLST's CONJECTURES

Conjecture.

4-flat graphs are characterized as graphs without Heawood minors.

Conjecture.

4-flat graphs are characterized by $\mu \leq 5$.

Conjecture.

4-flat graphs are closed under ...
(i) doubling edges
(ii) $\Delta Y / Y \Delta$-transformations

VAN DER HOLST's CONJECTURES

Conjecture.

4-flat graphs are characterized as graphs without Heawood minors.
Conjecture.
4-flat graphs are characterized by $\mu \leq 5$.
Conjecture.
4-flat graphs are closed under ...
(i) doubling edges
(ii) $\Delta Y / Y \Delta$-transformations

Operations on 2-complexes

Doubling edges preserves 4-FLAT

Doubling edges preserves 4-FLAT

Cloning 2-CELLS

Given a 2-cell $c \subset C$.
Question: can we attach (and embed) another 2-cell with boundary ∂c ?

Cloning 2-CellS

Given a 2-cell $c \subset C$.
Question: can we attach (and embed) another 2-cell with boundary ∂c ?

Conjecture.

Cloning is not possible as depicted here (i.e. with preserving the original 2-cell).

Operations on 2-complexes
TRY CLONING THIS ...

TRY cloning This ...

Lemma.

We can clone 2-cells, but we might need to modify the embedding of the original 2-cell.

Detaching Discs

Given a disc $D \subset C$ with $\partial D \subset C^{(1)}$.
Question: Can we attach (and embed) a 2-cell with boundary ∂D ?

Lemma.

Yes, if D contains no vertices of C in its interior.
"we can detach discs from edges"

ΔY-TRANSFORMS PRESERVE 4-FLAT

What about $Y \Delta$-TRANSFORMS?

It's complicated ...

What about $Y \Delta$-TRANSFORMS?

It's complicated ...

... because detaching from vertices is complicated.

Vertex links

Vertex links in \mathbb{R}^{4} live in a 3 -sphere and look more like this:

Linkless Links

SMALL LINKS CAN BE BAD AS WELL ...

Some complexes can force bad links, even at particular 3-vertices.
Question: But can this happen in 4-flat graphs?
... whether $Y \Delta$-transforms preserve 4-flat remains open!

4-FLAT GRAPHS WITH BAD LINKS

If there are 4 -flat graphs with bad 3-links, then there are more forbidden minors.

$Y \Delta$-TRANSFORMS FOR COMPLEXES

$Y \Delta$-TRANSFORMS DON'T PRESERVE EMBEDDABILITY

Let G be a graph with "unavoidable Borromean rings"

$Y \Delta$-TRANSFORMS DON'T PRESERVE EMBEDDABILITY

- Let G be a graph with "intrinsic Borromean rings"
- cone (as a graph) trice over G with apices x_{1}, x_{2}, x_{3}
- add a 3-vertex v adjacent to x_{1}, x_{2}, x_{3}
- cone (as a complex) over this graph
- for each cycle $C \subset G$, edge $e \subset C$ and pair $x_{i} \neq x_{j}$, attach a 2-cell along C but with a detour replacing $e=a b$ with the path $a x_{i} v x_{j} b$

$Y \Delta$-TRANSFORMS DON'T PRESERVE EMBEDDABILITY

Thank you.

Bonus round: Smooth vs. PL

PL-EMBEDDABLE, NOT SMOOTHLY EMBEDDABLE

cone over $K_{7}+$ attach a 2-cell to every Hamiltonian cycle of K_{7}

PL-EMBEDDABLE, NOT SMOOTHLY EMBEDDABLE

- this complex embeds in \mathbb{R}^{4}
- every embedding must look essentially as follows:
- K_{7} "flat" in some 3-hyperplane
- the cone is on one side of the hyperplane
- the Hamiltonian 2-cells are on the other side of the hyperplane
- K_{7} is intrinsically knotted: every 3-embedding contains a knotted cycle
- in fact, a knotted cycle with arf-invariant $\neq 0$
- such a knot is not smoothly slice, i.e. no smooth 2-disc with this knot at the boundary can be only on one side of \mathbb{R}^{3}.

Thank you.

