Kalai's 3^{d} conjecture for coordinate symmetric polytopes University of Warwick

KALAI'S 3^{d} CONJECTURE FOR COORDINATE SYMMETRIC POLYTOPES

Martin Winter
(joint work with Raman Sanyal)

University of Warwick
17. January, 2024

Convex polytopes

$$
P=\operatorname{conv}\left\{p_{1}, \ldots, p_{n}\right\} \subset \mathbb{R}^{d}, d \geq 1
$$

- general dimension $d \geq 1$
- general combinatorics (not simple/simplicial etc.)
- general geometry (not lattice, etc.)

Polyhedral combinatorics

f-vector $\ldots \boldsymbol{f}=\left(f_{-1}, f_{0}, f_{1}, \ldots, f_{d-2}, f_{d-1}, f_{d}\right)$

Polyhedral combinatorics

$(1,4,4,1)$
f-vector $\ldots \boldsymbol{f}=\left(f_{-1}, f_{0}, f_{1}, \ldots, f_{d-2}, f_{d-1}, f_{d}\right)$

Polyhedral combinatorics

$(1,4,4,1)$

$$
f \text {-vector } \ldots \boldsymbol{f}=\left(f_{-1}, f_{0}, f_{1}, \ldots, f_{d-2}, f_{d-1}, f_{d}\right)
$$

- Euler-Poincaré identity: $f_{-1}-f_{0}+f_{1}-\cdots+(-1)^{d+1} f_{d}=0$
- Dehn-Sommerville equations: (for simplicial polytopes)

$$
\sum_{j=k}^{d-1}(-1)^{j}\binom{j+1}{k+1} f_{j}=(-1)^{d-1} f_{k}, \quad \text { for } k \in\{-1, \ldots, d-2\}
$$

- lower bound theorem / upper bound theorem / g-theorem

Centrally symmetric polytopes

centrally symmetric $: \Longleftrightarrow P=-P$

KALAI'S 3^{d} CONJECTURE

Counting faces

$s(P):=\mathcal{X}_{1}+f_{0}+f_{1}+\cdots+f_{d-1}+f_{d}=\#$ non-empty faces

Counting faces

$$
s(P):=\mathcal{X}_{\wedge}+f_{0}+f_{1}+\cdots+f_{d-1}+f_{d}=\text { \#non-empty faces }
$$

Example: d-cube := $[-1,1]^{d}, d \geq 0$

Counting faces

$$
s(P):=\mathcal{X}_{\wedge}+f_{0}+f_{1}+\cdots+f_{d-1}+f_{d}=\text { \#non-empty faces }
$$

Example: d-cube :=[-1,1] ${ }^{d}, d \geq 0$

Counting faces

$$
s(P):=\mathcal{X}_{\wedge}+f_{0}+f_{1}+\cdots+f_{d-1}+f_{d}=\text { \#non-empty faces }
$$

Example: d-cube :=[-1,1] ${ }^{d}, d \geq 0$

Counting faces

$$
s(P):=\mathcal{X}_{\wedge}+f_{0}+f_{1}+\cdots+f_{d-1}+f_{d}=\text { \#non-empty faces }
$$

Example: d-cube :=[-1,1] ${ }^{d}, d \geq 0$

Counting faces

$$
s(P):=\mathcal{X}_{1}+f_{0}+f_{1}+\cdots+f_{d-1}+f_{d}=\text { \#non-empty faces }
$$

Example: d-cube :=[-1,1] ${ }^{d}, d \geq 0$

Kalai's 3^{d} CONJECtURE

$$
s(P):=\mathcal{X}_{1}+f_{0}+f_{1}+\cdots+f_{d-1}+f_{d}=\text { \#non-empty faces }
$$

Conjecture. (3^{d} conjecture, Kalai, 1989)
For every centrally symmetric d-polytope $P \subset \mathbb{R}^{d}$ holds

$$
s(P) \geq s(d \text {-cube })=3^{d} .
$$

Kalai's 3^{d} CONJECtURE

$$
s(P):=\mathcal{X}_{1}+f_{0}+f_{1}+\cdots+f_{d-1}+f_{d}=\text { \#non-empty faces }
$$

Conjecture. (3^{d} conjecture, Kalai, 1989)
For every centrally symmetric d-polytope $P \subset \mathbb{R}^{d}$ holds

$$
\text { measures "roundness" } \longrightarrow s(P) \geq s(d \text {-cube })=3^{d} \text {. }
$$

KALAI'S 3^{d} CONJECTURE

$$
s(P):=\mathcal{X}_{1}+f_{0}+f_{1}+\cdots+f_{d-1}+f_{d}=\text { \#non-empty faces }
$$

Conjecture. (3^{d} conjecture, Kalai, 1989)
For every centrally symmetric d-polytope $P \subset \mathbb{R}^{d}$ holds

$$
\text { measures "roundness" } \longrightarrow s(P) \geq s(d \text {-cube })=3^{d} \text {. }
$$

But: cube is not the only minimizer! \rightarrow Hanner polytopes

KALAI'S 3^{d} CONJECTURE

$$
s(P):=\mathcal{X}_{1}+f_{0}+f_{1}+\cdots+f_{d-1}+f_{d}=\text { \#non-empty faces }
$$

Conjecture. (3^{d} conjecture, Kalai, 1989)

For every centrally symmetric d-polytope $P \subset \mathbb{R}^{d}$ holds

$$
\text { measures "roundness" } \longrightarrow s(P) \geq s(d \text {-cube })=3^{d} \text {. }
$$

But: cube is not the only minimizer! \rightarrow Hanner polytopes

What is known ... ?

- dimension $d \leq 3 \checkmark$ easy
- dimension $d=4 \checkmark$ not so easy (2007)
- simple/simplicial polytopes \checkmark needs a lot of algebra
- without requiring central symmetry \checkmark easy $\rightarrow s(d$-simplex $)=2^{d}-1$

Hanner polytopes

Hanner polytopes are defined recursively:
(i) start from a line segment.
(ii) recursively apply Cartesian products (\times) and sums ($*$)

$$
\begin{aligned}
& \mid \times-=\square \\
& \mid *-
\end{aligned}
$$

Hanner polytopes

\#Hanner polytopes for $d \geq 1=1,1,2,4,8,18,40,94,224,548, \ldots$

Hanner polytopes

\#Hanner polytopes for $d \geq 1=1,1,2,4,8,18,40,94,224,548, \ldots$

Note: Hanner polytopes do not minimize face numbers per dimension.

NAIVE APPROACH

Idea: induction by dimension

- slice your cs d-polytope P by a central hyperplane
\rightarrow this yields a cs $(d-1)$-polytope P^{\prime}
$\rightarrow P^{\prime}$ has 3^{d-1} faces by induction hypothesis
- somehow find three times as many faces in P

KALAI'S 3^{d} CONJECTURE

$$
s(P):=\mathcal{X}_{1}+f_{0}+f_{1}+\cdots+f_{d-1}+f_{d}=\text { \#non-empty faces }
$$

Conjecture. (3^{d} conjecture, Kalai, 1989)

For every centrally symmetric d-polytope $P \subset \mathbb{R}^{d}$ holds

$$
\text { measures "roundness" } \longrightarrow s(P) \geq s(d \text {-cube })=3^{d} \text {. }
$$

But: cube is not the only minimizer! \rightarrow Hanner polytopes
What is known ... ?

- dimension $d \leq 3 \checkmark$ easy
- dimension $d=4 \checkmark$ not so easy (2007)
- simple/simplicial polytopes \checkmark needs a lot of algebra
- without requiring central symmetry \checkmark easy $\rightarrow s(d$-simplex $)=2^{d}-1$

Mahler's Conjecture

$$
\text { Mahler volume } \ldots M(P):=\operatorname{vol}(P) \cdot \operatorname{vol}\left(P^{\circ}\right)
$$

Conjecture. (3^{d} conjecture, Mahler, 1939)

For every centrally symmetric d-polytope $P \subset \mathbb{R}^{d}$ holds

$$
\text { measures "roundness" } \longrightarrow M(P) \geq M(d \text {-cube })=\frac{4^{d}}{d!} .
$$

But: cube is not the only minimizer! \rightarrow Hanner polytopes

What is known ... ?

- dimension $d \leq 3 \checkmark$ not so easy ($d=2$: 1939, $d=3: 2020$)
- dimension $d=4$? out of reach
- cube is a local minimizer \checkmark (2010)
- without requiring central symmetry ? open $\rightarrow M(d$-simplex $)=\frac{(d+1)^{d+1}}{(d!)^{2}}$

Polar duality and Mahler volume

Mahler volume $\ldots M(P):=\operatorname{vol}(P) \cdot \operatorname{vol}\left(P^{\circ}\right)$.
polar dual $\ldots P^{\circ}:=\left\{x \in \mathbb{R}^{d} \mid\langle x, y\rangle \leq 1\right.$ for all $\left.y \in P\right\}$

Examples: | line segment | 1 | | |
| ---: | :--- | :---: | :---: |
| n-gon | $\longleftrightarrow n$-gon (but rotated) | | |
| cube | \longleftrightarrow octahedron | | |
| d-cube | $\longleftrightarrow d$-crosspolytope | | |
| Hanner polytope | \longleftrightarrow (other) Hanner polytope | | |

Polar duality and Mahler volume

Mahler volume $\ldots M(P):=\operatorname{vol}(P) \cdot \operatorname{vol}\left(P^{\circ}\right)$.
polar dual $\ldots P^{\circ}:=\left\{x \in \mathbb{R}^{d} \mid\langle x, y\rangle \leq 1\right.$ for all $\left.y \in P\right\}$

Examples: | line segment | 1 | | |
| ---: | :--- | :---: | :---: |
| n-gon | $\longleftrightarrow n$-gon (but rotated) | | |
| cube | \longleftrightarrow octahedron | | |
| d-cube | $\longleftrightarrow d$-crosspolytope | | |
| Hanner polytope | \longleftrightarrow (other) Hanner polytope | | |

$$
M(d \text {-cube }) \stackrel{?}{\leq} M(P) \leq M(d \text {-ball }) \quad(\text { Blaschike, Santaló })
$$

(Locally)
 Coordinate symmetric POLYTOPES

Coordinate symmetric polytopes

coordinate symmetric $: \Longleftrightarrow$ symmetric w.r.t. all coordinate hyperplanes

Theorem. (Sanyal, W.; 2023+)
Kalai's conjecture holds for coordinate symmetric polytopes. + minimizers

Coordinate symmetric polytopes

coordinate symmetric $: \Longleftrightarrow$

symmetric w.r.t. all coordinate hyperplanes

Theorem. (Sanyal, W.; 2023+)
Kalai's conjecture holds for coordinate symmetric polytopes. + minimizers
Theorem. (Saint-Raymond, 1980; Reisner, 1987)
Mahler's conjecture holds for coordinate symmetric polytopes. + minimizers

LOCALLY COORDINATE SYMMETRIC POLYTOPES

$=$ LOCALLY ANTI-BLOCKING POLYTOPES

All discussed results hold more generally ...

locally coordinate symmetric
$: \Longleftrightarrow$ "looks" coordinate symmetric in every orthant

LOCALLY COORDINATE SYMMETRIC POLYTOPES

$=$ LOCALLY ANTI-BLOCKING POLYTOPES

All discussed results hold more generally ...

locally coordinate symmetric
$: \Longleftrightarrow$ "looks" coordinate symmetric in every orthant
Surprise: minimizers are still coordinate symmetric for Kalai's conjecture!

But note ...

"(locally) coordinate symmetric" is a geometric notion BUT $s(P) \leq 3^{d}$ is a combinatorial notion

But note ...

"(locally) coordinate symmetric" is a geometric notion BUT

$$
s(P) \leq 3^{d} \text { is a combinatorial notion }
$$

Challenges:

- Find a polytope that is provably not combinatorially equivalent to a locally coordinate-symmetric polytope.

But note ...

"(locally) coordinate symmetric" is a geometric notion BUT

$$
s(P) \leq 3^{d} \text { is a combinatorial notion }
$$

Challenges:

- Find a polytope that is provably not combinatorially equivalent to a locally coordinate-symmetric polytope.
- Find many of them.

But note ...

"(locally) coordinate symmetric" is a geometric notion BUT

$$
s(P) \leq 3^{d} \text { is a combinatorial notion }
$$

Challenges:

- Find a polytope that is provably not combinatorially equivalent to a locally coordinate-symmetric polytope.
- Find many of them.
- Find many with few faces.

WE HAVE TWO PROOFS

Proof I:

- mostly combinatorial
- makes the naive approach work \rightarrow uses induction
- counts faces in a clever way

Proof II:

- almost entirely geometric
- reminds of the original proof for Mahler for coordinate symmetric !
- no induction !!
- we used it to classify minimizers

The face lattice

$\mathcal{F}(P):=\{$ faces of P ordered by inclusion $\}$

THE FACE LATTICE

Meet, join, intervals, ...

- $\sigma \wedge \tau:=$ largest face that contained in σ and $\tau=\sigma \cap \tau$
- $\sigma \vee \tau$:= smallest face that contains σ and τ
- $[\sigma, \tau]:=$ faces that are contained in τ and contain σ

Properties:

- $\mathcal{F}\left(P^{\circ}\right)$ is "upside down" $\mathcal{F}(P)$
- face lattices are complemented: for $\sigma \in \mathcal{F}(P)$ exists $\tau \in \mathcal{F}(P)$ s.t.

$$
\sigma \wedge \tau=\varnothing \quad \text { and } \quad \sigma \vee \tau=P
$$

- intervals in face lattices are face lattice

KALAI FOR COORDINATE SYMMETRIC POLYTOPES (I)

$$
s(P):=\mathcal{X}_{1}+f_{0}+f_{1}+\cdots+f_{d-1}+f_{d}=\text { \#non-empty faces }
$$

Theorem. (Sanyal, W.; 2023+)
For every coordinate symmetric d-polytope $P \subset \mathbb{R}^{d}$ holds

$$
s(P) \geq s(d \text {-cube })=3^{d} .
$$

Kalai for coordinate symmetric polytopes (I)

$S_{+}:=\{$faces of P that intersect σ but not $-\sigma\}$
$S_{0}:=\{$ faces of P that intersect both or neither of $\pm \sigma\}$
$S_{-}:=\{$faces of P that intersect $-\sigma$ but not $\sigma\}$

Kalai for coordinate symmetric polytopes (I)

$S_{+}:=\{$faces of P that intersect σ but not $-\sigma\}$
$S_{0}:=\{$ faces of P that intersect both or neither of $\pm \sigma\}$
$S_{-}:=\{$faces of P that intersect $-\sigma$ but not $\sigma\}$

Kalai for coordinate symmetric polytopes (I)

$S_{+}:=\{$faces of P that intersect σ but not $-\sigma\}$
$S_{0}:=\{$ faces of P that intersect both or neither of $\pm \sigma\}$
$S_{-}:=\{$faces of P that intersect $-\sigma$ but not $\sigma\}$

$$
\left|S_{0}\right|=s(P \cap H) \stackrel{\mathrm{IH}}{\geq} 3^{d-1}
$$

Kalai for coordinate symmetric polytopes (I)

$S_{+}:=\{$faces of P that intersect σ but not $-\sigma\}$
$S_{0}:=\{$ faces of P that intersect both or neither of $\pm \sigma\}$
$S_{-}:=\{$faces of P that intersect $-\sigma$ but not $\sigma\}$

$$
\begin{aligned}
\left|S_{0}\right| & =s(P \cap H) \geq 3^{d-1} \\
\left|S_{+}\right| & \geq|\{\operatorname{compl}(\sigma ;[\check{\sigma}, \hat{\sigma}]) \mid \varnothing \subset \check{\sigma} \subseteq \sigma \subseteq \hat{\sigma} \subset P\}| \\
& =s((\varnothing, \sigma]) \cdot s([\sigma, P))=s(\sigma) \cdot s\left(\sigma^{\diamond}\right) \geq 3^{\mathrm{IH}(\sigma)} \cdot 3^{d-1-\operatorname{dim}(\sigma)}=3^{d-1}
\end{aligned}
$$

Kalai for coordinate symmetric polytopes (II)

$$
s \in \underbrace{\{-, 0,+\}^{d}}_{\#=3^{d}}, \quad s \text {-orthant } \ldots \mathbb{R}_{s}^{d}:=\left\{x \in \mathbb{R}^{d} \mid \operatorname{sign}(x)=s\right\}
$$

1. identify one special point per orthant $=$ maximum of $s_{1} \log \left(x_{1}\right)+\cdots+s_{d} \log \left(x_{d}\right)$ in $P \cap \mathbb{R}_{s}^{d}$
2. show: a face contains at most one special point

Classification of minimizers

If P has $s(P)=3^{d}$ then define

$$
G(P):=\left\{\begin{array}{l}
\{1, \ldots, d\} \\
i \sim j \Longleftrightarrow P \cap\left\{x_{i}, x_{j}=0\right\} \text { is an axis-aligned rectangle }
\end{array}\right.
$$

$G(P)$ does not contain a path of length three.
\Longrightarrow such graphs are cographs. (graph analogues of Hanner polytopes)
One can reconstruct P from $G(P)$:

$$
P(G)=\operatorname{conv}\left\{\sum_{i \in I} \pm e_{i} \mid I \subseteq\{1, \ldots, d\} \text { where } G[I] \text { is a complete graph }\right\} .
$$

If G is a cograph, then $P(G)$ is a Hanner polytope.

Kalai's flag conjecture

$$
S(P):=\text { \#flags of } P
$$

Conjecture.

For every centrally symmetric d-polytope $P \subset \mathbb{R}^{d}$ holds

$$
S(P) \geq S(d \text {-cube })=d!2^{d} .
$$

Thank you.

R. Sanyal, M. Winter. (arXiv:2308.02909)
"Kalai's 3^{d}-conjecture for unconditional and locally anti-blocking polytopes".

MAHLER FOR COORDINATE SYMMETRIC POLYTOPES

Mahler volume $\ldots M(P):=\operatorname{vol}(P) \cdot \operatorname{vol}\left(P^{\circ}\right)$. polar dual $\ldots P^{\circ}:=\left\{x \in \mathbb{R}^{d} \mid\langle x, y\rangle \leq 1\right.$ for all $\left.y \in P\right\}$

Theorem. (Saint-Raymond, 1980; Reisner, 1987)
For every coordinate symmetric d-polytope $P \subset \mathbb{R}^{d}$ holds

$$
M(P) \geq M(d \text {-cube })=\frac{4^{d}}{d!} .
$$

$$
\operatorname{vol}(P)=2^{d} \operatorname{vol}\left(P^{+}\right)
$$

