A note on a stretching filament in Euler flows of \mathbb{R}^3

Department of Mathematics University of Warwick Coventry CV4 7AL, UK Xinyu.He@warwick.ac.uk

ABSTRACT

Let $\Gamma(t) \subset \mathbb{R}^3$ be a family of closed, oriented and smooth curves, parametrised by $\alpha(s,t): S^1 \times [0,T] \to \mathbb{R}^3$ with $\partial_s \alpha = c \mathbf{t}, c = |\partial_s \alpha|$; here s is the arc-length in S^1 at t = 0, and \mathbf{t} is the unit tangent in the Frenet frame $(\mathbf{t}, \mathbf{n}, \mathbf{b})$. Allowing the curve Γ (vortex filament) to vary its length in time, we specify that $\{\Gamma(t)\}_{t \in [0,T]}$ evolves by the curvature (k) - torsion (τ) flow

$$\partial_t \alpha(s,t) = k \mathbf{b} + \beta \mathbf{n},$$

where β is a free function. We prove that at some time $\mathring{t} \in [0, T]$ if a vorticity concentration condition around $\Gamma(\mathring{t})$ is satisfied, then the velocity of the stretching filament is close to solutions in the Euler equation in a weak sense. The closeness is partly controlled by $\|\tau\|_{L^{\infty}} \cdot \|k^*\|_{L^{1,\infty}}$ appearing naturally in this geometric setting, k^* being related to the curvature k of Γ . Evolution of a trefoil or torus knots $\Gamma_{p,q}(t)$ by the geometric flow is considered as an example.