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The setting

Polytope theory

P = conv{p1, ..., pn} ⊂ Rd GP = (V,E)

“skeleton” “edge-graph”
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The setting

What data does the edge-graph contain?

Can you reconstruct ...

I geometry? ... No! square vs. rectangle

I combinatorial type? ... No! complete graphs, cube graphs, ...

I dimension? ... No!

Reconstruction possible in special cases: 3-dimensional, simple, zonotopes, ...

University of Warwick · Martin Winter 2 / 14



The setting

What data does the edge-graph contain?

Can you reconstruct ...

I geometry? ... No! square vs. rectangle

I combinatorial type? ... No! complete graphs, cube graphs, ...

I dimension? ... No!

Reconstruction possible in special cases: 3-dimensional, simple, zonotopes, ...

University of Warwick · Martin Winter 2 / 14



The setting

What data does the edge-graph contain?

Can you reconstruct ...

I geometry? ... No! square vs. rectangle

I combinatorial type? ... No! complete graphs, cube graphs, ...

I dimension? ... No!

Reconstruction possible in special cases: 3-dimensional, simple, zonotopes, ...

University of Warwick · Martin Winter 2 / 14



The setting

What data does the edge-graph contain?

Can you reconstruct ...

I geometry? ... No! square vs. rectangle

I combinatorial type? ... No! complete graphs, cube graphs, ...

I dimension? ... No!

Reconstruction possible in special cases: 3-dimensional, simple, zonotopes, ...

University of Warwick · Martin Winter 2 / 14



The setting

What data does the edge-graph contain?

Can you reconstruct ...

I geometry? ... No! square vs. rectangle

I combinatorial type? ... No! complete graphs, cube graphs, ...

I dimension? ... No!

Reconstruction possible in special cases: 3-dimensional, simple, zonotopes, ...

University of Warwick · Martin Winter 2 / 14



The setting

Is it the right combinatorial framework?

Question: has the edge-graph enough structure to express information
about the polytope? ≈ using O(|G|) numbers

such as ...

I combinatorics

I geometry

I symmetry

Yes, in some cases

I simplicial + edge-graph + space of self-stesses
→ unique up to linear equivalence (Novik & Zheng, 2021)

Open: does edge-graph + edge-length determine combinatorics?
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The setting

Spectral graph theory

AP =



0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
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0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0
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0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
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The setting

A superficial example

Spec(GP ) = { θ1 > θ2 > · · · > θm }

r =
(
1− θ2

deg(G)

)−1/2
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The setting

A superficial example

Spec(GP ) = { 31,
√
53, 15, 04, (−2)4, (−

√
5)3 }

r =
(
1−
√
5

3

)−1/2
≈ 1.4012...
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The setting

The bias of the adjacency matrix

AP =



0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
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Izmestiev’s Theorem

Colin de Verdière embedding

“Polytope skeleta are spectral embeddings of the
edge-graph.”



Izmestiev’s Theorem

Colin de Verdière embedding

“Polytope skeleta are spectral embeddings of the
edge-graph.”



Izmestiev’s Theorem

Spectral embeddings
= “graph embeddings constructed from spectral data of generalized

adjacency matrices”

Definition.

A generalized adjacency matrix is a symmetric matrix M ∈ Rn×n with

i 6= j and ij 6∈ E =⇒ Mij = 0.

θ ∈ Spec(M) =⇒ u1, ..., ud ∈ Eigθ(M)

=⇒

 u1 · · · ud

∈ Rn×d

=

 p1
...
pn


︸ ︷︷ ︸

MXp= θXp

∈ Rn×d
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Izmestiev’s Theorem

Spectral embeddings

Spec(AP ) = { 31,
√
53, 15, 04, (−2)4, (−

√
5)3 }
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Izmestiev’s Theorem

Izmestiev’s Theorem

Theorem. (Izmestiev, 2007)

If P ⊂ Rd has 0 ∈ int(P ), then there exists a matrix M ∈ Rn×n with

(i) Mij > 0 whenever ij ∈ E,

(ii) Mij = 0 whenever i 6= j and ij 6∈ E,

(iii) dimker(M) = d,

(iv) MXp = 0, where X>p = (p1, ..., pn) ∈ Rd×n,

(v) M has a single positive eigenvalue of multiplicity 1.

M ... Izmestiev matrix = Alexandrov matrix of polar dual

Mij :=
∂2 vol(P ◦(c))

∂ci∂cj

∣∣∣∣∣
c=(1,...,1)

=
vol(e◦ij)

‖pi‖‖pj‖ sin^(pi, pj)
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Using Izmestiev’s
Theorem



Using Izmestiev’s Theorem

Application: capturing symmetries

Theorem. (W., 2021)

There always exists a coloring c : V ·∪ E → C so that Aut(Gc
P ) ' Aut(P ).

Conjecture.

One can color edges by edge-length and vertices by distance to symmetry center.
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Using Izmestiev’s Theorem

Application: metric reconstruction

Conjecture.

A polytope can be uniquely reconstructed (up to isometry) from its edge-graph
and its edge-length ...

Using spectral techniques we verified the conjecture for ...

I polytopes of a fixed combinatorial type

I centrally symmetric polytopes

I small perturbations
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Using Izmestiev’s Theorem

Application: metric reconstruction
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Using Izmestiev’s Theorem

Application: metric reconstruction

Theorem. (W., 2022+)

Given two combinatorially equivalent polytopes P ⊂ Rd, Q ⊂ Rd so that

I 0 ∈ int(Q),

I edges in Q are of the same length as in P , and

I vertex-point distances in Q are the same as in P ,

then P ' Q (i.e. P and Q are isometric).

“If edges get shorter then polytopes become smaller.”

Corollary.

The realization space of a polytope has dimension at most f0 + f1 − d− 1.
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Using Izmestiev’s Theorem

What else ...

Bounding the diameter of edge-graphs (Hirsch conjecture).

H. Narayanan, R. Shah, N. Srivastava (2022).
“A spectral approach to polytope diameter”

The Theorem of Izmestiev brings you half-way to solving ...

I a conjecture by Kalai (solved by Novik & Zheng, 2021)

I Stoker’s conjecture (solved by Wang & Xie, 2022)

I. Novik, H. Zheng (2021).
“Reconstructing simplicial polytopes from their graphs and affine 2-stresses”

J. Wang, Z. Xie (2022).
“On Gromov’s dihedral rigidity conjecture and Stoker’s conjecture”
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Thank you.

I I. Izmestiev (2007).
“The Colin de Verdière number and graphs of polytopes”.

I M. Winter (2020).
“Eigenpolytopes, spectral polytopes and edge-transitivity”.

I M. Winter (2022).
“Capturing polytopal symmetries by coloring the edge-graph”.

I M. Winter (2023).
“Rigidity, tensegrity and reconstruction of polytopes under metric

constraints”.
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