Using Izmestiev's Theorem

- A TOOL IN SPECTRAL POLYTOPE THEORY -

Martin Winter
University of Warwick

30. September, 2022

Polytope theory

$P=\operatorname{conv}\left\{p_{1}, \ldots, p_{n}\right\} \subset \mathbb{R}^{d}$

$G_{P}=(V, E)$
"edge-graph"

Polytope theory

$P=\operatorname{conv}\left\{p_{1}, \ldots, p_{n}\right\} \subset \mathbb{R}^{d}$
"skeleton"

$G_{P}=(V, E)$
"edge-graph"

What data does the edge-graph contain?

Can you reconstruct ...

- geometry?
- combinatorial type?
- dimension?

What data does the edge-graph contain?

Can you reconstruct ...

- geometry? ... No! square vs. rectangle
- combinatorial type?
- dimension?

What data does The edge-graph Contain?

Can you reconstruct ...

- geometry? ... No! square vs. rectangle
- combinatorial type? ... No! complete graphs, cube graphs, ...
- dimension?

What DATA DOES THE EDGE-GRAPH CONTAIN?

Can you reconstruct ...

- geometry? ... No! square vs. rectangle
- combinatorial type? ... No! complete graphs, cube graphs, ...
- dimension? ... No!

What data does The edge-graph Contain?

Can you reconstruct ...

- geometry? ... No! square vs. rectangle
- combinatorial type? ... No! complete graphs, cube graphs, ...
- dimension? ... No!

Reconstruction possible in special cases: 3-dimensional, simple, zonotopes, ...

Is it the right combinatorial framework?

Question: has the edge-graph enough structure to express information about the polytope? \approx using $O(|G|)$ numbers

Is it the right combinatorial framework?

Question: has the edge-graph enough structure to express information about the polytope? \approx using $O(|G|)$ numbers
such as ...

- combinatorics
- geometry
- symmetry

Is it the right combinatorial framework?

Question: has the edge-graph enough structure to express information about the polytope? \approx using $O(|G|)$ numbers
such as ...

- combinatorics
- geometry
- symmetry

Yes, in some cases

- simplicial + edge-graph + space of self-stesses
\rightarrow unique up to linear equivalence (Novik \& Zheng, 2021)

IS IT THE RIGHT COMBINATORIAL FRAMEWORK?

Question: has the edge-graph enough structure to express information about the polytope? \approx using $O(|G|)$ numbers
such as ...

- combinatorics
- geometry
- symmetry

Yes, in some cases

- simplicial + edge-graph + space of self-stesses
\rightarrow unique up to linear equivalence (Novik \& Zheng, 2021)
Open: does edge-graph + edge-length determine combinatorics?

Spectral graph theory

Spectral Graph Theory

$$
A_{P}=\left[\begin{array}{llllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

A superficial example

A superficial example

$\operatorname{Spec}\left(G_{P}\right)=\left\{\theta_{1}>\theta_{2}>\cdots>\theta_{m}\right\}$

$$
r=\left(1-\frac{\theta_{2}}{\operatorname{deg}(G)}\right)^{-1 / 2}
$$

A superficial example

$\operatorname{Spec}\left(G_{P}\right)=\left\{3^{1}, \sqrt{5}^{3}, 1^{5}, 0^{4},(-2)^{4},(-\sqrt{5})^{3}\right\}$
$r=\left(1-\frac{\sqrt{5}}{3}\right)^{-1 / 2} \approx 1.4012 \ldots$

The bias of the adjacency matrix

$$
A_{P}=\left[\begin{array}{llllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Izmestiev's Theorem

"Polytope skeleta are spectral embeddings of the edge-graph."

Izmestiev's Theorem

Colin de Verdière embedding

"Polytope skeleta are spectral embedelings of the edge-graph."

SPECTRAL EMBEDDINGS

= "graph embeddings constructed from spectral data of generalized adjacency matrices"

Definition.

A generalized adjacency matrix is a symmetric matrix $M \in \mathbb{R}^{n \times n}$ with

$$
i \neq j \text { and } i j \notin E \quad \Longrightarrow \quad M_{i j}=0
$$

SPECTRAL EMBEDDINGS

= "graph embeddings constructed from spectral data of generalized adjacency matrices"

Definition.

A generalized adjacency matrix is a symmetric matrix $M \in \mathbb{R}^{n \times n}$ with

$$
i \neq j \text { and } i j \notin E \quad \Longrightarrow \quad M_{i j}=0
$$

$$
\theta \in \operatorname{Spec}(M) \Longrightarrow u_{1}, \ldots, u_{d} \in \operatorname{Eig}_{\theta}(M)
$$

SPECTRAL EMBEDDINGS

$=$ "graph embeddings constructed from spectral data of generalized adjacency matrices"

Definition.

A generalized adjacency matrix is a symmetric matrix $M \in \mathbb{R}^{n \times n}$ with

$$
i \neq j \text { and } i j \notin E \quad \Longrightarrow \quad M_{i j}=0
$$

$$
\begin{aligned}
\theta \in \operatorname{Spec}(M) & \Longrightarrow u_{1}, \ldots, u_{d} \in \operatorname{Eig}_{\theta}(M) \\
& \Longrightarrow\left[\begin{array}{ccc}
\mid & \mid \\
u_{1} & \cdots & u_{d} \\
\mid & & \mid
\end{array}\right] \in \mathbb{R}^{n \times d}
\end{aligned}
$$

SPECTRAL EMBEDDINGS

$=$ "graph embeddings constructed from spectral data of generalized adjacency matrices"

Definition.

A generalized adjacency matrix is a symmetric matrix $M \in \mathbb{R}^{n \times n}$ with

$$
i \neq j \text { and } i j \notin E \quad \Longrightarrow \quad M_{i j}=0
$$

$$
\begin{aligned}
\theta \in \operatorname{Spec}(M) & \Longrightarrow u_{1}, \ldots, u_{d} \in \operatorname{Eig}_{\theta}(M) \\
& \Longrightarrow\left[\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{d} \\
\mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
- & p_{1} & - \\
\vdots \\
- & p_{n} & -
\end{array}\right] \in \mathbb{R}^{n \times d}
\end{aligned}
$$

SPECTRAL EMBEDDINGS

$=$ "graph embeddings constructed from spectral data of generalized adjacency matrices"

Definition.

A generalized adjacency matrix is a symmetric matrix $M \in \mathbb{R}^{n \times n}$ with

$$
i \neq j \text { and } i j \notin E \quad \Longrightarrow \quad M_{i j}=0
$$

$$
\begin{aligned}
\theta \in \operatorname{Spec}(M) & \Longrightarrow u_{1}, \ldots, u_{d} \in \operatorname{Eig}_{\theta}(M) \\
& \Longrightarrow\left[\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{d} \\
\mid & & \mid
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
-p_{1} & - \\
\vdots \\
- & p_{n} & -
\end{array}\right]}_{X_{p}} \in \mathbb{R}^{n \times d}
\end{aligned}
$$

SPECTRAL EMBEDDINGS

$=$ "graph embeddings constructed from spectral data of generalized adjacency matrices"

Definition.

A generalized adjacency matrix is a symmetric matrix $M \in \mathbb{R}^{n \times n}$ with

$$
i \neq j \text { and } i j \notin E \quad \Longrightarrow \quad M_{i j}=0
$$

$$
\begin{aligned}
\theta \in \operatorname{Spec}(M) & \Longrightarrow u_{1}, \ldots, u_{d} \in \operatorname{Eig}_{\theta}(M) \\
& \Longrightarrow\left[\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{d} \\
\mid & & \mid
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
-p_{1} & - \\
\vdots \\
- & p_{n}
\end{array}\right]}_{M X_{p}=\theta X_{p}} \in \mathbb{R}^{n \times d}
\end{aligned}
$$

Spectral Embeddings

$$
\operatorname{Spec}\left(A_{P}\right)=\left\{3^{1}, \sqrt{5}^{3}, 1^{5}, 0^{4},(-2)^{4},(-\sqrt{5})^{3}\right\}
$$

Izmestiev's Theorem

Theorem. (Izmestiev, 2007)
If $P \subset \mathbb{R}^{d}$ has $0 \in \operatorname{int}(P)$, then there exists a matrix $M \in \mathbb{R}^{n \times n}$ with
(i) $M_{i j}>0$ whenever $i j \in E$,
(ii) $M_{i j}=0$ whenever $i \neq j$ and $i j \notin E$,
(iii) $\operatorname{dim} \operatorname{ker}(M)=d$,
(iv) $M X_{p}=0$, where $X_{p}^{\top}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}^{d \times n}$,
(v) M has a single positive eigenvalue of multiplicity 1.

M ... Izmestiev matrix = Alexandrov matrix of polar dual

$$
M_{i j}:=\left.\frac{\partial^{2} \operatorname{vol}\left(P^{\circ}(\mathbf{c})\right)}{\partial c_{i} \partial c_{j}}\right|_{\mathbf{c}=(1, \ldots, 1)}=\frac{\operatorname{vol}\left(e_{i j}^{\circ}\right)}{\left\|p_{i}\right\|\left\|p_{j}\right\| \sin \varangle\left(p_{i}, p_{j}\right)}
$$

Izmestiev's Theorem

Theorem. (Izmestiev, 2007)
If $P \subset \mathbb{R}^{d}$ has $0 \in \operatorname{int}(P)$, then there exists a matrix $M \in \mathbb{R}^{n \times n}$ with
(i) $M_{i j}>0$ whenever $i j \in E$,
(ii) $M_{i j}=0$ whenever $i \neq j$ and $i j \notin E$,
(iii) $\operatorname{dim} \operatorname{ker}(M)=d$,
(iv) $M X_{p}=0$, where $X_{p}^{\top}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}^{d \times n}$,
(v) M has a single positive eigenvalue of multiplicity 1.

M ... Izmestiev matrix = Alexandrov matrix of polar dual

$$
M_{i j}:=\left.\frac{\partial^{2} \operatorname{vol}\left(P^{\circ}(\mathbf{c})\right)}{\partial c_{i} \partial c_{j}}\right|_{\mathbf{c}=(1, \ldots, 1)}=\frac{\operatorname{vol}\left(e_{i j}^{\circ}\right)}{\left\|p_{i}\right\|\left\|p_{j}\right\| \sin \varangle\left(p_{i}, p_{j}\right)}
$$

Izmestiev's Theorem

Theorem. (Izmestiev, 2007)
If $P \subset \mathbb{R}^{d}$ has $0 \in \operatorname{int}(P)$, then there exists a matrix $M \in \mathbb{R}^{n \times n}$ with
(i) $M_{i j}>0$ whenever $i j \in E$,
(ii) $M_{i j}=0$ whenever $i \neq j$ and $i j \notin E$,
(iii) $\operatorname{dim} \operatorname{ker}(M)=d$,
(iv) $M X_{p}=0$, where $X_{p}^{\top}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}^{d \times n}$,
(v) M has a single positive eigenvalue of multiplicity 1 .

M ... Izmestiev matrix = Alexandrov matrix of polar dual

$$
M_{i j}:=\left.\frac{\partial^{2} \operatorname{vol}\left(P^{\circ}(\mathbf{c})\right)}{\partial c_{i} \partial c_{j}}\right|_{\mathbf{c}=(1, \ldots, 1)}=\frac{\operatorname{vol}\left(e_{i j}^{\circ}\right)}{\left\|p_{i}\right\|\left\|p_{j}\right\| \sin \varangle\left(p_{i}, p_{j}\right)}
$$

Izmestiev's Theorem

Theorem. (Izmestiev, 2007)
If $P \subset \mathbb{R}^{d}$ has $0 \in \operatorname{int}(P)$, then there exists a matrix $M \in \mathbb{R}^{n \times n}$ with
(i) $M_{i j}>0$ whenever $i j \in E$,
(ii) $M_{i j}=0$ whenever $i \neq j$ and $i j \notin E$,
(iii) $\operatorname{dim} \operatorname{ker}(M)=d$,
(iv) $M X_{p}=0$, where $X_{p}^{\top}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}^{d \times n}$,
(v) M has a single positive eigenvalue of multiplicity 1.

M ... Izmestiev matrix = Alexandrov matrix of polar dual

$$
M_{i j}:=\left.\frac{\partial^{2} \operatorname{vol}\left(P^{\circ}(\mathbf{c})\right)}{\partial c_{i} \partial c_{j}}\right|_{\mathbf{c}=(1, \ldots, 1)}=\frac{\operatorname{vol}\left(e_{i j}^{\circ}\right)}{\left\|p_{i}\right\|\left\|p_{j}\right\| \sin \varangle\left(p_{i}, p_{j}\right)}
$$

Using Izmestiev's Theorem

Application: Capturing symmetries

Application: Capturing symmetries

Theorem. (W., 2021)
There always exists a coloring $\mathfrak{c}: V \cup E \rightarrow \mathfrak{C}$ so that $\operatorname{Aut}\left(G_{P}^{\mathfrak{c}}\right) \simeq \operatorname{Aut}(P)$.

Application: CApturing symmetries

Theorem. (W., 2021)
There always exists a coloring $\mathfrak{c}: V \cup E \rightarrow \mathfrak{C}$ so that $\operatorname{Aut}\left(G_{P}^{\mathfrak{c}}\right) \simeq \operatorname{Aut}(P)$.

APPLICATION: CAPTURING SYMMETRIES

Theorem. (W., 2021)
There always exists a coloring $\mathfrak{c}: V \cup E \rightarrow \mathfrak{C}$ so that $\operatorname{Aut}\left(G_{P}^{\mathfrak{c}}\right) \simeq \operatorname{Aut}(P)$.

Conjecture.

One can color edges by edge-length and vertices by distance to symmetry center.

Application: METRIC RECONSTRUCTION

Conjecture.

A polytope can be uniquely reconstructed (up to isometry) from its edge-graph and its edge-length ...

Application: METRIC RECONSTRUCTION

Conjecture.

A polytope can be uniquely reconstructed (up to isometry) from its edge-graph and its edge-length ...

Application: METRIC RECONSTRUCTION

Conjecture.

A polytope can be uniquely reconstructed (up to isometry) from its edge-graph, its edge-lengths, and vertex-distances to some interior point.

Application: METRIC RECONSTRUCTION

Conjecture.

A polytope can be uniquely reconstructed (up to isometry) from its edge-graph, its edge-lengths, and vertex-distances to some interior point.

Using spectral techniques we verified the conjecture for ...

- polytopes of a fixed combinatorial type
- centrally symmetric polytopes
- small perturbations

Application: metric Reconstruction

Application: METRIC RECONSTRUCTION

Theorem. (W., 2022+)
Given two combinatorially equivalent polytopes $P \subset \mathbb{R}^{d}, Q \subset \mathbb{R}^{d}$ so that

- $0 \in \operatorname{int}(Q)$,
- edges in Q are of the same length as in P, and
- vertex-point distances in Q are the same as in P, then $P \simeq Q$ (i.e. P and Q are isometric).

Application: METRIC RECONSTRUCTION

Theorem. (W., 2022+)
Given two combinatorially equivalent polytopes $P \subset \mathbb{R}^{d}, Q \subset \mathbb{R}^{d}$ so that

- $0 \in \operatorname{int}(Q)$,
- edges in Q are at most as long as in P, and
- vertex-point distances in Q are at least as large as in P, then $P \simeq Q$ (i.e. P and Q are isometric).

Application: METRIC RECONSTRUCTION

Theorem. (W., 2022+)
Given two combinatorially equivalent polytopes $P \subset \mathbb{R}^{d}, Q \subset \mathbb{R}^{d}$ so that

- $0 \in \operatorname{int}(Q)$,
- edges in Q are at most as long as in P, and
- vertex-point distances in Q are at least as large as in P, then $P \simeq Q$ (i.e. P and Q are isometric).
"If edges get shorter then polytopes become smaller."

Application: METRIC RECONSTRUCTION

Theorem. (W., 2022+)
Given two combinatorially equivalent polytopes $P \subset \mathbb{R}^{d}, Q \subset \mathbb{R}^{d}$ so that

- $0 \in \operatorname{int}(Q)$,
- edges in Q are at most as long as in P, and
- vertex-point distances in Q are at least as large as in P, then $P \simeq Q$ (i.e. P and Q are isometric).
"If edges get shorter then polytopes become smaller."

Corollary.

The realization space of a polytope has dimension at most $f_{0}+f_{1}-d-1$.

What ELSE ...

Bounding the diameter of edge-graphs (Hirsch conjecture).
H. Narayanan, R. Shah, N. Srivastava (2022).
"A spectral approach to polytope diameter"
The Theorem of Izmestiev brings you half-way to solving ...

- a conjecture by Kalai (solved by Novik \& Zheng, 2021)
- Stoker's conjecture (solved by Wang \& Xie, 2022)
I. Novik, H. Zheng (2021).
"Reconstructing simplicial polytopes from their graphs and affine 2-stresses"
J. Wang, Z. Xie (2022).
"On Gromov's dihedral rigidity conjecture and Stoker's conjecture"

Thank you.

I. Izmestiev (2007).
"The Colin de Verdière number and graphs of polytopes".
M. Winter (2020).
"Eigenpolytopes, spectral polytopes and edge-transitivity".
M. Winter (2022).
"Capturing polytopal symmetries by coloring the edge-graph".
M. Winter (2023).
"Rigidity, tensegrity and reconstruction of polytopes under metric constraints".

