

Kalai's 3^d conjecture for coordinate symmetric polytopes

Martin Winter (joint work with Raman Sanyal)

University of Warwick

17. January, 2024

CONVEX POLYTOPES

$P = \operatorname{conv}\{p_1, ..., p_n\} \subset \mathbb{R}^d, \ d \ge 1$

- general dimension $d \ge 1$
- general combinatorics (not simple/simplicial etc.)
- general geometry (not lattice, etc.)

f-vector ... $f = (f_{-1}, f_0, f_1, ..., f_{d-2}, f_{d-1}, f_d)$

f-vector ... $f = (f_{-1}, f_0, f_1, ..., f_{d-2}, f_{d-1}, f_d)$

POLYHEDRAL COMBINATORICS

f-vector ...
$$f = (f_{-1}, f_0, f_1, ..., f_{d-2}, f_{d-1}, f_d)$$

- Euler-Poincaré identity: $f_{-1} f_0 + f_1 \dots + (-1)^{d+1} f_d = 0$
- Dehn-Sommerville equations: (for simplicial polytopes)

$$\sum_{j=k}^{d-1} (-1)^j \binom{j+1}{k+1} f_j = (-1)^{d-1} f_k, \quad \text{for } k \in \{-1, ..., d-2\}$$

Iower bound theorem / upper bound theorem / g-theorem

CENTRALLY SYMMETRIC POLYTOPES

KALAI'S 3^d CONJECTURE

$$s(P) := f_{-1} + f_0 + f_1 + \dots + f_{d-1} + f_d = #\underline{non}$$
-empty faces

$$s(P) := f_{-1} + f_0 + f_1 + \dots + f_{d-1} + f_d = #\underline{non}$$
-empty faces

 $s(P) := f_{-1} + f_0 + f_1 + \dots + f_{d-1} + f_d = #\underline{non}$ -empty faces

 $s(P) := \mathcal{T}_{1} + f_0 + f_1 + \dots + f_{d-1} + f_d = \#\underline{non}$ -empty faces

 $s(P) := \mathcal{T}_{1} + f_0 + f_1 + \dots + f_{d-1} + f_d = \#\underline{non}$ -empty faces

 $s(P) := \mathcal{T}_{1} + f_0 + f_1 + \dots + f_{d-1} + f_d = \#\underline{non}$ -empty faces

 $s(P) := \mathcal{T}_{\neg \neg \downarrow} + f_0 + f_1 + \dots + f_{d-1} + f_d = #\underline{non}$ -empty faces

Conjecture. (3^d conjecture, KALAI, 1989)

For every centrally symmetric $d\text{-polytope}\ P\subset \mathbb{R}^d$ holds

$$s(P) \ge s(d\text{-cube}) = 3^d.$$

 $s(P) := \mathcal{T}_{\neg \neg \downarrow} + f_0 + f_1 + \dots + f_{d-1} + f_d = #\underline{non}$ -empty faces

Conjecture. (3^d conjecture, KALAI, 1989)

For every centrally symmetric $d\text{-polytope}\ P\subset \mathbb{R}^d$ holds

measures "roundness" $\longrightarrow s(P) \ge s(d\text{-cube}) = 3^d$.

 $s(P) := \mathcal{T}_{\neg \neg \downarrow} + f_0 + f_1 + \dots + f_{d-1} + f_d = #\underline{non}$ -empty faces

Conjecture. (3^d conjecture, KALAI, 1989)

For every centrally symmetric $d\text{-polytope}\ P\subset \mathbb{R}^d$ holds

measures "roundness" $\longrightarrow s(P) \ge s(d\text{-cube}) = 3^d$.

But: cube is not the only minimizer! \rightarrow Hanner polytopes

 $s(P) := \mathcal{T}_{h_1} + f_0 + f_1 + \dots + f_{d-1} + f_d = \#\underline{non}$ -empty faces

Conjecture. (3^d conjecture, KALAI, 1989)

For every centrally symmetric $d\text{-polytope}\ P\subset \mathbb{R}^d$ holds

measures "roundness" $\longrightarrow s(P) \ge s(d\text{-cube}) = 3^d$.

But: cube is not the only minimizer! \rightarrow Hanner polytopes

What is known ... ?

- dimension $d \leq 3$ 🗸 easy
- dimension $d = 4 \checkmark$ not so easy (2007)
- ▶ simple/simplicial polytopes ✓ needs a lot of algebra
- without requiring central symmetry \checkmark easy $\rightarrow s(d\text{-simplex}) = 2^d 1$

HANNER POLYTOPES

Hanner polytopes are defined recursively:

- (i) start from a line segment.
- (ii) recursively apply Cartesian products (\times) and sums (*)

HANNER POLYTOPES

#Hanner polytopes for $d \ge 1 = 1, 1, 2, 4, 8, 18, 40, 94, 224, 548, \dots$

HANNER POLYTOPES

#Hanner polytopes for $d \ge 1 = 1, 1, 2, 4, 8, 18, 40, 94, 224, 548, \dots$

Note: Hanner polytopes do not minimize face numbers per dimension.

NAIVE APPROACH

Idea: induction by dimension

• slice your cs d-polytope P by a central hyperplane

- \rightarrow this yields a cs $(d-1)\text{-polytope}\ P'$
- $\rightarrow P'$ has 3^{d-1} faces by induction hypothesis

somehow find three times as many faces in P

 $s(P) := \mathcal{T}_{h_1} + f_0 + f_1 + \dots + f_{d-1} + f_d = \#\underline{non}$ -empty faces

Conjecture. (3^d conjecture, KALAI, 1989)

For every centrally symmetric $d\text{-polytope}\ P\subset \mathbb{R}^d$ holds

measures "roundness" $\longrightarrow s(P) \ge s(d\text{-cube}) = 3^d$.

But: cube is not the only minimizer! \rightarrow Hanner polytopes

What is known ... ?

- dimension $d \leq 3$ 🗸 easy
- dimension $d = 4 \checkmark$ not so easy (2007)
- ▶ simple/simplicial polytopes ✓ needs a lot of algebra
- without requiring central symmetry \checkmark easy $\rightarrow s(d\text{-simplex}) = 2^d 1$

MAHLER'S CONJECTURE

Mahler volume ...
$$M(P) := \operatorname{vol}(P) \cdot \operatorname{vol}(P^{\circ})$$

Conjecture. (3^{*d*} conjecture, MAHLER, 1939)

For every centrally symmetric *d*-polytope $P \subset \mathbb{R}^d$ holds

measures "roundness"
$$\longrightarrow M(P) \ge M(d\text{-cube}) = \frac{4^d}{d!}$$
.

But: cube is not the only minimizer! \rightarrow Hanner polytopes What is known ... ?

- ▶ dimension $d \leq 3$ ✓ not so easy (d = 2: 1939, d = 3: 2020)
- dimension d = 4 ? out of reach
- cube is a local minimizer \checkmark (2010)
- without requiring central symmetry ? open $\rightarrow M(d\text{-simplex}) = \frac{(d+1)^{d+1}}{(d!)^2}$

Mahler volume ... $M(P) := vol(P) \cdot vol(P^{\circ}).$

polar dual ...
$$P^{\circ} := \{ x \in \mathbb{R}^d \mid \langle x, y \rangle \leq 1 \text{ for all } y \in P \}$$
Examples:line segment \longleftrightarrow line segment
 n -gon \longleftrightarrow n-gon (but rotated)
cube \longleftrightarrow octahedron
d-cube \longleftrightarrow d-crosspolytope
Hanner polytope \longleftrightarrow (other) Hanner polytope

Mahler volume ... $M(P) := \operatorname{vol}(P) \cdot \operatorname{vol}(P^{\circ}).$

polar dual ...
$$P^{\circ} := \{ x \in \mathbb{R}^d \mid \langle x, y \rangle \leq 1 \text{ for all } y \in P \}$$
Examples:line segment \longleftrightarrow line segment
 n -gon \longleftrightarrow n-gon (but rotated)
cube \longleftrightarrow octahedron
d-cube \longleftrightarrow d-crosspolytope
Hanner polytope \longleftrightarrow (other) Hanner polytope

 $M(d ext{-cube}) \stackrel{?}{\leq} M(P) \leq M(d ext{-ball})$ (Blaschke, Santaló)

University of Warwick · Martin Winter (joint work with Raman Sanyal)

(Locally) Coordinate symmetric polytopes

COORDINATE SYMMETRIC POLYTOPES

= UNCONDITIONAL POLYTOPES

coordinate symmetric : \iff symmetric w.r.t. all coordinate hyperplanes

Theorem. (SANYAL, W.; 2023+)

Kalai's conjecture holds for coordinate symmetric polytopes. + minimizers

COORDINATE SYMMETRIC POLYTOPES

= UNCONDITIONAL POLYTOPES

coordinate symmetric : \iff symmetric w.r.t. all coordinate hyperplanes

Theorem. (SANYAL, W.; 2023+)

Kalai's conjecture holds for coordinate symmetric polytopes. + minimizers

Theorem. (SAINT-RAYMOND, 1980; REISNER, 1987)

Mahler's conjecture holds for coordinate symmetric polytopes. + minimizers

LOCALLY COORDINATE SYMMETRIC POLYTOPES = LOCALLY ANTI-BLOCKING POLYTOPES

All discussed results hold more generally ...

locally coordinate symmetric

: \iff "looks" coordinate symmetric in every orthant

LOCALLY COORDINATE SYMMETRIC POLYTOPES = LOCALLY ANTI-BLOCKING POLYTOPES

All discussed results hold more generally ...

locally coordinate symmetric

: \iff "looks" coordinate symmetric in every orthant

Surprise: minimizers are still coordinate symmetric for Kalai's conjecture!

"(locally) coordinate symmetric" is a geometric notion ${\rm BUT}$ $s(P) \leq 3^d \mbox{ is a combinatorial notion}$

"(locally) coordinate symmetric" is a geometric notion ${\rm BUT}$ $s(P) \leq 3^d \mbox{ is a combinatorial notion}$

Challenges:

Find a polytope that is *provably* <u>not</u> combinatorially equivalent to a locally coordinate-symmetric polytope.

"(locally) coordinate symmetric" is a geometric notion ${\rm BUT}$ $s(P) \leq 3^d \mbox{ is a combinatorial notion}$

Challenges:

- Find a polytope that is *provably* <u>not</u> combinatorially equivalent to a locally coordinate-symmetric polytope.
- Find many of them.

"(locally) coordinate symmetric" is a geometric notion ${\rm BUT}$ $s(P) \leq 3^d \mbox{ is a combinatorial notion}$

Challenges:

- Find a polytope that is *provably* <u>not</u> combinatorially equivalent to a locally coordinate-symmetric polytope.
- Find many of them.
- Find many with few faces.

WE HAVE TWO PROOFS

Proof I:

- mostly combinatorial
- \blacktriangleright makes the naive approach work \rightarrow uses induction
- counts faces in a clever way

Proof II:

- almost entirely geometric
- reminds of the original proof for Mahler for coordinate symmetric !
- no induction !!
- we used it to classify minimizers

THE FACE LATTICE

$$\mathcal{F}(P) := \{ \text{ faces of } P \text{ ordered by inclusion} \}$$

The face lattice

Meet, join, intervals, ...

- $\sigma \wedge \tau :=$ largest face that contained in σ and $\tau = \sigma \cap \tau$
- $\sigma \lor \tau :=$ smallest face that contains σ and τ
- $\blacktriangleright~[\sigma,\tau]:=$ faces that are contained in τ and contain σ

Properties:

- $\mathcal{F}(P^{\circ})$ is "upside down" $\mathcal{F}(P)$
- face lattices are **complemented**: for $\sigma \in \mathcal{F}(P)$ exists $\tau \in \mathcal{F}(P)$ s.t.

$$\sigma \wedge \tau = \varnothing$$
 and $\sigma \vee \tau = P$.

intervals in face lattices are face lattice

 $s(P) := f_{-1} + f_0 + f_1 + \dots + f_{d-1} + f_d = #\underline{non}$ -empty faces

Theorem. (SANYAL, W.; 2023+)

For every coordinate symmetric $d\text{-polytope}\ P\subset \mathbb{R}^d$ holds

 $s(P) \ge s(d\text{-cube}) = 3^d.$

$$\begin{split} S_+ &:= \{ \text{faces of } P \text{ that intersect } \sigma \text{ but not } -\sigma \} \\ S_0 &:= \{ \text{faces of } P \text{ that intersect both or neither of } \pm \sigma \} \\ S_- &:= \{ \text{faces of } P \text{ that intersect } -\sigma \text{ but not } \sigma \} \end{split}$$

 $\begin{array}{l} S_+ := \{ \text{faces of } P \text{ that intersect } \sigma \text{ but not } -\sigma \} \\ S_0 := \{ \text{faces of } P \text{ that intersect both or neither of } \pm \sigma \} \\ S_- := \{ \text{faces of } P \text{ that intersect } -\sigma \text{ but not } \sigma \} \end{array} \right\} |S_\bullet| \ge 3^{d-1}$

 $\begin{array}{l} S_{+} := \{ \text{faces of } P \text{ that intersect } \sigma \text{ but not } -\sigma \} \\ S_{0} := \{ \text{faces of } P \text{ that intersect both or neither of } \pm \sigma \} \\ S_{-} := \{ \text{faces of } P \text{ that intersect } -\sigma \text{ but not } \sigma \} \end{array} \right\} |S_{\bullet}| \geq 3^{d-1}$

$$|S_0| = s(P \cap H) \stackrel{\mathrm{IH}}{\geq} 3^{d-1}$$

$$\begin{split} S_{+} &:= \left\{ \text{faces of } P \text{ that intersect } \sigma \text{ but not } -\sigma \right\} \\ S_{0} &:= \left\{ \text{faces of } P \text{ that intersect both or neither of } \pm \sigma \right\} \\ S_{-} &:= \left\{ \text{faces of } P \text{ that intersect } -\sigma \text{ but not } \sigma \right\} \\ |S_{0}| &= s(P \cap H) \stackrel{\text{IH}}{\geq} 3^{d-1} \\ S_{+}| &\geq \left| \left\{ \text{compl}(\sigma; [\check{\sigma}, \hat{\sigma}]) \mid \varnothing \subset \check{\sigma} \subseteq \sigma \subseteq \hat{\sigma} \subset P \right\} \right| \end{split}$$

$$= s((\varnothing, \sigma]) \cdot s([\sigma, P)) = s(\sigma) \cdot s(\sigma^{\diamond}) \stackrel{\text{\tiny IH}}{\geq} 3^{\dim(\sigma)} \cdot 3^{d-1-\dim(\sigma)} = 3^{d-1}$$

$$s \in \underbrace{\{-,0,+\}^d}_{\#=3^d}, \quad s\text{-orthant} \dots \mathbb{R}^d_s := \{x \in \mathbb{R}^d \mid \operatorname{sign}(x) = s\}$$

$$1.$$
 identify one $\ensuremath{\textit{special point}}$ per orthant

- = maximum of $s_1 \log(x_1) + \dots + s_d \log(x_d)$ in $P \cap \mathbb{R}^d_s$
- 2. **show:** a face contains at most one special point

CLASSIFICATION OF MINIMIZERS

If P has $\boldsymbol{s}(P)=3^d$ then define

$$G(P) := \begin{cases} \{1, ..., d\} \\ i \sim j \iff P \cap \{x_i, x_j = 0\} \text{ is an axis-aligned rectangle} \end{cases}$$

G(P) does not contain a path of length three.

 \implies such graphs are *cographs*. (graph analogues of Hanner polytopes) One can reconstruct P from G(P):

$$P(G) = \operatorname{conv} \Big\{ \sum_{i \in I} \pm e_i \ \Big| \ I \subseteq \{1, ..., d\} \text{ where } G[I] \text{ is a complete graph} \Big\}.$$

If G is a cograph, then P(G) is a Hanner polytope.

KALAI'S FLAG CONJECTURE

$$S(P) := \#$$
flags of P

Conjecture.

For every centrally symmetric $d\text{-polytope}\ P\subset \mathbb{R}^d$ holds

 $S(P) \geq S(d\text{-cube}) = d! \, 2^d.$

Thank you.

R. Sanyal, M. Winter. (arXiv:2308.02909) "Kalai's 3^d -conjecture for unconditional and locally anti-blocking polytopes".

MAHLER FOR COORDINATE SYMMETRIC POLYTOPES

Mahler volume ... $M(P) := \operatorname{vol}(P) \cdot \operatorname{vol}(P^{\circ}).$

polar dual ...
$$P^{\circ} := \{ x \in \mathbb{R}^d \mid \langle x, y \rangle \le 1 \text{ for all } y \in P \}$$

Theorem. (SAINT-RAYMOND, 1980; REISNER, 1987)

For every coordinate symmetric $d\text{-polytope}\ P\subset \mathbb{R}^d$ holds

$$M(P) \ge M(d\text{-cube}) = \frac{4^{a}}{d!}.$$

$$\operatorname{vol}(P) = 2^d \operatorname{vol}(P^+)$$