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The module

0.1 Introduction

Analysis I and Analysis II together make up a 24 CATS core module for
first year students.
Assessment 7.5% Term 1 assignments, 7.5% Term 2 assignments, 25%
January exam (on Analysis 1) and 60% June exam (on Analysis 1 and 2).

Analysis II Assignments: Given out on Thursday and Fridays in lec-
tures, to hand in the following Thursday in supervisor’s pigeonhole by 14:00.
Each assignment is divided into part A, B and C. Part B is for handing in.

Take the exercises very seriously. They help you to understand the theory
much better than you do by simply memorising it.

Useful books to consult:
E. Hairer & G.Wanner: Analysis by its History, Springer-Verlag, 1996. M.H.
Protter and C.B. Morrey Jr., A first course in real analysis, 2nd edition,
Springer-Verlag, 1991
M. Spivack, Calculus, 3rd edition, Cambridge University Press, 1994

Feedback Ask questions in lectures! Talk to the lecturer before or after
the lectures. He or she will welcome your interest.

Plan your study! Shortly after each lecture, spend an hour going over
lecture notes and working on the assignments. Few students understand
everything during the lecture. There is plentiful evidence that putting in
this effort shortly after the lecture pays ample dividends in terms of under-
standing. And if you begin a lecture having understood the previous one,
you learn much more from it, so the process is cumulative.

Please allow at least two hours per week for the exercises.
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Topics by Lecture (approximate guide)

1. Introduction. Continuity, ε− δ formulation

2. Properties of continuous functions

3. Algebra of continuity

4. Composition of continuous functions, examples

5. The Intermediate Value Theorem (IVT)

6. The Intermediate Value Theorem (continued)

7. Continuous Limits, ε−δ formulation, relation with to sequential limits
and continuity

8. One sided limits, left and right continuity

9. The Extreme Value Theorem

10. The Inverse Function Theorem (continuous version)

11. Differentiation

12. Derivatives of sums, products and composites

13. The Inverse Function Theorem (Differentiable version)

14. Local Extrema, critical points, Rolle’s Theorem

15. The Mean Value Theorem

16. Inequalities and behaviour of f(x) as x → ±∞

17. Higher order derivatives, Ck functions, convexity and graphing

18. Formal power series, radius of convergence

19. Limit superior

20. Hadamard’s Test for the radius of convergence, functions defined by
power series

21. Term by Term Differentiation

22. Classical Functions of Analysis
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23. Polynomial approximation, Taylor series, Taylor’s formula

24. Taylor’s Theorem

25. Taylor’s Theorem

26. Techniques for evaluating limits

27. L’Hôpital’s rule

28. L’Hôpital’s rule

29. Question Time
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Chapter 1

Continuity of Functions of
One Real Variable

Let R be the set of real numbers. We will often use the letter E to denote
a subset of R. Here are some examples of the kind of subsets we will be
considering: E = R, E = (a, b) (open interval), E = [a, b] (closed interval),
E = (a, b] (semi-closed interval), E = [a, b), E = (a,∞), E = (−∞, b), and
E = (1, 2) ∪ (2, 3). The set of rational numbers Q is also a subset of R.

1.1 Functions

Definition 1.1.1 By a function f : E → R we mean a rule which to every
number in E assigns a number from R. This correspondence is denoted by

y = f(x), or x %→ f(x).

• We say that y is the image of x and x is a pre-image of y.

• The set E is the domain of f .

• The range, or image, of f consists of the images of all points of E.
It is often denoted f(E).

We denote by N the set of natural numbers, Z the set of integers and Q
the set of rational numbers:

N = {1, 2, . . . }
Z = {0,±1,±2, . . . }
Q = {p

q
: p, q ∈ Z, q '= 0}.
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Example 1.1.2 1. E = [−1, 3].

f(x) =

{
2x, −1 ≤ x ≤ 1
3− x, 1 < x ≤ 3.

The range of f is [−2, 2].

2. E = R.

f(x) =

{
1, if x ∈ Q
0, if x '∈ Q

Range f= {0, 1}.

3. E = R.

f(x) =

{
1/q, if x = p

q where p ∈ Z, q ∈ N have no common divisor

0, if x '∈ Q

Range f= {0} ∪ {1
q , q = ±1,±2, . . . }.

4. E = (−∞, 0) ∪ (0,∞).

f(x) =

{
sinx
x if x '= 0
1 if x = 0

.

Range f = (c, 1], where c = − cosx0, x0 the smallest positive solution
of x = tanx. Can you see why?

5. E = R.

f(x) =

{
sinx
x , x '= 0

2, if x = 0

Range f= (c, 1) ∪ {2}

6. E = (−1, 1).

f(x) =
∞∑

n=1

(−1)n
xn

n
.

This function is a representation of − log(1+x), see chapter on Taylor
series. Range f = (− log 2,∞).
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1.2 Useful Inequalities and Identities

a2 + b2 ≥ 2ab

|a+ b| ≤| a|+ |b|
|b− a| ≥ max(|b|−| a|, |a|−| b|).

Proof The first follows from (a− b)2 > 0. The second inequality is proved
by squaring |a+ b| and noting that ab ≤ |a||b|. The third inequality follows
from the fact that

|b| = |a+ (b− a)| ≤ |a|+ |b− a|

and by symmetry |a| ≤ |b|+ |b− a|.
!

Pythagorean theorem : sin2 x+ cos2 x = 1.

cos2 x− sin2 x = cos(2x), cos(x) = 1− 2 sin2(
x

2
).

1.3 Continuous Functions

What do we mean by saying that “f(x) varies continuously with x”?
It is reasonable to say f is continuous if the graph of f is an “unbroken

continuous curve”. The concept of an unbroken continuous curve seems easy
to understand. However we may need to pay attention.

For example we look at the graph of

f(x) =

{
x, x ≤ 1
x+ 1, if x ≥ 1

It is easy to see that the curve is continuous everywhere except at x = 1.
The function is not continuous at x = 1 since there is a gap of 1 between the
values of f(1) and f(x) for x close to 1. It is continuous everywhere else.
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Now take the function

F (x) =

{
x, x ≤ 1
x+ 10−30, if x ≥ 1

The function is not continuous at x = 1 since there is a gap of 10−30.
However can we see this gap on a graph with our naked eyes? No, unless
you have exceptional eyesight!

Here is a theorem we will prove, once we have the definition of “contin-
uous function”.

Theorem 1.3.1 (Intermediate value theorem): Let f : [a, b] → R be a
continuous function. Suppose that f(a) '= f(b), and that the real number
v lies between f(a) and f(b). Then there is a point c ∈ [a, b] such that
f(c) = v.

This looks “obvious”, no? In the picture shown here, it says that if the graph
of the continuous function y = f(x) starts, at (a, f(a)), below the straight
line y = v and ends, at (b, f(b)), above it, then at some point between these
two points it must cross this line.
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But how can we prove this? Notice that its truth uses some subtle facts
about the real numbers. If, instead of the domain of f being an interval in
R, it is an interval in Q, then the statement is no longer true. For example,
we would probably agree that the function F (x) = x2 is “continuous” (soon
we will see that it is). If we now consider the function f : Q → Q defined
by the same formula, then the rational number v = 2 lies between 0 = f(0)
and 9 = f(3), but even so there is no c between 0 and 3 (or anywhere else,
for that matter) such that f(c) = 2.

Sometimes what seems obvious becomes a little less obvious if you widen
your perspective.

These examples call for a proper definition for the notion of continuous
function.

In Analysis, the letter ε is often used to denote a distance, and generally
we want to find way to make some quantity “smaller than ε”:

• The sequence (xn)n∈N converges to $ if for every ε > 0, there exists
N ∈ N such that if n > N , then |xn − $| < ε.

• The sequence (xn)n∈N is Cauchy if for every ε > 0, there exists N ∈ N
such that if m,n > N then |xm − xn| < ε.

In each case, by taking n, or n and m, sufficiently big, we make the distance
between xn and $, or the distance between xn and xm, smaller than ε.
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Important: The distance between a and b is |a− b|. The set of x such that
|x− a| < δ is the same as the set of x with a− δ < x < a− δ.

The definition of continuity is similar in spirit to the definition of con-
vergence. It too begins with an ε, but instead of meeting the challenge by
finiding a suitable N ∈ N, we have to find a positive real number δ, as
follows:

Definition 1.3.2 Let E be subset of R and c a point of E.

1. A function f : E → R is continuous at c if for every ε > 0 there
exists a δ > 0 such that

if |x− c| < δ and x ∈ E

then |f(x)− f(c)| < ε.

2. If f is continuous at every point c of E, we say f is continuous on
E or simply that f is continuous.

The reason that we require x ∈ E is that f(x) is only defined if x ∈ E! If f
is a function with domain R, we generally drop E in the formulation above.

Example 1.3.3 The function f : R → R given by f(x) = 3x is continuous
at every point x0. It is very easy to see this. Let ε > 0. If δ = ε/3 then

|x−x0| < δ =⇒ |x−x0| < ε/3 =⇒ |3x−3x0| < ε =⇒ |f(x)−f(x0)| < ε

as required.

Example 1.3.4 The function f : R → R given by f(x) = x2 + x is contin-
uous at x = 2. Here is a proof: for any ε > 0 take δ = min( ε6 , 1). Then if
|x− 2| < δ,

|x+ 2| ≤ |x− 2|+ 4 ≤ δ + 4 ≤ 1 + 4 = 5.

And

|f(x)− f(2)| = |x2 + x− (4 + 2)| ≤| x2 − 4|+ |x− 2|
= |x+ 2||x− 2|+ |x− 2| ≤ 5|x− 2|+ |x− 2|
= 6|x− 2| < 6δ ≤ ε
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I do not like this proof! One of the apparently difficult parts about the notion
of continuity is figuring out how to choose δ to ensure that if |x − c| < δ
then |f(x) − f(c)| < ε. The proof simply produces δ without explanation.
It goes on to show very clearly that this δ works, but we are left wondering
how on earth we would choose δ if asked a similar question.

There are two things which make this easier than it looks at first sight:

1. If δ works, then so does any δ′ > 0 which is smaller than δ. There is
no single right answer. Sometimes you can make a guess which may
not be the biggest possible δ which works, but still works. In the last
example, we could have taken

δ = min{ ε

10
, 1}

instead of min{ ε
6 , 1}, just to be on the safe side. It would still have

been right.

2. Fortunately, we don’t need to find δ very often. In fact, it turns
out that sometimes it is easier to use general theorems than to prove
continuity directly from the definition. Sometimes it’s easier to prove
general theorems than to prove continuity directly from the definition
in an example. My preferred proof of the continuity of the function
f(x) = x2 + x goes like this:

(a) First, prove a general theorem showing that if f and g are func-
tions which are continuous at c, then so are the functions f + g
and fg, defined by

{
(f + g)(x) = f(x) + g(x)

(fg)(x) = f(x)× g(x)

(b) Second, show how to assemble the function h(x) = x2 + x out of
simpler functions, whose continuity we can prove effortlessly. In
this case, h is the sum of the functions x %→ x2 and x %→ x. The
first of these is the product of the functions x %→ x and x %→ x.
Continuity of the function f(x) = x is very easy to show!

As you can imagine, the general theorem in the first step will be used
on many occasions, as will the continuity of the simple functions in
the second step. So general theorems save work.

But that will come later. For now, you have to learn how to apply the
definition directly in some simple examples.
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First, a visual example with no calculation at all:

ba

f(c) + ε

ε−f(c)

c

f(c)

Here, as you can see, for all x in (a, b), we have f(c)−ε < f(x) < f(c)+ε.
What could be the value of δ? The largest possible interval centred on c is
shown in the picture; so the biggest possible value of δ here is b − c. If we
took as δ the larger value c − a, there would be points within a distance δ
of c, but for which f(x) is not within a distance ε of f(c).

Exercise 1.3.5 Suppose that f(x) = x2, x0 = 7 and ε = 5. What is the
largest value of δ such that if |x − x0| < δ then |f(x) − f(x0)| < ε? What
if ε = 50? What if ε = 0.1? Drawing a picture like the last one will almost
certainly help.

We end this section with a small result which will be very useful later. The
following lemma says that if f is continuous at c and f(c) '= 0 then f does
not vanish close to c. In fact f has the same sign as f(c) in a neighbourhood
of c.

We introduce a new notation: if c is a point in R and r is also a real
number, then Br(c) = {x ∈ R : |x − c| < r}. It is sometimes called “the
ball of radius r centred on c”. The same definition makes sense in higher
dimensions (Br(c) is the set of points whose distance from c is less than r);
in R2 and R3, Br(c) looks more round than it does in R.

13



Lemma 1.3.6 Non-vanishing lemma Suppose that f : E → R is contin-
uous at c.

1. If f(c) > 0, then there exists r > 0 such that f(x) > 0 for x ∈ Br(c).

2. If f(c) < 0, then there exists r > 0 such that f(x) < 0 for x ∈ Br(c).

In both cases there is a neighbourhood of c on which f does not vanish.

Proof Suppose that f(c) > 0. Take ε = f(c)
2 > 0. Let r > 0 be a number

such that if |x− c| < r and x ∈ E then

|f(x)− f(c)| < ε.

For such x, f(x) > f(c)− ε = f(c)
2 > 0.

If f(c) < 0, take ε = −f(c)
2 > 0. There is r > 0 such that on Br(c),

f(x) < f(c) + ε = f(c)
2 < 0. !

1.4 New continuous functions from old

Proposition 1.4.1 The algebra of continuous functions Suppose f
and g are both defined on a subset E of R and are both continuous at c,
then

1. f + g is continuous at c.

2. λf is continuous at c for any constant λ.

3. fg is continuous at c

4. 1/g is well-defined in a neighbourhood of c, and is continuous at c if
g(c) '= 0.

5. f/g is continuous at c if g(c) '= 0.

Proof

1. Given ε > 0 we have to find δ > 0 such that if |x − c| < δ then
|(f(x) + g(x))− (f(c) + g(c))| < ε. Now

|(f(x) + g(x))− (f(c) + g(c))| = |f(x)− f(c) + g(x)− g(c)|;

since, by the triangle inequality, we have

|f(x)− f(c) + g(x)− g(c)| ≤| f(x)− f(c) + g(x)− g(c)|

14



it is enough to show that |f(x)− f(c)| < ε/2 and |g(x)− g(c)| < ε/2.
This is easily achieved: ε/2 is a positive number, so by the continuity
of f and g at c, there exist δ1 > 0 and δ2 > 0 such that

|x− c| < δ1 =⇒ |f(x)− f(c)| < ε/2

|x− c| < δ2 =⇒ |g(x)− g(c)| < ε/2.

Now take δ = min{δ1, δ2}.

2. Suppose λ '= 0. Given ε > 0, choose δ > 0 such that if |x− c| < δ then
|f(x) − f(c)| < ε/λ. The last inequality implies |λf(x) − λf(c)| < ε.
The case where λ = 0 is easier!

3. We have

|f(x)g(x)− f(c)g(c)| = |f(x)g(x)− f(c)g(x) + f(c)g(c)− f(c)g(c)|
≤ |f(x)g(x)− f(c)g(x)|+ |f(c)g(x)− f(c)g(c)|.
≤ |g(x)||f(x)− f(c)|+ |f(c)||g(x)− g(c)|.

Provided each of the two terms on the right hand side here is less than
ε/2, the left hand side will be less that ε. The second of the two terms
on the right hand side is easy to deal with: provided f(c) '= 0 then it
is enough to make |g(x)− g(c)| less than ε/2f(c). So we choose δ1 > 0
such that if |x − c| < δ1 then |g(x) − g(c)| < ε/2f(c). If f(c) = 0, on
the other hand, the second term on the RHS term is equal to 0, so
causes us no problem at all.

The first of the two terms on the right hand side is a little harder.
We argue as follows: taking ε = 1 in the definition of continuity, there
exists δ2 > 0 such that if |x− c| < δ2 then |g(x)− g(c)| < 1, and hence
|g(x)| < |g(c)|+ 1. Now ε/2(|g(c) + 1) is a positive number; so by the
continuity of f at c, we can choose δ3 > 0 such that if |x−c| < δ3 then
|f(x)− f(c)| < ε/2(|g(c)|+ 1). Finally, take δ = min{δ1, δ2, δ3}. Then
if |x− c| < δ, we have

|g(x)−g(c)| < ε/2f(c), |g(x)| < |g(c)|+1 and |f(x)−f(c)| < ε/2|g(x)|

from which it follows that |f(x)g(x)− f(c)g(c)| < ε.

4. This is the most complicated! We have to show that given ε > 0, there
exists δ > 0 such that if |x− c| < δ then

∣∣∣∣
1

g(x)
− 1

g(c)

∣∣∣∣ < ε. (1.4.1)
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Now ∣∣∣∣
1

g(x)
− 1

g(c)

∣∣∣∣ =
∣∣∣∣
g(c)− g(x)

g(c)g(x)

∣∣∣∣ .

We have to make the numerator small while keeping the denominator
big.
First step: Choose δ1 > 0 such that if |x − c| < δ1 then |g(x)| >
|g(c)|/2. (Why is this possible)? Note that if |g(x)| > |g(c)|/2 then
|g(x)g(c)| > |g(c)|2/2.
Second step: Choose δ2 > 0 such that if |x−c| < δ2 then |g(x)−g(c)| <
ε|g(c)|2/2.
Third step: Take δ = min{δ1, δ2}.

5. If f and g are continuous at c with g(c) '= 0 then by (3), 1/g is
continuous at c, and now by (2), f/g is continuous at c.

! The continuity of the

function f(x) = x2 + x, which we proved from first principles in Example
1.3.4, can be proved more easily using Proposition 1.4.1. For the function
g(x) = x is obviously continuous (take δ = ε), the function h(x) = x2 is
equal to g× g and is therefore continuous by 1.4.1(2), and finally f = h+ g
and is therefore continuous by 1.4.1(1).

Proposition 1.4.2 composition of continuous functions Suppose f :
D → R and g : E → R are functions, and that f(D) ⊂ E (so that the
composite g ◦ f is defined). If f is continuous at x0, and g is continuous at
f(x0), then g ◦ f is continuous at x0.

Proof Denote the domain of G by E. If x ∈ D, write y0 = f(x0). By
hypothesis g is continuous at y0. So given ε > 0, there exists δ0 > 0 such
that

y ∈ E and |y − y0| < δ0 =⇒ |g(y)− g(y0)| < ε (1.4.2)

As f is continuous at x0, there exists δ > 0 such that

x ∈ D and |x− x0| < δ =⇒ |f(x)− y0| < δ0 (1.4.3)

Putting (1.4.2) and (1.4.3) together we see that

x ∈ D and |x−x0| < δ =⇒ |f(x)−y0| < δ0 =⇒ |g(f(x))−g(y0)| < ε
(1.4.4)
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That is,

x ∈ D and |x− x0| < δ =⇒ |g(f(x))− g(f(x0))| < ε.

!

Example 1.4.3 1. A polynomial of degree n is a function of the form
Pn(x) = anxn + an−1xn−1 + · · ·+ a0. Polynomials are continuous, by
repeated application of Proposition 1.4.1(1) and (2).

2. A rational function is a function of the form: P (x)
Q(x) where P and Q

are polynomials. The rational function P
Q is continuous at x0 provided

that Q(x0) '= 0, by 1.4.1(3).

Example 1.4.4 1. The exponential function exp(x) = ex is continuous.
This we will prove later in the course.

2. Given that exp is continuous, the function g defined by g(x) = exp(x2n+1 + x)
is continuous (use continuity of exp, 1.4.3(1) and 1.4.2).

Example 1.4.5 The function x %→ sinx is continuous. This will be proved
shortly. From the continuity of sinx we can deduce that cosx, tanx and
cotx are continuous: the function x %→ cosx is continuous by 1.4.2, since
cosx = sin(x + π

2 ) and is thus the composite of the continuous function
cos and the continuous function x %→ x + π/2; the functions x %→ tanx
and x %→ cotx are continuous on all of their domains, by 1.4.1(3), because
tanx = sinx

cosx and cotx = cosx
sinx .

Discussion of continuity of tanx. If we restrict the domain of tanx
to the region (−π

2 ,
π
2 ), its graph is a continuous curve and we believe that

tanx is continuous. On a larger range, tanx is made of disjoint pieces of
continuous curves. How could it be a continuous function ? Surely the graph
looks discontinuous at π

2 !!! The trick is that the domain of the function does
not contain these points where the graph looks broken. By the definition of
continuity we only consider x with values in the domain.

The largest domain for tanx is

R/{π
2
+ kπ, k ∈ Z} = ∪k∈Z(kπ − π

2
, kπ +

π

2
).

For each c in the domain, we locate the piece of continuous curve where
it belongs. We can find a small neighbourhood on which the graph is is part
of this single piece of continuous curve.

For example if c ∈ (−π
2 ,

π
2 ), make sure that δ is smaller than min(π2 −

c, c+ π
2 ).
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1.5 Discontinuity

Let us now consider a problem of logic. We gave a definition of what is
meant by ‘f is continuous at c’:

∀ε > 0 ∃δ > 0 such that if |x− c| < δ then |f(x)− f(c) < ε.

How to express the meaning of ‘f is not continuous at c’ in these same terms?
Before answering, we think for a moment about the meaning of negation.

Definition 1.5.1 The negation of a statement A is a statement which is
true whenever statement A is false, and false whenever statement A is true.

This is very easy to apply when the statement is simple: the negation of

The student passed the exam

is

The student did not pass the exam

or, equivalently,

The student failed the exam

If the statement involves one or more quantifiers, the negation may be less
obvious: the negation of

All the students passed the exam (1.5.1)

is not
All the students failed the exam (1.5.2)

but, in view of the definition of negation, 1.5.1, is instead

At least one student failed the exam (1.5.3)

If we avoid the correct but lazy option of simply writing “not” at the start
of the sentence, and instead look for something with the opposite meaning,
then the negation of

At least one student stayed awake in my lecture

is
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Every student fell asleep in my lecture

and the negation of

Every student stayed awake in my lecture

is

At least one student fell asleep in my lecture.

Negation turns statements involving “∀” into statements involving “∃”, and
vice versa.

Exercise 1.5.2 Give the negations of

1. Somebody failed the exam.

2. Everybody failed the exam.

3. Everybody needs somebody to love.

Now let us get to the point: what is the negation of the three-quantifier
statement

for all ε > 0, there exists δ > 0 such that for all x satisfying
|x− c| < δ, we have |f(x)− f(c)| < ε ?

First attempt

there exists an ε > 0 such that there does not exist a δ > 0 such
that for all x satisfying |x− c| < δ, we have |f(x)− f(c)| < ε

This is correct, but “there does not exist” is the lazy option. We avoid it
with

Second attempt

there exists an ε > 0 such that for all δ > 0, it is not true that
for all x satisfying |x− c| < δ, we have |f(x)− f(c)| < ε

But this still uses the lazy option with the word not: we improve it again,
to

Third attempt
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there exists an ε > 0 such that for all δ > 0, there exists an x
satisfying |x− c| < δ but |f(x)− f(c)| ≥ ε.

Now finally we have a negation which does not use the word “not”! It is
the most informative, and the version we will make use of. Incidentally, the
word “but” means the same as “and”, except that it warns the reader that
he or she will be surprised by the statement which follows. It has the same
purely logical contect as “and”.

Example 1.5.3 Consider f : R → R,

f(x) =

{
0, if x ∈ Q
1, if x '∈ Q.

Let c ∈ Q. The function f is not continuous at c. The key point is that
between any two numbers there is an irrational number.

Take ε = 0.5. For any δ > 0, there is an x '∈ Q with |x− c| < δ; because
x '∈ Q, f(x) = 1. Thus |f(x) − f(c)| = |1 − 0| > 0.5. We have shown that
there exists an ε > 0 (in this case ε = 0.5) such that for every δ > 0, there
exists an x such that |x−c| < δ but |f(x)−f(c)| ≥ ε. So f is not continuous
at c.

If c '∈ Q then once again f is not continuous at c. The key point now is that
between any two numbers there is a rational number. Take ε = 0.5. For any
δ > 0, take x ∈ Q with |x− c| < δ; then |f(x)− f(c)| = |0− 1| > 0.5 = ε.

Example 1.5.4 Consider f : R → R,

f(x) =

{
0, if x ∈ Q
x, if x '∈ Q

Claim: This function is continuous at c = 0 and discontinuous everywhere
else.

Let c = 0. For any ε > 0 take δ = ε. If |x−c| < δ, then |f(x)−f(0)| = |x|
in case c '∈ Q, and |f(x)− f(0) = |0− 0| = 0 in case c ∈ Q. In both cases,
|f(x)− f(0)| ≤| x| < δ = ε. Hence f is continuous at 0.

Exercise 1.5.5 Show that the function f of the last example is not contin-
uous at c '= 0. Hint: take ε = |c|/2.

Example 1.5.6 Suppose that g : R → R and h : R → R are continuous,
and let c be some fixed real number. Define a new function f : R → R by

f(x) =

{
g(x), x < c
h(x), x ≥ c.

20



Then the function f is continuous at c if and only if g(c) = h(c).
Proof: Since g and h are continuous at c, for any ε > 0 there are δ1 > 0
and δ2 > 0 such that

|g(x)− g(c)| < ε when |x− c| < δ1

and such that
|h(x)− h(c)| < ε when |x− c| < δ2.

Define δ = min(δ1, δ2). Then if |x− c| < δ,

|g(x)− g(c)| < ε and |h(x)− h(c)| < ε.

• Case 1: Suppose g(c) = h(c). For any ε > 0 and the above δ, if
|x− c| < δ,

|f(x)− f(c)| =
{

|g(x)− g(c)| < ε if x < c
|h(x)− h(c)| < ε if x ≥ c

So f is continuous at c.

• Case 2: Suppose g(c) '= h(c).

Take

ε =
1

2
|g(c)− h(c)|.

By the continuity of g at c, there exists δ0 such that if |x − c| < δ0,
then |g(x)− g(c)| < ε. If x < c, then

|f(c)− f(x)| = |h(c)− g(x)|;

moreover

|h(c)−g(x)| = |h(c)−g(c)+g(c)−g(x)| ≥| h(c)−g(c)|− |g(c)−g(x)|.

We have |h(c)− g(c)| = 2ε, and if |c− x| < δ0 then |g(c)− g(x)| < ε.
It follows that if c− δ0 < x < c,

|f(c)− f(x)| = |h(c)− h(x)| > ε.

So if c− δ0 < x < c, then no matter how close x is to c we have

|f(x)− f(c)| > ε.

This shows f is not continuous at c.
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Example 1.5.7 Let E = [−1, 3]. Consider f : [−1, 3] → R,

f(x) =

{
2x, −1 ≤ x ≤ 1
3− x, 1 < x ≤ 3.

The function is continuous everywhere.

Example 1.5.8 Let f : R → R.

f(x) =

{
1/q, if x = p

q , q > 0 p, q coprime integers

0, if x '∈ Q

Then f is continuous at all irrational points, and discontinuous at all
rational points.
Proof Every rational number p/q can be written with positive denominator
q, and in this proof we will always use this choice.

• Case 1. Let c = p/q ∈ Q. We show that f is not continuous at c.
Take ε = 1

2q . No matter how small is δ there is an irrational number

x such that |x− c| < δ. And |f(x)− f(c)| = |1q | > ε.

• Case 2. Let c '∈ Q. We show that f is continuous at c. Let ε > 0. If
x = p

q ∈ Q, |f(x) − f(c)| = 1
q . So the only rational numbers p/q for

which |f(x) − f(p/q)| ≥ ε are those with denominator q less than or
equal to 1/ε.

Let A = {x ∈ Q ∩ (c − 1, c + 1) : q ≤ 1
ε}. Clearly c /∈ A. The crucial

point is that if it is not empty, A contains only finitely many elements.
To see this, observe that its members have only finitely many possible
denominators q, since q must be a natural number ≤ 1/ε. For each
possible q, we have

p/q ∈ (c− 1, c+ 1) ⇐⇒ p ∈ (qc− q, qc+ q),

so no more than 2q different values of p are possible.

It now follows that the set B := {|x − c| : x ∈ A}, if not empty,
has finitely many members, all strictly positive. Therefore if B is not
empty, it has a least element, and this element is strictly positive.
Take δ to be this element. If B is empty, take δ = ∞. In either case,
(c− δ, c+ δ) does not contain any number from A.

Suppose |x−c| < δ. If x /∈ Q, then f(x) = f(x) = 0, so |f(x)−f(c)| =
0 < ε. If x = p/q ∈ Q then since x /∈ A, |f(x)− f(c)| = |1q | < ε.

!
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1.6 Continuity of Trigonometric Functions

Measurement of angles

Two different units are commonly used for measuring angles: Babylonian
degrees and radians. We will use radians. The radian measure of an angle
x is the length of the arc of a unit circle subtended by the angle x.

x

x
1

The following explains how to measure the length of an arc. Take a
polygon of n segments of equal length inscribed in the unit circle. Let $n
be its length. The length increases with n. As n → ∞, it has a limit. The
limit is called the circumference of the unit circle. The circumference of the
unit circle was measured by Archimedes, Euler, Liu Hui etc.. It can now be
shown to be an irrational number.

Historically sinx and cosx are defined in the following way. Later we
define them by power series. The two definitions agree. Take a right-angled
triangle, with the hypotenuse of length 1 and an angle x. Define sinx
to be the length of the side facing the angle and cosx the length of the
side adjacent to it. Extend this definition to [0, 2π]. For example, if x ∈
[π2 ,π], define sinx = cos(x− π

2 ). Extend to the rest of R by decreeing that
sin(x+ 2π) = sinx, cos(x+ 2π) = cosx.

Lemma 1.6.1 If 0 < x < π
2 , then

sinx < x < tanx.

Proof Take a unit disk centred at 0, and consider a sector of the disk of
angle x which we denote by OBA.
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O F A E
x

y

B

The area of the sector OBA is x/2π times the area of the disk, and is
therefore π x

2π = x
2 . The area of the triangle OBA is 1

2 sinx. So since the
triangle is strictly smaller than the sector, we have sinx < x.

Consider the right-angled triangle OBE, with one side tangent to the
circle at B. Because BE = tanx, the area of the triangle is 1

2 tanx. This
triangle is strictly bigger than the sector OBA. So

Area(Sector OBA) < Area(Triangle OBE),

and therefore x < tanx.
!

Theorem 1.6.2 The function x %→ sinx is continuous.

Proof

| sin(x+ h)− sinx| = | sinx cosh+ cosx sinh− sinx|
= | sinx(cosh− 1) + cosx sinh|

= 2| sinx sin2 h
2
+ cosx sinh|

≤ 2| sinx|| sin2 h
2
|+ | cosx|| sinh|

≤ |h2|
2

+ |h| = |h|( |h|
2

+ 1).

If |h| ≤ 1, then ( |h|2 + 1) < 3
2 . For any ε > 0, choose δ = min(23ε, 1). If

|h| < δ then

| sin(x+ h)− sinx| ≤ |h|( |h|
2

+ 1) ≤ 3

2
|h| < ε.

!
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Chapter 2

Continuous Functions on
Closed Intervals

We recall the definition of the least upper bound or the supremum of a set
A.

Definition 2.0.3 A number c is an upper bound of a set A if for all
x ∈ A we have x ≤ c. A number c is the least upper bound of a set A if

• c is an upper bound for A.

• if c′ is an upper bound for A then c ≤ c′.

The least upper bound of the set A is denoted by supA. If supA belongs to
A, we call it the maximum of A.

Recall the Completeness of R If A ⊂ R is non empty and bounded
above, it has a least upper bound in R.

Exercise 2.0.4 For any nonempty set A ⊂ R which is bounded above, there
is a sequence xn ∈ A such that c− 1

n ≤ xn < c. This sequence xn evidently
converges to c. (If supA ∈ A, then one can take xn = supA for all n.)

2.1 The Intermediate Value Theorem

Recall Theorem 1.3.1, which we state again:

Theorem 2.1.1 Intermediate Value Theorem (IVT) Let f : [a, b] →
R be continuous. Suppose that f(a) '= f(b). Then for any v strictly between
f(a) and f(b), there exists c ∈ (a, b) such that f(c) = v.
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A rigorous proof was first given by Bolzano in 1817.
Proof We give the proof for the case f(a) < v < f(b). Consider the set
A = {x ∈ [a, b] : f(x) ≤ v}. Note that a ∈ A and A is bounded above by
b, so it has a least upper bound, which we denote by c. We will show that
f(c) = v.

ca b

v

x

y

f

•

• Since c = supA, there exists xn ∈ A with xn → c. Then f(xn) → f(c)
by continuity of f . Since f(xn) ≤ v then f(c) ≤ v.

• Suppose f(c) < v. Then by the Non-vanishing Lemma 1.3.6 applied
to the function x %→ v − f(x), there exists r > 0 such that for all
x ∈ Br(c), f(x) < v. But then c+ r/2 ∈ A. This contradicts the fact
that c is an upper bound for A.

!

The idea of the proof is to identify the greatest number in (a, b) such
that f(c) = v. The existence of the least upper bound (i.e. the completeness
axiom) is crucial here, as it is on practically every occasion on which one
wants to prove that there exists a point with a certain property, without
knowing at the start where this point is.

Exercise 2.1.2 To test your understanding of this proof, write out the (very
similar) proof for the case f(a) > v > f(b).

Example 2.1.3 Let f : [0, 1] → R be given by f(x) = x7 + 6x + 1. Does
there exist x ∈ [0, 1] such that f(x) = 2?
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Proof The answer is yes. Since f(0) = 1, f(1) = 8 and 2 ∈ (1, 8), there is
a number c ∈ (0, 1) such that f(c) = 2 by the IVT. !

Remark*: There is an alternative proof for the IVT, using the “bisection
method”. It is not covered in lectures.

Suppose that f(a) < 0, f(b) > 0. We construct nested intervals [an, bn] with length
decreasing to zero. We then show that an and bn have common limit c which satisfy
f(c) = 0.

Divide the interval [a, b] into two equal halves: [a, c1], [c1, b]. If f(c1) = 0, done.

Otherwise on (at least) one of the two sub-intervals, the value of f must change from

negative to positive. Call this subinterval [a1, b1]. More precisely, if f(c1) > 0 write

a = a1, c1 = b1; if f(c1) < 0, let a1 = c1, b1 = b. Iterate this process. Either at the k’th

stage f(ck) = 0, or we obtain a sequence of intervals [ak, bk] with [ak+1, bk+1] ⊂ [ak, bk],

ak increasing, bk decreasing, and f(ak) < 0, f(bk) > 0 for all k. Because the sequences ak

and bk are monotone and bounded, both converge, say to c′ and c′′ respectively. We must

have c′ ≤ c′′, and f(c′) ≤ 0 ≤ f(c′′). If we can show that c′ = c′′ then since f(c′) ≤ 0,

f(c′′) ≥ 0 then we must have f(c′) = 0, and we have won. It therefore remains only to

show that c′ = c′′. I leave this as an (easy!) exercise.

Example 2.1.4 The polynomial p(x) = 3x5 + 5x+ 7 = 0 has a real root.

Proof Let f(x) = 3x5 + 5x+ 7. Consider f as a function on [−1, 0]. Then
f is continuous and f(−1) = −3 − 5 + 7 = −1 < 0 and f(0) = 7 > 0. By
the IVT there exists c ∈ (−1, 0) such that f(c) = 0. !

Discussion of assumptions. In the following examples the statement
fails. For each one, which condition required in the IVT is not satisfied?

Example 2.1.5 1. Let f : [−1, 1] → R,

f(x) =

{
x+ 1, x > 0
x, x < 0

Then f(−1) = −1 < f(1) = 2. Can we solve f(x) = 1/2 ∈ (−1, 2)?
No: that the function is not continuous on [−1, 1].

2. Define f : Q ∩ [0, 2] → R by f(x) = x2. Then f(0) = 0 and f(2) = 4.
Is it true that for each v with 0 < v < 4, there exists c ∈ Q∩ [0, 2] such
that f(c) = v? No! If, for example, v = 2, then there is no rational
number c such that f(c) = v.

Here, the domain of f is Q ∩ [0, 2], not an interval in the reals, as
required by the IVT.
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Example 2.1.6 Let f, g : [a, b] → R be continuous functions. Suppose
that f(a) < g(a) and f(b) > g(b). Then there exists c ∈ (a, b) such that
f(c) = g(c).

Proof Define h = f − g. Then h(a) < 0 and h(b) > 0 and h is continuous.
Apply the IVT to h: there exists c ∈ (a, b) with h(c) = 0, which means
f(c) = g(c). !

Let f : E → R be a function. Any point x ∈ E such that f(x) = x is
called a fixed point of f .

Theorem 2.1.7 (Fixed Point Theorem) Suppose g : [a, b] → [a, b] is a
continuous function. Then there exists c ∈ [a, b] such that g(c) = c.

Proof The notation that g : [a, b] → [a, b] implies that the range of f is
contained in [a, b].

Set f(x) = g(x)−x. Then f(a) = g(a)−a ≥ a−a = 0, f(b) = g(b)−b ≤
b− b = 0.

• If f(a) = 0 then a is the sought after point.

• If f(b) = 0 then b is the sought after point.

• If f(a) > 0 and f(b) < 0, apply the intermediate value theorem to f
to see that there is a point c ∈ (a, b) such that f(c) = 0. This means
g(c) = c.

!

Remark This theorem has a remarkable generalisation to higher dimensions, known
as Brouwer’s Fixed Point Theorem. Its statement requires the notion of continuity for
functions whose domain and range are of higher dimension - in this case a function from
a product of intervals [a, b]n to itself. Note that [a, b]2 is a square, and [a, b]3 is a cube. I
invite you to adapt the definition of continuity we have given, to this higher-dimensional
case.

Theorem 2.1.8 (Brouwer, 1912) Let f : [a, b]n → [a, b]n be a continuous function. Then
f has a fixed point.

The proof of Brouwer’s theorem when n > 1 is harder than when n = 1. It uses the

techniques of Algebraic Topology.
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Chapter 3

Continuous Limits

3.1 Continuous Limits

We wish to give a precise meaning to the statement “f approaches $ as x
approaches c”.

To make our definition, we require that f should be defined on some set
(a, b)! {c}, where a < c < b.

Definition 3.1.1 Let c ∈ (a, b) and let f : (a, b)! {c} → R. Let $ be a real
number. We say that f tends to $ as x approaches c, and write

lim
x→c

f(x) = $,

if for any ε > 0 there exists δ > 0, such that for all x ∈ (a, b) satisfying

0 < |x− c| < δ (3.1.1)

we have
|f(x)− $| < ε.

Remark 3.1.2 1. The condition |x− c| > 0 in (3.1.1) means we do not
care what happens when x equals c. For that matter, f does not even
need to be defined at c. That is why the the definition of limit makes
no reference to the value of f at c.

2. In the definition, we may assume that the domain of f is a subset E
of R containing (c− r, c) ∪ (c, c+ r) for some r > 0.

Remark 3.1.3 If a function has a limit at c, this limit is unique.
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Proof Suppose f has two limits $1 and $2. Take ε = 1
4 |$1 − $2|. If $1 '= $2

then ε > 0, so by definition of limit there exists δ > 0 such that if 0 <
|x− c| < δ, |f(x)− $1| < ε and |f(x)− $2| < ε. By the triangle inequality,

|$1 − $2| ≤ |f(x)− $1|+ |f(x)− $2| < 2ε =
1

2
|l1 − l2|.

This cannot happen. We must have $1 = $2. !

Theorem 3.1.4 Let c ∈ (a, b). Let f : (a, b) → R. The following are
equivalent:

1. f is continuous at c.

2. limx→c f(x) = f(c).

Proof

• Assume that f is continuous at c.

∀ε > 0 there is a δ > 0 such that for all x with

|x− c| < δ and x ∈ (a, b), (3.1.2)

we have
|f(x)− f(c)| < ε.

Condition (3.1.2) holds if condition (3.1.1) holds, so limx→c f(x) =
f(c).

• On the other hand suppose that limx→c f(x) = f(c). For any ε > 0
there exists δ > 0, such that for all x ∈ (a, b) satisfying

0 < |x− c| < δ

we have
|f(x)− f(c)| < ε.

If |x− c| = 0 then x = c. In this case |f(c)− f(c)| = 0 < ε. Hence for
all x ∈ (a, b) with |x − c| < δ, we have |f(x) − f(c)| < ε. Thus f is
continuous at c.

!
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Example 3.1.5 Does

lim
x→1

x2 + 3x+ 2

sin(πx) + 2

exist?
Yes: let

f(x) =
x2 + 3x+ 2

sin(πx) + 2
.

Then f is continuous on all of R, for both the numerator and the denomi-
nator are continuous on all of R, and the numerator is never zero. Hence
limx→1 f(x) = f(1) = 6

2 = 3.

Example 3.1.6 Does

lim
x→0

√
1 + x−

√
1− x

x

exist? Find its value if it does exist.
For x '= 0 and x close to zero (e.g. for |x| < 1/2), the function

f(x) =

√
1 + x−

√
1− x

x

is well defined. When x '= 0,

f(x) =

√
1 + x−

√
1− x

x
=

2x

x(
√
1 + x+

√
1− x)

=
2√

1 + x+
√
1− x

.

Since
√
x is continuous at x = 1, (prove it by ε−δ argument!), the functions

x %→
√
1 + x and x %→

√
1− x are both continuous at x = 0; as their sum is

non-zero when x = 0, it follows, by the algebra of continuous functions, that
the function

f : [−1

2
,
1

2
] → R, f(x) =

2√
1 + x+

√
1− x

is also continuous at x = 0. Hence

lim
x→0

√
1 + x−

√
1− x

x
= lim

x→0

2√
1 + x+

√
1− x

= f(0) = 1.

Example 3.1.7 The statement that limx→0 f(x) = 0 is equivalent to the
statement that limx→0 |f(x)| = 0.
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Define g(x) = |f(x)|. Then |g(x)−0| = |f(x)|. The statement |g(x)−0| <
ε is the same as the statement |f(x)− 0| < ε.

Remark 3.1.8 (use of negation ) The statement “it is not true that
limx→c f(x) = $” means precisely that there exists a number ε > 0 such that
for all δ > 0 there exists x ∈ (a, b) with 0 < |x − c| < δ and |f(x) − $| ≥ ε.
This can occur in two ways:

1. the limit does not exist, or

2. the limit exists, but differs from $.

In the second case, but not in the first case, we write

lim
x→c

f(x) '= $.

In the first case it would be wrong to write this since it suggests that the
limit exists.

Theorem 3.1.9 Let c ∈ (a, b) and f : (a, b)! {c} → R. The following are
equivalent.

1. limx→c f(x) = $

2. For every sequence xn ∈ (a, b)! {c} with limn→∞ xn = c we have

lim
n→∞

f(xn) = $.

Proof

• Step 1. If limx→c f(x) = $, define

g(x) =

{
f(x), x '= c
$, x = c

Then limx→c g(x) = limx→c f(x) = $ = g(c). This means that g
is continuous at c. If xn is a sequence with xn ∈ (a, b) ! {c} and
limn→∞ xn = c, then

lim
n→∞

f(xn) = lim
n→∞

g(xn) = $

by sequential continuity of g at c. We have shown that statement 1
implies statement 2.
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• Step 2. Suppose that limx→c f(x) = $ does not hold.

There is a number ε > 0 such that for all δ > 0, there is a number
x ∈ (a, b)! {c} with 0 < |x− c| < δ, but |f(x)− $| ≥ ε.

Taking δ = 1
n we obtain a sequence xn ∈ (a, b)/{c} with |xn − c| < 1

n
with

|f(xn)− $| ≥ ε

for all n. Thus the statement limn→∞ f(xn) = $ cannot hold. But xn
is a sequence with limn→∞ xn = c. Hence statement 2 fails.

!

Example 3.1.10 Let f : R! {0} → R, f(x) = sin( 1x). Then

lim
x→0

sin(
1

x
)

does not exist.

Proof Take two sequences of points,

xn =
1

π
2 + 2nπ

zn =
1

−π
2 + 2nπ

.

Both sequences tend to 0 as n → ∞. But f(xn) = 1 and f(zn) = −1 so
limn→∞ f(xn) '= limn→∞ f(zn). By the sequential formulation for limits,
Theorem 3.1.9, limx→0 f(x) cannot exist. !

Example 3.1.11 Let f : R ! {0} → R, f(x) = 1
|x| . Then there is no

number $ ∈ R s.t. limx→0 f(x) = $.

Proof Suppose that there exists $ such that limx→0 f(x) = $. Take xn = 1
n .

Then f(xn) = n and limn→∞ f(xn) does not converges to any finite number!
This contradicts that limn→∞ f(xn) = $. !

Example 3.1.12 Denote by [x] the integer part of x. Let f(x) = [x]. Then
limx→1 f(x) does not exist.

33



Proof We only need to consider the function f near 1. Let us consider f
on (0, 2). Then

f(x) =

{
1, if 1 ≤ x < 2
0, if 0 ≤ x < 1

.

Let us take a sequence xn = 1 + 1
n converging to 1 from the right and a

sequence yn = 1− 1
n converging to 1 from the left . Then

lim
n→∞

xn = 1, lim
n→∞

yn = 1.

Since f(xn) = 1 and f(yn) = 0 for all n, the two sequences f(xn) and f(yn)
have different limits and hence limx→1 f(x) does not exist. !

The following follows from the sandwich theorem for sequential limits.

Proposition 3.1.13 (Sandwich Theorem/Squeezing Theorem) Let c ∈
(a, b) and f, g, h : (a, b) ! {c} → R. If h(x) ≤ f(x) ≤ g(x) on (a, b) ! {c},
and

lim
x→c

h(x) = lim
x→c

g(x) = $

then
lim
x→c

f(x) = $.

Proof Let xn ∈ (a, b)!{c} be a sequence converging to c. Then by Theorem
3.1.9, limn→∞ g(xn) = limn→∞ h(xn) = $. Since h(xn) ≤ f(xn) ≤ g(xn),

lim
n→∞

f(xn) = $.

By Theorem 3.1.9 again, we see that limx→c f(x) = $. !

Example 3.1.14

lim
x→0

x sin(
1

x
) = 0.

Proof Note that 0 ≤ |x sin( 1x)| ≤ |x|. Now limx→0 |x| = 0 by the the con-
tinuity of the function f(x) = |x|. By the Sandwich theorem the conclusion
limx→0 x sin(

1
x) = 0 follows. !

Example 3.1.15

f(x) =

{
x sin(1/x) x '= 0
0, x = 0

is continuous at 0.
This follows from Example 3.1.14, limx→0 f(x) = 0 = f(0).
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The following example will be revisited in Example 11.2.2 (as an appli-
cation of L’Hôpital’s rule).

Example 3.1.16 Important limit to remember

lim
x→0

sinx

x
= 1.

Proof Recall if 0 < x < π
2 , then sinx ≤ x ≤ tanx and

sinx

tanx
≤ sinx

x
≤ 1.

cosx ≤ sinx

x
≤ 1 (3.1.3)

The relation (3.1.3) also holds if −π
2 < x < 0: Letting y = −x then 0 <

y < π
2 . All three terms in (3.1.3) are even functions: sinx

x = sin y
y and

cos y = cos(−x).
Since

lim
x→0

cosx = 1

by the Sandwich Theorem and (3.1.3), limx→0
sinx
x = 1.

!

From the algebra of continuity and the continuity of composites of con-
tinuous functions we deduce the following for continuous limits, with the
help of Theorem 3.1.9.

Proposition 3.1.17 (Algebra of limits) Let c ∈ (a, b) and f, g(a, b)/{c}.
Suppose that

lim
x→c

f(x) = $1, lim
x→c

g(x) = $2.

Then

1.
lim
x→c

(f + g)(x) = lim
x→c

f(x) + lim
x→c

g(x) = $1 + $2.

2.
lim
x→c

(fg)(x) = lim
x→xc

f(x) lim
x→c

g(x) = $1$2.

3. If $2 '= 0,

lim
x→c

f(x)

g(x)
=

limx→c f(x)

limx→c g(x)
=

$1
$2
.
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Proposition 3.1.18 Limit of the composition of two functions Let
c ∈ (a, b) and f : (a, b)! {c} → R. Suppose that

lim
x→c

f(x) = $. (3.1.4)

Suppose that the range of f is contained in (a1, b1)! {$}, that g : (a1, b1)!
{$} → R, and that

lim
y→#

g(y) = L (3.1.5)

Then
lim
x→c

g(f(x)) = L. (3.1.6)

Proof Given ε > 0, by (3.1.5) we can choose δ1 > 0 such that

0 < |y − $| < δ1 =⇒ |g(y)− L| < ε. (3.1.7)

By (3.1.4) we can choose δ2 > 0 such that

0 < |x− c| < δ2 =⇒ |f(x)− $| < δ1. (3.1.8)

Since f(x) '= $ for all x in the domain of f , it follows from (3.1.8) that if
0 < |x − c| < δ2 then 0 < |f(x) − $| < δ1; it therefore follows, by (3.1.7),
that |g(f(x))− L| < ε. !

Exercise 3.1.19 Does the conclusion of Proposition 3.1.18 hold if the hy-
potheses on the range of f and the domain of g are replaced by the assump-
tions that the range of f is contained in (a1, b1) and that g is defined on all
of (a1, b1)?

The following example will be re-visited in Example 11.2.6 (an application
of L’Hôpital’s rule).

Example 3.1.20 (Important limit to remember)

lim
x→0

1− cosx

x
= 0.

Proof

lim
x→0

1− cosx

x
= lim

x→0

2 sin2(x2 )

x

= lim
x→0

sin(
x

2
)
sin(x2 )

x
2

= lim
x→0

sin(
x

2
)× lim

x→0

sin(x2 )
x
2

= 0× 1 = 0.
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The following lemma should be compared to Lemma 1.3.6. The existence
of the limx→c f(x) and its value depend only on the behaviour of f near to
c. It is in this sense we say that ‘limit’ is a local property. Recall that
Br(c) = (c− r, c+ r); let B̊r(c) = (c− r, c+ r)! {c}. If a property holds on
Br(c) for some r > 0, we often say that the property holds “close to c”.

Lemma 3.1.21 Let g : (a, b)! {c} → R, and c ∈ (a, b). Suppose that

lim
x→c

g(x) = $.

1. If $ > 0, then g(x) > 0 on B̊r(c) for some r > 0.

2. If $ < 0, then g(x) < 0 on B̊r(c) for some r > 0.

In both cases g(x) '= 0 for x ∈ B̊r(c).

Proof Define

g̃(x) =

{
g(x), x '= c
$, x = c.

Then g̃ is continuous at c and so by Lemma 1.3.6, g̃ is not zero on (c−r, c+r)
for some r. The conclusion for g follows. !

Proof [Direct Proof] Suppose that l > 0. Let ε = #
2 > 0. There exists r > 0

such that if x ∈ (B̊r(c) and x ∈ (a, b), then.

g(x) > $− ε =
$

2
> 0.

We choose r < min(b− c, c− a) so that (c− r, c+ r) ⊂ (a, b).
If $ < 0 let ε = − #

2 > 0, then there exists r > 0, with r < min(b−c, c−a),

such that on B̊r(c),

g(x) < $+ ε = $− $

2
=

$

2
< 0.

!

3.2 One Sided Limits

How do we define “the limit of f as x approaches c from the right ” or “the
limit of f as x approaches c from the left ”?
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Definition 3.2.1 A function f : (a, c) → R has a left limit $ at c if for any
ε > 0 there exists δ > 0, such that

for all x ∈ (a, c) with c− δ < x < c (3.2.1)

we have
|f(x)− $| < ε.

In this case we write
lim

x→c−
f(x) = $.

Right limits are defined in a similar way:

Definition 3.2.2 A function f : (c, b) → R has a right limit $ at c and we
write limx→c+ f(x) = $ if for any ε > 0 there exists δ > 0, such that for all
x ∈ (c, b) with c < x < c+ δ we have |f(x)− $| < ε.

Remark 3.2.3 • (3.2.1) is equivalent to

x ∈ (a, c), & 0 < |x− c| < δ.

• limx→c f(x) = $ if and only if both limx→c+ f(x) and limx→c− f(x)
exist and are equal to $.

Definition 3.2.4 1. A function f : (a, c] → R is said to be left continu-
ous at c if for any ε > 0 there exists a δ > 0 such that if c− δ < x < c
then

|f(x)− f(c)| < ε.

2. A function f : [c, b) → R is said to be right continuous at c if for any
ε > 0 there exists a δ > 0 such that if c < x < c+ δ

|f(x)− f(c)| < ε.

Theorem 3.2.5 Let f : (a, b) → R and for c ∈ (a, b). The following are
equivalent:

(a) f is continuous at c

(b) f is right continuous at c and f is left continuous at c.

(c) Both limx→c+ f(x) and limx→c− f(x) exist and are equal to f(c).

(d) limx→c f(x) = f(c)
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Example 3.2.6 Denote by [x] the integer part of x. Let f(x) = [x]. Show
that for k ∈ Z, limx→k+ f(x) and limx→k− f(x) exist. Show that limx→k f(x)
does not exist. Show that f is discontinuous at all points k ∈ Z.

Proof Let c = k, we consider f near k, say on the open interval (k−1, k+1).
Note that

f(x) =

{
k, if k ≤ x < k + 1
k − 1, if k − 1 ≤ x < k

.

It follows that

lim
x→k+

f(x) = lim
x→1+

k = k

lim
x→k−

f(x) = lim
x→1−

(k − 1) = k − 1.

Since the left limit does not agree with the right limit, limx→k f(x) does not
exist. By the limit formulation of continuity, (‘A function continuous at k
must have a limit as x approaches k’), f is not continuous at k. !

Example 3.2.7 For which number a is f defined below continuous at x =
0?

f(x) =

{
a, x '= 0
2, x = 0

.

Since limx→0 f(x) = 2, f is continuous if and only if a = 2.

3.3 Limits to ∞
What do we mean by

lim
x→c

f(x) = ∞?

As ∞ is not a real number, the definition of limit given up to now does not
apply.

Definition 3.3.1 Let c ∈ (a, b) and f : (a, b)/{c} → R. We say that

lim
x→c

f(x) = ∞,

if for all M > 0, there exists δ > 0, such that for all x ∈ (a, b) with 0 <
|x− c| < δ we have f(x) > M.

Example 3.3.2 limx→0
1
|x| = ∞. For let M > 0. Define δ = 1

M . Then if

0 < |x− 0| < δ, we have f(x) = 1
|x| >

1
δ = M .
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Definition 3.3.3 Let c ∈ (a, b) and f : (a, b)/{c} → R. We say that

lim
x→c

f(x) = −∞,

if for all M , there exists δ > 0, such that for all x ∈ (a, b) with 0 < |x−c| < δ
we have f(x) < M.

One sided limits can be similarly defined. For example,

Definition 3.3.4 Let f : (c, b) → R. We say that

lim
x→c+

f(x) = ∞,

if ∀M > 0, ∃δ > 0, s.t. f(x) > M for all x ∈ (c, b) ∩ (c, c+ δ).

Definition 3.3.5 Let f : (a, c) → R. We say that

lim
x→c−

f(x) = −∞,

if ∀M > 0, ∃δ > 0, such that f(x) < −M for all x ∈ (a, c) with c−δ < x < c.

Example 3.3.6 Show that limx→0−
1

sinx = −∞.

Proof Let M > 0. Since limx→0 sinx = 0, there is a δ > 0 such that if
0 < |x| < δ, then | sinx| < 1

M .
Since we are interested in the left limit, we may consider x ∈ (−π

2 , 0).
In this case | sinx| = − sinx. So we have − sinx < 1

M which is the same as

sinx > − 1

M
.

In conclusion limx→0−
1

sinx = −∞. !

3.4 Limits at ∞
What do we mean by

lim
x→∞

f(x) = $, or lim
x→∞

f(x) = ∞?

Definition 3.4.1 1. Consider f : (a,∞) → R. We say that

lim
x→∞

f(x) = $,

if for any ε > 0 there is an M such that if x > M we have |f(x)−$| < ε.
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2. Consider f : (−∞, b) → R. We say that

lim
x→−∞

f(x) = $,

if for any ε > 0 there is an M > 0 such that for all x < −M we have
|f(x)− $| < ε.

Definition 3.4.2 Consider f : (a,∞) → R. We say

lim
x→∞

f(x) = ∞,

if for all M > 0, there exists X, such that f(x) > M for all x > X.

Example 3.4.3 Show that limx→+∞(x2 + 1) = +∞.

Proof For any M > 0, we look for x with the property that

x2 + 1 > M.

Take A =
√
M then if x > A, x2+1 > M+1. Hence limx→+∞(x2+1) = +∞.

!

Remark 3.4.4 In all cases,

1. There is a unique limit if it exists.

2. There is a sequential formulation. For example, limx→∞ f(x) = $
if and only if limn→∞ f(xn) = $ for all sequences {xn} ⊂ E with
limn→∞ xn = ∞. Here E is the domain of f .

3. Algebra of limits hold.

4. The Sandwich Theorem holds.
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Chapter 4

The Extreme Value Theorem

By now we understand quite well what is a continuous function. Let us
look at the landscape drawn by a continuous function. There are peaks and
valleys. Is there a highest peak or a lowest valley?

4.1 Bounded Functions

Consider the range of f : E → R:

A = {f(x)|x ∈ E}.

Is A bounded from above and from below? If so it has a greatest lower
bound m0 and a least upper bound M0. And

m0 ≤ f(x) ≤ M0, ∀x ∈ E.

Do m0 and M0 belong to A? That they belong to A means that there
exist x ∈ E and x̄ ∈ E such that f(x) = m0 and f(x̄) = M0.

Definition 4.1.1 We say that f : E → R is bounded above if there is a
number M such that for all x ∈ E, f(x) ≤ M . We say that f attains its
maximum if there is a number c ∈ E such that for all x ∈ E, f(x) ≤ f(c)

That a function f is bounded above means that its range f(E) is bounded
above.

Definition 4.1.2 We say that f : E → R is bounded below if there is a
number m such that for all x ∈ E, f(x) ≥ m.

We say that f attains its minimum if there is a number c ∈ E such that
for all x ∈ E, f(x) ≥ f(c).
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That a function f is bounded below means that its range f(E) is bounded
below.

Definition 4.1.3 A function which is bounded above and below is bounded.

4.2 The Bolzano-Weierstrass Theorem

This theorem was introduced and proved in Analysis I.

Lemma 4.2.1 ( Bolzano-Weierstrass Theorem) A bounded sequence has
at least one convergent sub-sequence.

4.3 The Extreme Value Theorem

Theorem 4.3.1 ( The Extreme Value theorem) Let f : [a, b] → R be
a continuous function. Then

1. f is bounded above and below, i.e. there exist numbers m and M such
that

m ≤ f(x) ≤ M, ∀x ∈ [a, b].

2. There exist x, x ∈ [a, b] such that

f(x) ≤ f(x) ≤ f(x), a ≤ x ≤ b.

So

f(x) = inf{f(x)|x ∈ [a, b]}, f(x) = sup{f(x)|x ∈ [a, b]}.

Proof

1. We show that f is bounded above. Suppose not. Then for any M > 0
there is a point x ∈ [a, b] such that f(x) > M . In particular, for
every n there is a point xn ∈ [a, b] such that f(xn) ≥ n. The sequence
(xn)n∈N is bounded, so there is a convergent subsequence xnk ; let us
denote its limit by x0. Note that x0 ∈ [a, b]. By sequential continuity
of f at x0,

lim
k→∞

f(xnk) = f(x0)

But f(xnk) ≥ nk ≥ k and so

lim
k→∞

f(xnk) = ∞.
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This gives a contradiction. The contradiction originated in the sup-
position that f is not bounded above. We conclude that f must be
bounded from above.

2. Next we show that f attains its maximum value. Let

A = {f(x)|x ∈ [a, b]}.

Since A is not empty and bounded above, it has a least upper bound.
Let

M0 = supA.

By definition of supremum, if ε > 0 then M − ε cannot be an upper
bound of A, so there is a point f(x) ∈ A such thatM0−ε ≤ f(x) ≤ M0.
Taking ε = 1

n we obtain a sequence xn ∈ [a, b] such that

M0 −
1

n
≤ f(xn) ≤ M0.

By the Sandwich theorem,

lim
n→∞

f(xn) = M0.

Since a ≤ xn ≤ b, it has a convergent subsequence xnk with limit
x̄ ∈ [a, b]. By sequential continuity of f at x0,

f(x̄) = lim
k→∞

f(xnk) = M0.

That is, f attains its maximum at x̄.

3. Let g(x) = −f(x). By step 1, g is bounded above and so f is bounded
below. Note that

sup{g(x)|x ∈ [a, b]} = − inf{f(x)|x ∈ [a, b]}.

By the conclusion of step 2, there is a point x such that g(x) =
sup{g(x)|x ∈ [a, b]}. This means that f(x) = inf{f(x)|x ∈ [a, b]}.

!

Remark 4.3.2 By the extreme value theorem, if f : [a, b] → R is a contin-
uous function then the range of f is the closed interval [f(x), f(x̄)]. By the
Intermediate Value Theorem (IVT), f : [a, b] → [f(x), f(x̄)] is surjective.
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Discussion on the assumptions:

Example 4.3.3 • Let f : (0, 1] → R, f(x) = 1
x . Note that f is not

bounded. The condition that the domain of f be a closed interval is
violated.

• Let g : [1, 2) → R, g(x) = x. It is bounded above and below. But the
value

sup{g(x)|x ∈ [1, 2)} = 2

is not attained on [1, 2). Again, the condition “closed interval” is
violated.

Example 4.3.4 Let f : [0,π]∩Q, f(x) = x. Let A = {f(x)|x ∈ [0,π]∩Q}.
Then supA = π. But π is not attained on [0,π] ∩Q. The condition which
is violated here is that the domain of f must be an interval.

Example 4.3.5 Let f : R → R, f(x) = x. Then f is not bounded. The
condition “bounded interval” is violated.

Example 4.3.6 Let f : [−1, 1] → R,

f(x) =

{
1
x , x '= 0
2, x = 0

Then f is not bounded. The condition “f is continuous” is violated.
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Chapter 5

The Inverse Function
Theorem for continuous
functions

We discuss the following question: if a continuous function f has an inverse,
f−1, is f−1 continuous?

5.1 The Inverse of a Function

Definition 5.1.1 Let E and B be sets and let f : E → B be a function.
We say

1. f is injective if x '= y =⇒ f(x) '= f(y), for x, y ∈ E.

2. f is surjective, if for every y ∈ B there is a point x ∈ E such that
f(x) = y.

3. f is bijective if it is surjective and injective.

Definition 5.1.2 If f : E → B is a bijection, the inverse of f is the func-
tion f−1 : B → E defined by

f−1(y) = x if f(x) = y.

N.B.

1) If f : E → B is a bijection, then so is its inverse f−1 : B → E.
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2) If f : E → R is injective, then it is a bijection from its domain E to
its range f(E). So it has an inverse: f−1 : f(E) → E.

3) If f−1 is the inverse of f , then f is the inverse of f−1.

5.2 Monotone Functions

The simplest injective function is an increasing function, or a decreasing
function. They are called monotone functions.

Definition 5.2.1 Consider the function f : E → R.

1. We say f is increasing, if f(x) < f(y) whenever x < y and x, y ∈ E.

2. We say f is decreasing, if f(x) > f(y) whenever x < y and x, y ∈ E.

3. It is monotone or ‘strictly monotone’ if it is either increasing or de-
creasing.

Compare this with the following definition:

Definition 5.2.2 Consider the function f : E → R.

1. We say f is non-decreasing if for any pair of points x, y with x < y,
we have f(x) ≤ f(y).

2. We say f is non-increasing if for any pair of points x, y with x < y,
we have f(x) ≥ f(y).

Some authors use the term ‘strictly increasing’ for ‘increasing’, and use the
term ‘increasing’ where we use ‘non-decreasing’. We will always use ‘in-
creasing’ and ‘decreasing’ in the strict sense defined in 5.2.1.

If f : [a, b] → Range(f) is an increasing function, its inverse f−1 is also
increasing. If f is decreasing, f−1 is also decreasing (Prove this!).

5.3 Continuous Injective andMonotone Surjective
Functions

Increasing functions and decreasing functions are injective. Are there any
other injective functions?
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Yes: the function indicated in Graph A below is injective but not mono-
tone. Note that f is not continuous. Surprisingly, if f is continuous and
injective then it must be monotone.

x

y ◦

•

·

Graph A

x

y

◦

•

Graph B

If f : [a, b] is increasing, is f : [a, b] → [f(a), f(b)] surjective? Is it
necessarily continuous? The answer to both questions is No, see Graph B.
Again, continuity plays a role here. We show below that for an increasing
function, ‘being surjective’ is equivalent to ‘being continuous’ !

Theorem 5.3.1 Let a < b and let f : [a, b] → R be a continuous injective
function. Then f is either strictly increasing or strictly decreasing.

Proof First note that f(a) '= f(b) by injectivity.

• Case 1: Assume that f(a) < f(b).
Step 1: We first show that if a < x < b, then f(a) < f(x) < f(b).

Note that f(x) '= f(a) and f(x) '= f(b) by injectivity. If it is not true
that f(a) < f(x) < f(b), then either f(x) < f(a) or f(b) < f(x).

• • •
a

f(a) •

x b

• f(b)

1. In the case where f(x) < f(a), we have f(x) < f(a) < f(b).
Take v = f(a). By IVT for f on [x, b], there exists c ∈ (x, b) with
f(c) = v = f(a). Since c '= a, this violates injectivity.
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• • •
a

f(a)•

x

•
f(x)

b

• f(b)

2. In the case where f(b) < f(x), we have f(a) < f(b) < f(x). Take
v = f(b). By the IVT for f on [a, x], there exists c ∈ (a, x) with
f(c) = v = f(b). This again violates injectivity.

• • •
a

f(a)•

x

•
f(x)

b

•
f(b)

We have therefore shown

if f(a) < f(b), then a < x < b =⇒ f(a) < f(x) < f(b). (5.3.1)

To show that f is strictly increasing on [a, b], suppose that a ≤ x1 <
x2 ≤ b. We must show that f(x1) < f(x2). To do this, we simply
apply the argument of Step 1, but now replacing a by x1 and x by x2.
Making these replacements in (5.3.1) we obtain

if f(x1) < f(b), then x1 < x2 < b =⇒ f(x1) < f(x2) < f(b).
(5.3.2)

Since we certainly have f(x1) < f(b), by Step 1, and we are assuming
x1 < x2 < b, the conclusion f(x1) < f(x2) < f(b) holds, and in
particular f(x1) < f(x2). This completes the proof that if f(a) < f(b)
then f is strictly increasing.

• Case 2: If f(a) > f(b) we show f is decreasing. Let g = −f . Then
g(a) < g(b). By Case 1 g is increasing and so f is decreasing.

!
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Theorem 5.3.2 If f : [a, b] → [f(a), f(b)] is increasing and surjective, it is
continuous.

Proof Fix c ∈ (a, b). Take ε > 0. We wish to find the set of x such that
|f(x)− f(c)| < ε, or

f(c)− ε < f(x) < f(c) + ε. (5.3.3)

Let ε′ = min{ε, f(b)− f(c), f(c)− f(a)}. Then

f(a) < f(c)− ε′ < f(c), f(c) < f(c) + ε′ < f(b).

Since f : [a, b] → [f(a), f(b)] is surjective we may define

a1 = f−1(f(c)− ε′) b1 = f−1(f(c) + ε′).

Since f is increasing,

a1 < x < b1 =⇒ f(c)− ε′ < f(x) < f(c) + ε′.

As ε′ ≤ ε, we conclude

a1 < x < b1 =⇒ f(c)− ε < f(x) < f(c) + ε.

We have proved that f is continuous at c ∈ (a, b). The continuity of f at a
and b can be proved similarly. !

5.4 The Inverse Function Theorem (Continuous
Version)

Suppose that f : [a, b] → R is continuous and injective. Then f : [a, b] →
range(f) is a continuous bijection and has inverse f−1 : range(f) → [a, b].

By Theorem 5.3.1 f is either increasing or decreasing. If it is increasing,

f : [a, b] → [f(a), f(b)]

is surjective by the IVT. It has inverse

f−1 : [f(a), f(b)] → [a, b]

which is also increasing and surjective, and therefore continuous, by Theo-
rem 5.3.2. If f is decreasing,

f : [a, b] → [f(b), f(a)]
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is surjective, again by the IVT. It has inverse

f−1 : [f(b), f(a)] → [a, b]

which is also decreasing and surjective, and therefore continuous, again by
Theorem 5.3.2.

We have proved

Theorem 5.4.1 [The Inverse Function Theorem: continuous version]
If f : [a, b] → R is continuous and injective, its inverse f−1 : range(f) →

[a, b] is continuous.

Example 5.4.2 For n ∈ N, the function f : [0,∞) → [0,∞) defined by

f(x) = x
1
n : [0, 1] → R is continuous.

Proof Let g(x) = xn. Then g : [0, a] → [0, an] is increasing and continuous,
and therefore has continuous inverse. Every point c ∈ (0,∞) lies in the
interior of some interval [0, a2]. Thus f is continuous at c. !

Example 5.4.3 Consider sin : [−π
2 ,

π
2 ] → [−1, 1]. It is increasing and con-

tinuous. Define its inverse arcsin : [−1, 1] → [−π
2 ,

π
2 ]. Then arcsin is con-

tinuous.
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Chapter 6

Differentiation

Definition 6.0.4 Let f : (a, b) → R be a function and let x ∈ (a, b). We
say f is differentiable at x if

lim
h→0

f(x+ h)− f(x)

h

exists and is a real number (not ±∞). If this is the case, the value of the
limit is the derivative of f at x, which is usually denoted f ′(x).

Example 6.0.5 (i) Let f(x) = x2. Then

f(x+ h)− f(x)

h
=

(x+ h)2 − x2

h
=

2xh+ h2

h
= 2x+ h. (6.0.1)

As h gets smaller, this tends to 2x:

lim
h→0

f(x+ h)− f(x)

h
= 2x. (6.0.2)

(ii) Let f(x) = |x| and let x = 0. Then

f(0 + h)− f(0)

(0 + h)− 0
=

|h|
h

=

{
1 if h > 0
−1 if h < 0

It follows that

lim
∆x→0−

f(0 + h)− f(0)

h
= −1, lim

h→0+

f(0 + h)− f(0)

h
= 1,

and, since the limit from the left and the limit from the right do not agree,
limh→0

f(0+h)−f(0)
h does not exist.
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Thus, the function f(x) = x2 is differentiable at every point x, with deriva-
tive f ′(x) = 2x. The function f(x) = |x| is not differentiable at x = 0.
In fact it is differentiable everywhere else: at any point x '= 0, there is a
neighbourhood in which f is equal to the function g(x) = x, or the function
h(x) = −x. Both of these are differentiable, with g′(x) = 1 for all x,and
h′(x) = −1 for all x. The differentiability of f at x is determined by its
behaviour in the neighbourhood of the point x, so if f coincides with a
differentiable function near x then it too is differentiable there.

We list some of the motivations for studying derivatives:

• Calculate the angle between two curves where they intersect. (Descartes)

• Find local minima and maxima (Fermat 1638)

• Describe velocity and acceleration of movement (Galileo 1638, Newton
1686).

• Express some physical laws (Kepler, Newton).

• Determine the shape of the curve given by y = f(x).

Example 6.0.6 1. f : R/{0} → R, f(x) = 1
x is differentiable at x0 '= 0.

For

lim
x→x0

f(x)− f(x0)

x− x0
= lim

x→x0

1
x − 1

x0

x− x0

= lim
x→x0

x0−x
x0x

x− x0

= lim
x→x0

− 1

x0x
= − 1

x20
.

In the last step we have used the fact that 1
x is continuous at x0 '= 0.

2. sinx : R → R is differentiable everywhere and (sinx)′ = cosx. For let
x0 ∈ R.

lim
h→0

sin(x0 + h)− sinx0
h

= lim
h→0

sin(x0) cosh+ cos(x0) sinh− sinx0
h

= lim
h→0

sin(x0)(cosh− 1) + cos(x0) sinh

h

=

(
sin(x0) lim

h→0

cosh− 1

h
+ cos(x0) lim

h→0

sinh

h

)

= sin(x0) · 0 + cos(x0) · 1 = cos(x0).
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We have used the previously calculated limits:

lim
h→0

(cosh− 1)

h
= 0, lim

h→0

sinh

h
= 1.

3. The function

f(x) =

{
x sin(1/x), x '= 0
0, x = 0

is continuous everywhere. But it is not differentiable at x0 = 0.
It is continuous at x '= 0 by an easy application of the algebra of
continuity. That f(x) is continuous at x = 0 is discussed in Example
3.1.15.

It is not differentiable at 0 because (f(h) − f(0))/h = sin(1/h), and
sin(1/h) does not have a limit as h tends to 0. (Take xn = 1

2πn → 0,
yn = 1

2πn+π
2
→ 0. Then sin(1/xn) = 0, sin(1/yn) = 1.)

4. The graph below is of

f(x) =

{
x2 sin(1/x) if x '= 0

0 if x = 0
(6.0.3)

.

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

-0.2

-0.15

-0.1

-0.05

0.05

0.1

0.15

0.2

We will refer to this function as x2 sin(1/x) even though its value at
0 requires a separate line of definition. It is differentiable at 0, with
derivative f ′(0) = 0 (Exercise). In fact f differentiable at every point
x ∈ R, but we will not be able to show this until we have proved the
chain rule for differentiation.

54



6.1 TheWeierstrass-Carathéodory Formulation for
Differentiability

Below we give the formulation for the differentiability of f at x0 given by
Carathéodory in 1950.

Theorem 6.1.1 [ Weierstrass-Carathéodory Formulation] Consider f : (a, b) →
R and x0 ∈ (a, b). The following statements are equivalent:

1. f is differentiable at x0

2. There is a function φ continuous at x0 such that

f(x) = f(x0) + φ(x)(x− x0). (6.1.1)

Furthermore f ′(x0) = φ(x0).

Proof

• 1) ⇒ 2) Suppose that f is differentiable at x0. Set

φ(x) =

{
f(x)−f(x0)

x−x0
, x '= x0

f ′(x0), x = x0
.

Then
f(x) = f(x0) + φ(x)(x− x0).

Since f is differentiable at x0, φ is continuous at x0.

• 2) ⇒ 1). Assume that there is a function φ continuous at x0 such that

f(x) = f(x0) + φ(x)(x− x0).

Then

lim
x→x0

f(x)− f(x0)

x− x0
= lim

x→x0
φ(x) = φ(x0).

The last step follows from the continuity of φ at x0. Thus f ′(x0) exists
and is equal to φ(x0).

!

Remark: Compare the above formulation with the geometric inter-
pretation of the derivative. The tangent line at x0 is

y = f(x0) + f ′(x0)(x− x0).
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If f is differentiable at x0,

f(x) = f(x0) + φ(x)(x− x0)

= f(x0) + φ(x0)(x− x0) + [φ(x)− φ(x0)](x− x0)

= f(x0) + f ′(x0)(x− x0) + [φ(x)− φ(x0)](x− x0).

The last step follows from φ(x0) = f ′(x0). Observe that

lim
x→x0

[φ(x)− φ(x0)] = 0

and so [φ(x) − φ(x0)](x − x0) is insignificant compared to the the first two
terms. We may conclude that the tangent line y = f(x0) + f ′(x0)(x− x0) is
indeed a linear approximation of f(x).

Corollary 6.1.2 If f is differentiable at x0 then it is continuous at x0.

Proof If f is differentiable at x0, f(x) = f(x0) + φ(x)(x − x0) where φ is
a function continuous at x0. By algebra of continuity f is continuous at x0.

!

Example 6.1.3 The converse to the Corollary does not hold.
Let f(x) = |x|. It is continuous at 0, but fails to be differentiable at 0.

Example 6.1.4 Consider f : R → R given by

f(x) =

{
x2, x ∈ Q
0, x '∈ Q

.

Claim: f is differentiable only at the point 0.
Proof Take x0 '= 0. Then f is not continuous at x0, as we learnt earlier,
and so not differentiable at x0.

Take x0 = 0, let

g(x) =
f(x)− f(0)

x
=

{
x, x ∈ Q
0, x '∈ Q

.

We learnt earlier that g is continuous at 0 and hence has limit g(0) = 0.
Thus f ′(0) exists and equals 0.

!
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Example 6.1.5

f1(x) =

{
x2 sin(1/x) x '= 0
0, x = 0

is differentiable at x = 0.

Proof Let

φ(x) =

{
x sin(1/x) x '= 0
0, x = 0

Then
f1(x) = φ(x)x = f1(0) + φ(x)(x− 0).

Since φ is continuous at x = 0, f1 is differentiable at x = 0.
[We proved that φ is continuous in Example 3.1.15. ] !

6.2 Properties of Differentiatiable Functions

Rules of differentiation can be easily deduced from properties of continuous
limits. They can be proved by the sequential limit method or directly from
the definition in terms of ε and δ.

Theorem 6.2.1 (Algebra of Differentiability ) Suppose that x0 ∈ (a, b)
and f, g : (a, b) → R are differentiable at x0.

1. Then f + g is differentiable at x0 and

(f + g)′(x0) = f ′(x0) + g′(x0);

2. (product rule) fg is differentiable at x0 and

(fg)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0) = (f ′g + fg′)(x0).

Proof If f and g are differentiable at x0 there are two functions φ and ψ
continuous at x0 such that

f(x) = f(x0) + φ(x)(x− x0) (6.2.1)

g(x) = g(x0) + ψ(x)(x− x0). (6.2.2)

Furthermore
f ′(x0) = φ(x0) g′(x0) = ψ(x0).
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1. Adding the two equations (6.2.1) and (6.2.2), we obtain

(f + g)(x) = f(x0) + φ(x)(x− x0) + g(x0) + ψ(x)(x− x0)

= (f + g)(x0) + [φ(x) + ψ(x)](x− x0).

Since φ+ ψ is continuous at x0, f + g is differentiable at x0. And

(f + g)′(x0) = (φ+ ψ)(x0) = f ′(x0) + g′(x0).

2. Multiplying the two equations (6.2.1) and (6.2.2), we obtain

(fg)(x) =
(
f(x0) + φ(x)(x− x0)

)(
g(x0) + ψ(x)(x− x0)

)

= (fg)(x0)

+
(
g(x0)φ(x) + f(x0)ψ(x) + φ(x0)ψ(x0)(x− x0)

)
(x− x0).

Let
θ(x) = g(x0)φ(x) + f(x0)ψ(x) + φ(x0)ψ(x0)(x− x0).

Since φ,ψ are continuous at x0, θ is continuous at x0 by the algebra
of continuity. It follows that fg is differentiable at x0. Furthermore

(fg)′(x0) = θ(x0) = g(x0)φ(x0)+f(x0)ψ(x0) = g(x0)f
′(x0)+f(x0)g

′(x0).

!

In Lemma 1.3.6, we showed that if g is continuous at a point x0 and
g(x0) '= 0, then there is a neighbourhood of x0,

U r
x0

= (x0 − r, x0 + r)

on which f(x) '= 0. Here r is a positive number. This means f/g is well de-
fined on U r

x0
and below in the theorem we only need to consider f restricted

to U r
x0
.

Theorem 6.2.2 (Quotient Rule) Suppose that x0 ∈ (a, b) and f, g : (a, b) →
R are differentiable at x0. Suppose that g(x0) '= 0, then f

g is differentiable
at x0 and

(
f

g

)′
(x0) =

f ′(x0)g(x0)− f(x0)g′(x0)

g2(x0)
=

f ′g − g′f

g2
(x0).
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Proof There are two functions φ and ψ continuous at x0 such that

f(x) = f(x0) + φ(x)(x− x0)

f ′(x0) = φ(x0)

g(x) = g(x0) + ψ(x)(x− x0)

g′(x0) = ψ(x0).

Since g is differentiable at x0, it is continuous at x0. By Lemma 1.3.6,

g(x) '= 0, x ∈ (x0 − r, x0 + r)

for some r > 0 such that (x0 − r, x0 + r) ⊂ (a, b). We may divide f by g to
see that

(
f

g
)(x) =

f(x0) + φ(x)(x− x0)

g(x0) + ψ(x)(x− x0)

=
f(x0)

g(x0)
− f(x0)[g(x0) + ψ(x)(x− x0)]

g(x0)[g(x0) + ψ(x)(x− x0)]
+

g(x0)[f(x0) + φ(x)(x− x0)]

g(x0)[g(x0) + ψ(x)(x− x0)]

=
f(x0)

g(x0)
+

g(x0)φ(x)− f(x0)ψ(x)

g(x0)[g(x0) + ψ(x)(x− x0)]
(x− x0).

Define

θ(x) =
g(x0)φ(x)− f(x0)ψ(x)

g(x0)[g(x0) + ψ(x)(x− x0)]
.

Since g(x0) '= 0, θ is continuous at x0 and (f/g) is differentiable at x0. And

(
f

g
)′(x0) = θ(x0) =

g(x0)f ′(x0) + f(x0)g′(x0)

[g(x0)]2
.

!

Exercise 6.2.3 Prove the sum, product rule and quotient rules for the deriva-
tive directly from the definition of the derivative as a limit, without using
the Carathéodory formulation.

Theorem 6.2.4 (chain rule) Let x0 ∈ (a, b). Suppose that f : (a, b) →
(c, d) is differentiable at x0 and g : (c, d) → R is differentiable at f(x0).
Then g ◦ f is differentiable at x0 and

(g ◦ f)′(x0) = g′ (f(x0)) · f ′(x0).
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x0

• • •
y0 = f(x0) g(y0)

gf

Proof There is a function φ continuous at x0 such that

f(x) = f(x0) + φ(x)(x− x0).

Let y0 = f(x0). There is a function ψ continuous at y0 such that

g(y) = g(y0) + ψ(y)(y − y0). (6.2.3)

Substituting y and y0 in (6.2.3) by f(x) and f(x0), we have

g
(
f(x)

)
= g(f(x0)) + ψ

(
f(x)

)(
f(x)− f(x0)

)

= g(f(x0)) + ψ
(
f(x)

)
φ(x)(x− x0).

Let θ(x) =
(
ψ ◦ f(x)

)
φ(x). Then (6.2.4) gives

g ◦ f(x) = g ◦ f(x0) + θ(x)(x− x0). (6.2.4)

Since f is continuous at x0 and ψ is continuous at f(x0), the composition
ψ ◦ f is continuous at x0. Then θ, as a product of continuous functions, is
continuous at x0. Using the Carathéodory formulation of differentiability,
6.1.1, it therefore follows from (6.2.4) that g ◦ f is differentiable at x0, with

(g ◦ f)′(x0) = θ(x0) = ψ
(
f(x0)

)
· φ(x0) = g′

(
f(x0)

)
· f ′(x0).

!

Exercise 6.2.5 The following proof of the Chain Rule works under one
additional assumption. What is it?

Assume f differentiable at x0 and g differentiable at f(x0). We have

g(f(x0 + h))− g(f(x0))

h
=

(
g(f(x0 + h))− g(f(x0)

f(x0 + h)− f(x0)

)(
f(x0 + h)− f(x0)

h

)

(6.2.5)
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Write y0 = f(x0) and t = f(x0 + h)− f(x0). Then f(x0 + h) = y0 + t and

g(f(x0 + h))− g(f(x0))

f(x0 + h)− f(x0)
=

g(y0 + t)− g(y0)

t
.

If f is differentiable at x0, then it is continuous there. Hence when h → 0,
t → 0 also. It follows that as h → 0, (g(y0+ t)− g(y0))/t tends to g′(f(x0)).
Therefore by (6.2.5),

lim
h→0

g(f(x0 + h))− g(f(x0))

h

= lim
h→0

g(f(x0 + h))− g(f(x0)

f(x0 + h)− f(x0)
lim
h→0

f(x0 + h)− f(x0)

h

= g′(f(x0))f
′(x0).

Example 6.2.6 We can use the product and chain rules to prove the quo-
tient rule. Since g(x0) '= 0, it does not vanish on some interval (x0− δ, x0+
δ). The function f/g is defined everywhere on this interval. Let h(x) = 1

x .
Then

f

g
= f × h ◦ g.

Since g does not vanish anywhere on (x0 − δ, x0 + δ), h ◦ g is differentiable
at x0 and therefore so is f × h ◦ g.

For the value of the derivative, note that h′(y) = −1/y2, so

(
f

g

)′
(x0) = f ′(x0)h(g(x0)) + f(x0)h

′(g(x0))g
′(x0)

=
f ′(x0)

g(x0)
+ f(x0)

−1

g2(x0)
g′(x0)

=
f ′(x0)g(x0)− f(x0)g′(x0)

g2(x0)
.

6.3 The Inverse Function Theorem

Is the inverse of a differentiable bijective function differentiable?
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c f(c)

c

f(c)

x

y

•

y = x

•

f−1

f

The graph of f is the graph of f−1, reflected by the line y = x. We
might therefore guess that f−1 is as smooth as f . This is almost right, but
there is one important exception: where f ′(x0) = 0.

Conisder the following graph, of f(x) = x3. Its tangent line at (0, 0) is
the line {y = 0}.

x

y

y = x

x3

If we reflect the graph in the line y = x, the tangent line at (0, 0) becomes
the vertical line {x = 0}, which has infinite slope. Indeed, the inverse of f
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is the function f−1(x) = x1/3, which is not differentiable at 0:

lim
h→0

(x+ h)1/3 − x1/3

h
= ∞.

Exercise 6.3.1 Prove this formula for the limit.

Recall that if f is continuous and injective, the inverse function theorem for
continuous functions, 5.4.1, states that f is either increasing or decreasing,
and that

• if f is increasing then f : [a, b] → [f(a), f(b)] is a bijection,

• if f is decreasing then f : [a, b] → [f(b), f(a)] is a bijection,

and in both cases f−1 is continuous.

Theorem 6.3.2 (The inverse Function Theorem, II) Let f : [a, b] →
[c, d] be a continuous bijection. Let x0 ∈ (a, b) and suppose that f is dif-
ferentiable at x0 and f ′(x0) '= 0. Then f−1 is differentiable at y0 = f(x0).
Furthermore,

(f−1)′(y0) =
1

f ′(x0)
.

x0 • • y0

f−1

f

Proof Since f is differentiable at x0,

f(x) = f(x0) + φ(x)(x− x0),

where φ is continuous at x0. Letting x = f−1(y),

f(f−1(y)) = f(f−1(y0)) + φ(f−1(y))(f−1(y)− f−1(y0)).

So
y − y0 = φ(f−1(y))(f−1(y)− f−1(y0)).
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Since f is a continuous injective map its inverse f−1 is continuous. The
composition φ ◦ f−1 is continuous at y0. By the assumption φ ◦ f−1(y0) =
φ(x0) = f ′(x0) '= 0, φ(x) '= 0 for x close to x0. Define

θ(y) =
1

φ(f−1(y))
.

It follows that θ is continuous at y0 and

f−1(y) = f−1(y0) + θ(y)(y − y0).

Consequently, f−1 is differentiable at y0 and

(f−1)′(y0) = θ(y0) =
1

f ′(f−1(y0))
=

1

f ′(x0)
.

!

Recall the following lemma (Lemma 3.1.21).

Lemma 6.3.3 Let g : (a, b)/{c} → R, and c ∈ (a, b). Suppose that

lim
x→c

g(x) = $.

1. If $ > 0, then g(x) > 0 for x close to c.

2. If $ < 0, then g(x) < 0 for x close to c.

If f ′(x0) '= 0, by the non-vanishing Lemma above, applied to g(x) =
f(x)−f(x0)

x−x0
, we may assume that on (x0 − r, x0 + r)

f(x)− f(x0)

x− x0
> 0.

Remark 6.3.4 1. If f ′ > 0 on an interval (x0 − r, x0 + r), by Corol-
lary 7.5.1 to the Mean Value Theorem in the next chapter, f is an
increasing function. Thus

f : [x0 −
r

2
, x0 +

r

2
] →: [f(x0 −

r

2
), f(x0 +

r

2
)]

is a bijection. In summary if f ′(x) > 0 for all x ∈ (a, b), then f is
invertible.

2. Suppose that f is differentiable on (a, b) and f ′ is continuous on (a, b).
If x0 ∈ (a, b) and f ′(x0) > 0 then f ′ is positive on an interval near x0
and on which the function is invertible.
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6.4 One Sided Derivatives

Definition 6.4.1 1. A function f : (a, x0] → R is said to have left
derivative at x0 if

lim
x→x0−

f(x)− f(x0)

x− x0

exists. The limit will be denoted by f ′(x0−), and called the left deriva-
tive of f at x0.

2. A function f : (x0, b) → R is said to have right derivative at x0 if

lim
x→x0+

f(x)− f(x0)

x− x0

exists. The limit will be denoted by f ′(x0+), and called the right
derivative of f at x0.

Theorem 6.4.2 A function f has a derivative at x0 if and only if both
f ′(x0+) and f ′(x0−) exist and are equal.

Example 6.4.3

f(x) =

{
x sin(1/x) x > 0
0, x ≤ 0

Claim: f ′(0−) = 0 but f ′(0+) does not exist.
Proof

lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−

0− 0

x
= 0.

But

lim
x→0+

f(x)− 0

x− 0
= lim

x→0+
sin(1/x)

does not exist, as can be seen below. Take

xn =
1

2nπ
≥ 0, yn =

1
π
2 + 2nπ

≥ 0.

Both sequences converge to 0 from the right. But

sin(1/xn) = 0, sin(1/yn) = 1.

They have different limits so limx→0+ sin(1/x) does not exist, and so f ′(0+)
does not exist.

!
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Example 6.4.4

g(x) =

{ √
x sin(1/x) x > 0

0, x ≤ 0

Claim: g′(0+) does not exist.
Proof Note that

lim
x→0+

g(x)− g(0)

x− 0
= lim

x→0+

1√
x
sin(1/x).

Take

yn =
1

π
2 + 2nπ

→ 0.

But
1

√
yn

sin(1/yn) =

√
π

2
+ 2nπ → +∞.

Hence 1√
x
sin(1/x) cannot converge to a finite number as x approaches 0

from the right. We conclude that g′(0+) does not exist. !
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Chapter 7

The mean value theorem

If we have some information on the derivative of a function what can we say
about the function itself?

What do we think when our minister of the economy tells us that “The
rate of inflation is slowing down”? This means that if f(t) is the price
of a commodity at time t, its derivative is decreasing, but not necessarily
the price itself (in fact most surely not, otherwise we would be told so
directly)! I heard the following on the radio: “the current trend of increasing
unemployment is slowing down”. What does it really mean?

Exercise 7.0.5 Consider the following graph.

.1

To do: (i) Suppose that this is the graph of some function f , and make a
sketch of the graph of f ′.
(ii) Suppose instead that this is the graph of the derivative f ′, and make a
sketch of the graph of f .

Hint for (ii): First find the critical points (where f ′ = 0). For each
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one, decide whether it is a local maximum or a local minimum: if x is a
critical point and f ′ is increasing at x, then x it is a local minimum, and
if f ′ is decreasing, then x is a local maximum. Identify inflection points
(where f ′ reaches local minimum or local maximum). At these points the
graph changes from convex to concave or vice versa. Try to decide whether
the graph between two consecutive critical points is increasing or decreasing,
convex or concave.

7.1 Local Extrema

Definition 7.1.1 Consider f : [a, b] → R and x0 ∈ [a, b].

1. We say that f has a local maximum at x0, if for all x in some neigh-
bourhood (x0 − δ, x0 + δ) (where δ > 0) of x0, we have f(x0) ≥ f(x).
If f(x0) > f(x) for x '= x0 in this neighbourhood, we say that f has a
strict local maximum at x0.

2. We say that f has a local minimum at x0, if for all x in some neigh-
bourhood (x0−δ, x0+δ) (where delta > 0) of x0, we have f(x0) ≤ f(x).
If f(x0) < f(x) for x '= x0 in this neighbourhood, we say that f has a
strict local minimum at x0.

3. We say that f has a local extremum at x0 if it either has a local min-
imum or a local maximum at x0.

Example 7.1.2 Let f(x) = 1
4x

4 − 1
2x

2. Then

f(x) =
1

4
x2(x2 − 2).

It has a local maximum at x = 0, since f(0) = 0 and near x = 0, f(x) < 0.
It has critical points at x = ±1. We will prove that they are local minima

later.

Example 7.1.3 f(x) = x3. This function is strictly increasing, and there
is no local minimum or local maximum at 0, even though f ′(0) = 0.
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0

f(x) = x3

Example 7.1.4

f(x) =

{
1, x ∈ [−π, 0],
cos(x), x ∈ [0, 3π].

.

1

0 π
f

Then x = 2π is a strict local maximum, and x = −π is a strict local min-
imum; the function is constant on [−π, 0], so each point in the interior of
this interval is both a local minimum and a local maximum! The point x = 0
is a local maximum but not a local minimum. The point −π is both a local
minimum and a local maximum.

Lemma 7.1.5 Consider f : (a, b) → R. Suppose that x0 ∈ (a, b) is either
a local minimum or a local maximum of f . If f is differentiable at x0 then
f ′(x0) = 0.

Proof Case 1. We first assume that f has a local maximum at x0:

f(x0) ≥ f(x), x ∈ (x0 − δ1, x0 + δ1),

for some δ1 > 0. Then

f ′(x0+) = lim
h→0+

f(x0 + h)− f(x0)

h
≤ 0
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since h ∈ (0, δ1) eventually. Similarly

f ′(x0−) = lim
h→0−

f(x0 + h)− f(x0)

h
≥ 0.

Since the derivative exists we must have

f ′(x0) = f ′
+(x0) = f ′

−(x0).

Finally we deduce that f ′(x0) = 0.
Case 2. If x0 is a local minimum of f , take g = −f . Then x0 is a local

maximum of g and g′(x0) = −f ′(x0) exists. It follows that g′(x0) = 0 and
consequently f ′(x0) = 0. !

7.2 Global Maximum and Minimum

If f : [a, b] → R is continuous by the extreme value theorem, it has a
minimum and a maximum. How do we find them?

What we learnt in the last section suggested that we find all critical
points.

Definition 7.2.1 A point c is a critical point of f if either f ′(c) = 0 or
f ′(c) does not exist.

To find the (global) maximum and minimum of f , evaluate the values of f
at a, b and at all the critical points. Select the largest value.

7.3 Rolle’s Theorem

x0
x

y

·

f
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Theorem 7.3.1 (Rolle’s Theorem) Suppose that

1. f is continuous on [a, b]

2. f is differentiable on (a, b)

3. f(a) = f(b).

Then there is a point x0 ∈ (a, b) such that

f ′(x0) = 0.

Proof If f is constant, Rolle’s Theorem holds.
Otherwise by the Extreme Value Theorem, there are points x, x̄ ∈ [a, b]

with
f(x̄) ≤ f(x) ≤ f(x̄), ∀x ∈ [a, b].

Since f is not constant f(x) '= f(x̄).
Since f(a) = f(b), one of the point x̄ or x is in the open interval (a, b).

Denote this point by x0. By the previous lemma f ′(x0) = 0. !

Example 7.3.2 Discussions on Assumptions:

1. Continuity on the closed interval [a, b] is necessary. For example con-
sider f : [1, 2] → R.

f(x) =

{
f(x) = 2x− 1, x ∈ (1, 2]
f(1) = 3, x = 1.

The function f is continuous on (1, 2] and is differentiable on (a, b).
Also f(2) = 3 = f(1). But there is no point in x0 ∈ (1, 2) such that
f ′(x0) = 0.

1 2

1

2

3

x

y

•

· ·

◦

f

−1 1

1

x

y•

· ·

◦
|x|
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2. Differentiability is necessary. e.g. take f : [−1, 1] → R, f(x) = |x|.
Then f is continuous on [−1, 1], f(−1) = f(1). But there is no point
on x0 ∈ (−1, 1) with f ′(x0) = 0. This point ought to be x = 0 but the
function fails to be differentiable at x0.

7.4 The Mean Value Theorem

Let us now consider the graph of a function f satisfying the regularity con-
ditions of Rolle’s Theorem, but with f(a) '= f(b).

a c b

Theorem 7.4.1 (The Mean Value Theorem) Suppose that f is contin-
uous on [a, b] and is differentiable on (a, b), then there is a point c ∈ (a, b)
such that

f ′(c) =
f(b)− f(a)

b− a
.

Note: f(b)−f(a)
b−a is the slope of the chord joining the points (a, f(a)) and

(b, f(b)) on the graph of f . So the theorem says that there is a point c ∈ (a, b)
such that the tangent to the graph at (c, f(c)) is parallel to this chord.

Proof The equation of the chord joining (a, f(a)) and (b, f(b)) is

y =
f(b)− f(a)

b− a
(x− a).

Let

g(x) = f(x)− f(b)− f(a)

b− a
(x− a)
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Then g(b) = g(a), and g is continuous on [a, b] and differentiable on (a, b). By
Rolle’s Theorem applied to g on [a, b], there exists c ∈ (a, b) with g′(c) = 0.
But

g′(c) = f ′(c)− f(b)− f(a)

b− a
.

!

Corollary 7.4.2 Suppose that f is continuous on [a, b] and is differentiable
on (a, b). Suppose that f ′(c) = 0, for all c ∈ (a, b). Then f is constant on
[a, b].

Proof Let x ∈ (a, b]. By the Mean Value Theorem on [a, x], there exists
c ∈ (a, x) with

f(x)− f(a)

x− a
= f ′(c).

Since f ′(c) = 0, this means that f(x) = f(a). !

Example 7.4.3 If f ′(x) = 1 for all x then f(x) = x + c, where c is some
constant. To see this, let g(x) = f(x)− x. Then g′(x) = 0 for all x. Hence
g(x) is a constant: g(x) = g(a) = f(a)−a. Consequently f(x) = x+ g(x) =
f(a) + x− a.

Exercise 7.4.4 If f ′(x) = x for all x, what does f look like?

Exercise 7.4.5 Show that if f , g are continuous on [a, b] and differentiable
on (a, b), and f ′ = g′ on (a, b), then f = g + C where C = f(a)− g(a).

Remark 7.4.6 When f ′ is continuous, we can deduce the Mean Value The-
orem from the Intermediate Value Theorem, together with some facts about
integration which will be proved in Analysis III.

If f ′ is continuous on [a, b], it is integrable. Since f ′ is continuous, by
the Extreme Value Theorem, there exist x1, x2 ∈ [a, b] such that f ′(x1) and
f ′(x2) are respectively the minimum and the maximum values of f ′ on the
interval [a, b]. Hence we have

f ′(x1)(b− a) ≤
∫ b

a
f ′(x)dx ≤ f ′(x2)(b− a).

Divide by b− a to see that

f ′(x1) ≤ 1

b− a

∫ b

a
f ′(x)dx ≤ f ′(x2).
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Now the Intermediate Value Theorem, applied to f ′ on the interval between
x1 and x2, says there exists c between x1 and x2 such that

f ′(c) =
1

b− a

∫ b

a
f ′(x)dx.

Finally, the fundamental theorem of calculus, again borrowed from Anal-
ysis III, tells us that ∫ b

a
f ′(x) = f(b)− f(a).

7.5 Monotonicity and Derivatives

If f : [a, b] → R is increasing and differentiable at x0, then f ′(x0) ≥ 0. This
is because

f ′(x0) = lim
x→x0+

f(x)− f(x0)

x− x0
.

Both numerator and denominator in this expression are non-negative, so the
quotient is non-negative also, and hence so is its limit.

Corollary 7.5.1 Suppose that f : R → R is continuous on [a, b] and dif-
ferentiable on (a, b).

1. If f ′(x) ≥ 0 for all x ∈ (a, b), then f is non-decreasing on [a, b].

2. If f ′(x) > 0 for all x ∈ (a, b), then f is increasing on [a, b].

3. If f ′(x) ≤ 0 for all x ∈ (a, b), then f is non-increasing on [a, b].

4. If f ′(x) < 0 for all x ∈ (a, b), then f is decreasing on [a, b].

Proof Part 1. Suppose f ′(x) ≥ 0 on (a, b). Take x, y ∈ [a, b] with x < y.
By the mean value theorem applied on [x, y], there exists c ∈ (x, y) such
that

f(y)− f(x)

y − x
= f ′(c)

and
f(y)− f(x) = f ′(c)(y − x) ≥ 0.

Thus f(y) ≥ f(x).
Part 2. If f ′(x) > 0 everywhere then as in part 1, for x < y,

f(y)− f(x) = f ′(c)(y − x) > 0.
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!

Suppose that f : (a, b) → R is differentiable at x0 and that f ′(x0) >
0. Does this imply that f is increasing on some neighbourhood of x0? If
you attempt to answer this question by drawing pictures and exploring the
possibilities, it is quite likely that you will come to the conclusion that the
answer is Yes. But it is not true! We will see this shortly, by means of an
example. First, notice that if we assume not only that f ′(x0) > 0, but also
that f is differentiable at all points x in some neighbourhood of x0, and
that f ′ is continuous at x0, then in this case it is true that f is increasing
on a neighbourhood of x0. This is simply because the continuity of f ′ at x0
implies that f ′(x) > 0 for all x in some neighbourhood of x0, and then Part
2 of Corollary 7.5.1 implies that f is increasing on this neighbourhood.

To see that it is NOT true without this extra assumption, consider the
following example.

Example 7.5.2 The function

f(x) =

{
x+ x2 sin( 1

x2 ), x '= 0, x ∈ [−1, 1]
0, x = 0

.

is differentiable everywhere and f ′(0) = 1.

0

Proof Since the sum, product, composition and quotient of differentiable
functions are differentiable, provided the denominator is not zero, f is dif-
ferentiable at x '= 0, and f ′(x) = 1 + 2x sin( 1

x2 )− 2
x cos(

1
x2 ). At x = 0,

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

f(x)

x

= lim
x→0

x+ x2 sin( 1
x2 )

x

= lim
x→0

(1 + x sin(
1

x2
)) = 1.
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!

Notice, however, that although f is everywhere differentiable, the func-
tion f ′(x) is not continuous at x = 0. This is clear: f ′(x) does not tend to
a limit as x tends to 0. And in fact, Claim: Even though f ′(0) = 1 > 0,
there is no interval (−δ, δ) on which f is increasing.
Proof

f ′(x) =

{
1 + 2x sin( 1

x2 )− 2
x cos(

1
x2 ), x '= 0

1, x = 0.

Consider the intervals:

In =

[
1√

2πn+ π
4

,
1√
2πn

]
.

If x ∈ In,
√
2πn ≤ 1

x ≤
√
2πn+ π

4 and

cos
1

x2
≥ cos

π

4
=

1√
2
.

Thus if x ∈ In

f ′(x) ≤ 1 + 2
1√
2πn

− 2
√
2πn

1√
2
=

√
πn+

√
2− 2πn√

πn
< 0.

Consequently f is decreasing on In. As every open neighbourhood of 0 con-
tains an interval In, the claim is proved.

!

Even though, as this example shows, if f ′(x0) > 0 then we cannot con-
clude that f is increasing on some neighbourhood of x0, a weaker conclusion
does hold:

Proposition 7.5.3 If f : (a, b) → R and f ′(x0) > 0 then there exists δ > 0
such that

if x0 − δ < x < x0 then f(x) < f(x0)

and
if x0 < x < x0 + δ then f(x0) < f(x).

Proof Because

lim
h→0

f(x0 + h)− f(x0)

h
> 0,
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there exists δ > 0 such that if 0 < |h| < δ then

f(x0 + h)− f(x0)

h
> 0.

Writing x in place of x0 + h, so that h is replaced by x − x0, this says if
0 < |x− x0| < δ then

f(x)− f(x0)

x− x0
> 0.

When x0 − δ < x < x0, the denominator in the last quotient is negative.
Since the quotient is positive, the numerator must be negative too.

When x0 < x < x0 + δ, the denominator in the last quotient is positive.
Since the quotient is positive, the numerator must be positive too. !

Notice that this proposition compares the value of f at the variable point x
with its value at the fixed point x0. A statement that f is increasing would
have to compare the values of f at variable points x1, x2.

Example 7.5.2 shows that f ′ need not be continuous. However, it turns
out that the kind of discontinuities it may have are rather different from the
discontinuities of a function like g(x) = [x]. To begin with, even though it
may not be continuous, rather surprisingly f ′ has the “intermediate value
property”:

Exercise 7.5.4 Let f be differentiable on (a, b).

1. Suppose that a < c < d < b, and that f ′(c) < v < f ′(d). Show that
there exists x0 ∈ (c, d) such that f ′(x0) = v.

Hint: let g(x) = f(x) − vx. Then g′(c) < 0 < g′(d). By Proposition
7.5.3, g(x) < g(c) for x slightly greater than c, and g(x) < g(d) for x
slightly less than d. It follows that g achieves its minimum value on
[c, d] at some point in the interior (c, d).

2. Suppose that limx→x0− f ′(x0) exists. Use the intermediate value prop-
erty to show that it is equal to f ′(x0). Prove also the analogous state-
ment for limx→x0+ f ′(x). Deduce that if both limits exist then f ′ is
continuous at x0.

7.6 Inequalities from the MVT

We wish to use information on f ′ to deduce information on f . Suppose we
have a bound for f ′ on the interval [a, x]. Applying the mean value theorem
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to the interval [a, x], we have

f(x)− f(a)

x− a
= f ′(c)

for some c ∈ (a, x). From the bound on f ′ we can deduce something about
f(x).

Example 7.6.1 For any x > 1,

1− 1

x
< ln(x) < x− 1.

Proof Consider the function ln on [1, x]. We will prove later that ln :
(0,∞) → R is differentiable everywhere and ln′(x) = 1

x . We already know
for any b > 0, ln : [1, b] → R is continuous, as it is the inverse of the
continuous function ex : [0, ln b] → [1, b].

Fix x > 1. By the mean value theorem applied to the function f(y) =
ln y on the interval [1, x], there exists c ∈ (1, x) such that

ln(x)− ln 1

x− 1
= f ′(c) =

1

c
.

Since 1
x < 1

c < 1,
1

x
<

lnx

x− 1
< 1.

Multiplying through by x− 1 > 0, we see

x− 1

x
< lnx < x− 1.

!

Example 7.6.2 Let f(x) = 1 + 2x + 2
x . Show that f(x) ≤ 23.1 + 2x on

[0.1,∞).

Proof First f ′(x) = 2− 2
x2 . Since f ′(x) < 0 on [0.1, 1), by Corollary 7.5.1

of the MVT, f decreases on [0.1, 1]. So the maximum value of f on [0.1, 1]
is f(0.1) = 23.1. On [1,∞), f(x) ≤ 1 + 2x+ 2 = 3 + 2x. !
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7.7 Asymptotics of f at Infinity

Example 7.7.1 Let f : [1,∞) → R be continuous. Suppose that it is
differentiable on (1,∞). If limx→+∞ f ′(x) = 1 there is a constant K such
that

f(x) ≤ 2x+K.

Proof

1. Since limx→+∞ f ′(x) = 1, taking ε = 1, there is a real number A > 1
such that if x > A, |f ′(x)− 1| < 1. Hence

f ′(x) < 2 if x > A.

We now split the interval [1,∞) into [1, A]∪ (A,∞) and consider f on
each interval separately.

2. Case 1: x ∈ [1, A]. By the Extreme Value Theorem, f has an upper
bound K on [1, A]. If x ∈ [1, A], f(x) ≤ K. Since x > 0,

f(x) ≤ K + 2x, x ∈ [1, A].

3. Case 2. x > A. By the Mean Value Theorem, applied to f on [A, x],
there exists c ∈ (A, x) such that

f(x)− f(A)

x−A
= f ′(c) < 2,

by part 1). So if x > A,

f(x) ≤ f(A) + 2(x−A) ≤ f(A) + 2x ≤ K + 2x.

The required conclusion follows. !
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0 1 A
x

y

3
2x+ 4

1
2x− 6

The graph of f lies in the wedge-shaped region with the yellow boundaries.

Exercise 7.7.2 Let f(x) = x+ sin(
√
x). Find limx→+∞ f ′(x).

Exercise 7.7.3 In Example 7.7.1, can you find a lower bound for f?

Example 7.7.4 Let f : [1,∞) → R be continuous. Suppose that it is
differentiable on (1,∞). If limx→+∞ f ′(x) = 1 then there are real numbers
m and M such that for all x ∈ [1,∞),

m+
1

2
x ≤ f(x) ≤ M +

3

2
x.

Proof

1. By assumption limx→+∞ f ′(x) = 1. For ε = 1
2 , there exists A > 1 such

that if x > A,
1

2
= 1− ε < f ′(x) < 1 + ε =

3

2
.

2. Let x > A. By the Mean Value Theorem, applied to f on [A, x], there
exists c ∈ (A, x) such that

f ′(c) =
f(x)− f(A)

x−A
.
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Hence
1

2
<

f(x)− f(A)

x−A
<

3

2
.

So if x > A,

f(A) +
1

2
(x−A) ≤ f(x) ≤ f(A) +

3

2
(x−A)

f(A)− 1

2
A+

1

2
x ≤ f(x) ≤ f(A) +

3

2
x.

3. On the finite interval [1, A], we may apply the Extreme Value Theorem
to f(x)− 1

2x and to f(x) so there are m,M such that

m ≤ f(x)− 1

2
x, f(x) ≤ M.

Then if x ∈ [1, A],

f(x) ≤ M ≤ M +
3

2
x

f(x) = f(x)− 1

2
x+

1

2
x ≥ m+

1

2
x.

4. Since m ≤ f(A)− 1
2A, the required identity also holds if x > A.

!

Exercise 7.7.5 In Example 7.7.4 can you show that there exist real numbers
m and M such that for all x ∈ [0,∞),

m+ 0.99x ≤ f(x) ≤ 1.01x+M?

Exercise 7.7.6 Let f : [1,∞) → R be continuous. Suppose that it is dif-
ferentiable on (1,∞). Suppose that limx→+∞ f ′(x) = k. Show that for any
ε > 0 there are numbers m,M such that

m+ (k − ε)x ≤ f(x) ≤ M + (k + ε)x.

Comment: If limx→+∞ f ′(x) = k, the graph of f lies in the wedge formed
by the lines y = M + (k + ε)x and y = m+ (k − ε)x. This wedge contains
and closely follows the line with slope k. But we have to allow for some
oscillation and hence the ε, m and M . In the same way if |f ′(x)| ≤ Cxα

when x is sufficiently large then f(x) is controlled by x1+α with allowance
for the oscillation.

What can we say if limx→∞ f ′(x) = 0?
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Exercise 7.7.7 (i) Draw the graph of a function f such that

1. limx→∞ f ′(x) = 0, but limx→∞ f(x) = ∞

2. limx→∞ f(x) = 0 but limx→∞ f ′(x) does not exist.

(ii) Show that if limx→∞ f(x) and limx→∞ f ′(x) both exist and are finite,
then limx→∞ f ′(x) = 0.

7.8 Continuously Differentiable Functions

When f is differentiable at every point of an interval, we investigate the
properties of its derivative f ′(x).

Definition 7.8.1 We say that f : [a, b] → R is continuously differentiable
if it is differentiable on [a, b] and f ′ is continuous on [a, b]. Instead of ‘con-
tinuously differentiable’ we also say that f is C1 on [a, b].

Note that by f ′(a) we mean f ′(a+) and by f ′(b) we mean f ′(b−). A similar
notion exists for f defined on (a, b), or on (a,∞), on (−∞, b), or on (−∞,∞).

Example 7.8.2 The function g defined by g(x) = x2 sin(1/x2) for x '= 0,
g(0) = 0, is differentiable on all of R, but not C1 — its derivative is not
continuous at 0. See Example 7.5.2 (which deals with the function f(x) =
x+ g(x)) for details.

Example 7.8.3 Let 0 < α and

h(x) =

{
x2+α sin(1/x) x > 0
0, x = 0

Claim: The function h is C1 on [0,∞).
Proof We have

h′(0) = lim
x→0+

x2+α sin(1/x)

x− 0
= lim

x→0+
x1+α sin(1/x) = 0,

and
h′(x) = (2 + α)x1+α sin(1/x)− xα cos(1/x)

for x > 0. Since

|(2 + α)x1+α sin(1/x)− xα cos(1/x)| ≤ (2 + α)|x|1+α + |x|α,

by the sandwich theorem, limx→0+ h′(x) = 0 = h′(0). Hence h is C1. !
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Show that h′ is not differentiable at x = 0, if α ∈ (0, 1).

Definition 7.8.4 The set of all continuously differentiable functions on
[a, b] is denoted by C1([a, b];R) or by C1([a, b]) for short.

Similarly we may define C1((a, b);R), C1((a, b];R), C1([a, b);R), C1([a,∞);R),
C1((−∞, b];R), C1((−∞,∞);R) etc.

7.9 Higher Order Derivatives

Definition 7.9.1 Let f : (a, b) → R be differentiable. We say f is twice
differentiable at x0 if f ′ : (a, b) → R is differentiable at x0. We write:

f
′′
(x0) = (f ′)′(x0).

It is called the second derivative of f at x0. It is also denoted by f (2)(x0).

Example 7.9.2 Let

g(x) =

{
x3 sin(1/x) x '= 0
0, x = 0

Claim: The function g is twice differentiable on all of R.
Proof It is clear that g is differentiable on R!{0}. It follows directly from
the defintion of derivative that g is differentiable at 0 and g′(0) = 0. So g is
differentiable everywhere and its derivative is

g′(x) =

{
3x2 sin(1/x)− x cos(1/x) x '= 0
0, x = 0

By the sandwich theorem, limx→0 3x2 sin(1/x) − x cos(1/x) = 0 = g′(0).
Hence g is C1.

!

If the derivative of f is also differentiable, we consider the derivative of
f ′.

Definition 7.9.3 We say that f is n times differentiable at x0 if f (n−1) is
differentiable at x0. The the nth derivative of f at x0 is:

f (n)(x0) = (f (n−1))′(x0).
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Definition 7.9.4 We say that f is C∞, or smooth on (a, b) if it is n times
differentiable for every n ∈ N.

Definition 7.9.5 We say that f is n times continously differentiable on
[a, b] if f (n) exists and is continuous on [a, b].

This means all the lower order derivatives and f itself are continuous, of
course - otherwise f (n) would not be defined..

Definition 7.9.6 The set of all functions which are n times differentiable
on (a, b) and such that the derivative f (0), f (1), . . . f (n) are continuous func-
tions on (a, b) is denoted by Cn(a, b).

There is a similar definition with [a, b], or other types of intervals, in place
of (a, b).

7.10 Distinguishing Local Minima from Local Max-
ima

Theorem 7.10.1 Let f : (a, b) → R be differentiable in a neighbourhood of
the point x0. Suppose that f ′(x0) = 0, and that f ′ also is differentiable at
x0. Then if f ′′(x0) > 0, f has a local minimum at x0, and if f ′′(x0) < 0, f
has a local maximum at x0.

Proof Suppose that f ′′(x0) > 0. That is, since f ′(x0) = 0,

lim
h→0

f ′(x0 + h)

h
> 0.

Hence there exists δ > 0 such that for 0 < |h| < δ,

f ′(x0 + h)

h
> 0. (7.10.1)

This means that if 0 < h < δ, then f ′(x0 + h) > 0, while if −δ < h < 0,
then f ′(x0 + h) < 0. (We are repeating the argument from the proof of
Proposition 7.5.3.) It follows by the MVT that f is decreasing in (x0− δ, x0]
and increasing in [x0, x0 + δ). Hence x0 is a strict local minimum. The case
where f ′′(x0) < 0 follows from this by taking g = −f . !
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Corollary 7.10.2 If f : [a, b] → R is such that f ′′(x) > 0 for all x ∈ (a, b)
and f is continuous on [a, b] then for all x ∈ (a, b),

f(x) ≤ f(a) +
f(b)− f(a)

b− a
(x− a).

In other words, the graph of f between (a, f(a)) and (b, f(b)) lies below the
line segment joining these two points.

(b,f(b))

(a,f(a))

ba

Proof Let

g(x) = f(a) +
f(b)− f(a)

b− a
(x− a).

The graph of g is the straight line joining the points (a, f(a)) and (b, f(b)).
Let h(x) = f(x)− g(x). Then

1. h(a) = h(b) = 0;

2. h is continuous on [a, b] and twice differentiable on (a, b);

3. h′′(x) = f ′′(x)− g′′(x) = f ′′(x) > 0 for all x ∈ (a, b).

By the extreme value theorem there are points x1, x2 ∈ [a, b] such that

h(x1) ≤ h(x) ≤ h(x2), ∀x ∈ [a, b].

If x2 ∈ (a, b), it is a local maximum and hence h′(x2) = 0 (see Lemma
7.1.5). But then by 7.10.1, since h′′(x2) > 0, x2 would also be a strict local
minimum! This is absurd. So x2 cannot be in the interior of the interval
[a, b] – it must be an end-point, a or b. In either case h(x2) = 0. We have
proved that 0 is the maximum value of h and so h(x) ≤ 0 and f(x) ≤ g(x).

!
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Still higher derivatives

What if f ′(x0) = f ′′(x0) = 0 and f ′′′(x0) '= 0? What can we conclude about
the behaviour of f in the neighbourhood of x0? Let us reason as we did in
the proof of 7.10.1. Suppose f ′′′(x0) > 0. Then there exists δ > 0 such that

if x0 − δ < x < x0 then f ′′(x) < f ′′(x0) and therefore f ′′(x) < 0

and

if x0 < x < x0 + δ then f ′′(x0) < f ′′(x) and therefore 0 < f ′′(x).

It follows that f ′ is decreasing in [x0 − δ, x0] and increasing in [x0, x0 + δ].
Since f ′(x0) = 0, we conclude that f ′ is positive in [x0 − δ, x0) and also
positive in (0, x0 + δ]. We have proved

Proposition 7.10.3 If f ′(x0) = f ′′(x0) = 0 and f ′′′(x0) > 0 then there
exists δ > 0 such that f is increasing on [x0 − δ, x0 + δ]. !

Observe that this is exactly the behaviour we see in f(x) = x3 in the neigh-
bourhood of 0.

Exercise 7.10.4 1. Prove that if f ′(x0) = f ′′(x0) = 0 and f ′′′(x0) < 0
then there exists δ > 0 such that f is decreasing on [x0 − δ, x0 + δ].

2. What happens if f ′(x0) = f ′′(x0) = f ′′′(x0) = 0 and f (4)(x0) > 0?

3. What happens if f ′(x0) = · · · = f (k)(x0) = 0 and f (k+1)(x0) '= 0?

Exercise 7.10.5 Sketch the graph of f if f ′ is the function whose graph is

shown and f(0) = 0.

x

y

f ′
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Chapter 8

Power Series

Definition 8.0.6 By a power series we mean an expression of the type

∞∑

n=n0

anx
n or

∞∑

n=n0

an(x− x0)
n

where each an is in R (or, later on in the subject, in the complex domain
C). Usually the initial index n0 is 0 or 1.

By convention, x0 = 1 for all x (including 0) and 0n = 0 for all n ∈ N with
n > 0

Example 8.0.7 1.
∑∞

n=0(
x
3 )

n, an = 1
3n n0 = 0

2.
∑∞

n=1(−1)n xn

n , n0 = 0, an = (−1)n 1
n , n0 = 1.

3.
∑∞

n=0
xn

n! , an = 1
n! , n0 = 0. By convention 0! = 1.

4.
∑∞

n=0 n!x
n, an = n!, n0 = 0.

If we substitute a real number in place of x, we obtain an infinite series.
For which values of x does the infinite series converge?

Lemma 8.0.8 (The Ratio test) The series
∑∞

n=n0
bn

1. converges absolutely if there is a number r < 1 such that
∣∣∣ bn+1

bn

∣∣∣ < r

eventually.

2. diverges if there is a number r > 1 such that
∣∣∣ bn+1

bn

∣∣∣ > r eventually.
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Recall that by a statement holding ‘eventually’ we mean that there exists
N0 such that the statement holds for all n > N0.

Lemma 8.0.9 (The Limiting Ratio test) The series
∑∞

n=0 bn

1. converges absolutely if limn→∞

∣∣∣ bn+1

bn

∣∣∣ < 1;

2. diverges if limn→∞

∣∣∣ bn+1

bn

∣∣∣ > 1.

Example 8.0.10 Consider
∑∞

n=0

(
x
3

)n
. Let bn =

(
x
3

)n
. Then

∣∣∣∣
bn+1

bn

∣∣∣∣ =
∣∣(x3 )

n+1
∣∣

∣∣(x3 )n
∣∣ =

|x|
3
,

{
< 1, if |x| < 3
> 1, if |x| > 3.

By the ratio test, the power series is absolutely convergent if |x| < 3, and
divergent if |x| > 3.
If x = 3, the power series is equal to 1 + 1 + . . . , which is divergent.
If x = −3 the power series is equal to (−1) + 1 + (−1) + 1 + . . . , and again
is divergent.

Example 8.0.11 Consider
∑∞

n=0
(−1)n

n xn. Let bn = (−1)n

n xn. Then

∣∣∣∣
bn+1

bn

∣∣∣∣ =

∣∣∣ (−1)n+1

n+1 xn+1
∣∣∣

∣∣∣ (−1)n

n xn
∣∣∣

= |x|
(

n

n+ 1

)
n→∞−→ |x|,

{
< 1, if |x| < 1
1, if |x| > 1.

The series is convergent for |x| < 1, and divergent for |x| > 1.

For x = 1, we have
∑ (−1)n

n which is convergent.
For x = −1 we have

∑ 1
n which is divergent.

Example 8.0.12 Consider the power series
∑∞

n=0
xn

n! . We have
∣∣∣∣∣∣

x(n+1)

(n+1)!
xn

n!

∣∣∣∣∣∣
=

|x|
n+ 1

→ 0 < 1

The power series converges for all x ∈ (−∞,∞).
∑∞

n=0 n!x
n converges only at x = 0. Indeed if x '= 0,

|(n+ 1)x(n+1)|

|n!xn| = (n+ 1)|x| → ∞

as n → ∞.
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If for some x ∈ R, the infinite series
∑∞

n=0 anx
n converges, we define

f(x) =
∞∑

n=0

anx
n.

The domain of f consists of all x such that
∑∞

n=1 anx
n is convergent. If

x = 0,
∞∑

n=0

an0
n = a0

is convergent, and so f(0) = a0. We wish to identify the set E of points for
which the power series is convergent. And is the function so defined on E
continuous and even differentiable?

If the power series
∑∞

n=0 anx
n converges for x ∈ E, then the power series∑∞

n=0 an(x− x0)n converges for x ∈ x0 +E. So in what follows we focus on
series of the form

∑∞
n=0 anx

n.

8.1 Radius of Convergence

Lemma 8.1.1 If for some number x0,
∑∞

n=0 anx
n
0 converges, then

∑∞
n=0 anC

n

converges absolutely for any C with |C| < |x0|.

Proof As
∑

anxn0 is convergent,

lim
n→∞

|an||x0|n = 0.

Convergent sequences are bounded. So there is a number M such that for
all n, |anxn0 | ≤ M .

Suppose |C| < |x0|. Let r = |C|
|x0| . Then r < 1, and

|anCn| =
∣∣∣∣anx

n
0

(
Cn

xn0

)∣∣∣∣ ≤ Mrn.

By the comparison theorem,
∑∞

n=0 anC
n converges absolutely. !

Theorem 8.1.2 Consider a power series
∑∞

n=0 anx
n. Then one of the fol-

lowing holds:

(1) The series only converges at x = 0.

(2) The series converges for all x ∈ (−∞,∞).

89



(3) There is a positive number 0 < R < ∞, such that
∑∞

n=0 anx
n converges

for all x with |x| < R and diverges for all x with |x| > R.

Proof

• Let

S =

{
x
∣∣∣

∞∑

n=0

anx
n is convergent

}
.

Since 0 ∈ S, S is not empty. If S is not bounded above, then by
Lemma 8.1.1,

∑∞
n=0 anx

n converges for all x. This is case (2).

• Either there is a point y0 '= 0 such that
∑∞

n=0 any
n
0 is convergent, or

R = 0 and we are in case (1).

• If S is strictly bigger than just {0}, and is bounded, let

R = sup{|x| : x ∈ S}.

– If x is such that |x| < R, then |x| is not an upper bound for S
(after all, R is the least upper bound). Thus there is a number
b ∈ S with |x| < b. Because

∑∞
n=0 anb

n converges, by Lemma
8.1.1 it follows that

∑∞
n=0 anx

n converges.

– If |x| > R, then x '∈ S hence
∑∞

n=0 anx
n diverges.

!

This number R is called the radius of convergence of the power series.
In cases (1) and (2) we define the radius of convergence to be 0 and ∞
respectively. With this definition, we have

Corollary 8.1.3 Let R be the radius of convergence of the power series∑∞
n=n0

anxn. Then

R = sup{x ∈ R :
∞∑

n=n0

anx
n converges}.

!

When x = −R and x = R, we cannot say anything about the convergence
of the series

∑∞
n=0 anx

n without further examination.
In the next section we will develop a method for finding the value of R.
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Lemma 8.1.4 Suppose that
∑∞

n=n0
anxn has radius of convergence R and∑∞

n=n0
bnxn has radius of convergence S, let c ∈ R!{0}, and let T and U be

the radii of convergence of
∑∞

n=n0
(an+bn)xn and

∑∞
n=n0

canxn respectively.
Then T ≥ min{R,S} and U = R. !

Proof If
∑∞

n=n0
anxn and

∑∞
n=n0

bnxn both converge, then so does∑
n=n0

anxn + bnxn. For

N∑

n=n0

(anx
n + bnx

n) =
N∑

n=n0

anx
n +

N∑

n=n0

bnx
n

and therefore as N → ∞, the sequence on the left of this equation tends to
the sum of the limits of the sequences on the right.

It follows by Corollary 8.1.3 that T ≥ min{S, T}. The proof for
∑

canxn

is similar. !

Exercise 8.1.5 Give an example where T > min{R,S}.

Remark 8.1.6 Complex Analysis studies power series in which both the
variable and the coefficients may be complex numbers. We will refer to them
as complex power series. The proof of Lemma 8.1.1 works unchanged for
complex power series, and in consequence there is a version of Theorem 8.1.2
for complex power series: every complex power series

∑∞
n=0 an(z−z0)n has a

radius of convergence, a number R ∈ R∪{∞} such that if |z−z0| < R then
the series converges absolutely. The set of z for which the series converges
is now a disc centred on z0, rather than an interval as in the real case. Also
different from the real case is the fact (which we do not prove here) that
a complex power series with radius of convergence 0 < R < ∞ necessarily
diverges for some z with |z| = R.

8.2 The Limit Superior of a Sequence

In this section we show how to find the radius of convergence of a power
series. The method is based on the root test for the convergence of a series.
This says that the series

∑∞
n=0 an converges if limn→∞ |an|1/n < 1 and di-

verges if limn→∞ |an|1/n > 1. The problem with this test is that in many
cases, such as where an = (1+ (−1)n), the sequence |an|1/n does not have a
limit as n → ∞.
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The way round this problem is to replace (an) by a related sequence
which always does have a limit. Recall that if A is a set then

supA =

{
the least upper bound of A, if A is bounded above
+∞, if A is not bounded above

inf A =

{
the greatest lower bound of A, if A is bounded below
−∞, if A is not bounded below

Given a sequence (an), we define a new sequence (sn) by

s1 = sup{a1, a2, a3, . . .}
s2 = sup{a2, a3, a4, . . .}
· · · = · · ·
sn = sup{an, an+1, . . .}
· · · = · · ·

Remarkably, as we will see, the sequence (sn) always has a limit as n → ∞,
provided we allow this limit to be either a real number or ±∞. The reason
for this is that (sn) is a monotone sequence: sn+1 ≤ sn for all n. This
inequality is more or less obvious from the definition of sn: we have

{an+1, an+2, . . .} ⊆ {an, an+1, . . .}

and so
sup{an+1, an+2, . . .} ≤ sup{an, an+1, . . .}

If this inequality is not obvious to you, draw a picture of two subsets of R,
with one contained in the other, and look at where the supremum of each
must lie.

Lemma 8.2.1 Let (an) be a sequence of real numbers, and let sn be defined
as above. Then one of the following occurs:

1. (an) is not bounded above. In this case sn = ∞ for all n, and so

lim
n→∞

sn = ∞.

2. (an) is bounded above and (sn) is bounded below. In this case

lim
n→∞

sn ∈ R.
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3. (an) is bounded above, but (sn) is not bounded below. In this case

lim
n→∞

sn = −∞.

Proof If {a1, a2, . . .} is not bounded above, then nor is the set {an, an+1, . . .}
for any n. Thus sn = ∞ for all n.

If (an) is bounded above, then sn ∈ R for all n. Moreover, the sequence
(sn) is non-increasing, as observed above. If it is bounded below, then as it
is non-increasing, it must converge to a real limit – in fact it converges to
its infimum:

lim
n→∞

sn = inf{sn : n ∈ N}.

If the sequence (sn) is not bounded below then since it is non-increasing, it
converges to −∞. !

Note that if (an) is bounded above and below, then so is (sn), for

L ≤ an ≤ U for all n

implies
L ≤ sn ≤ U for all n.

Definition 8.2.2 Let (an) be a sequence. With (sn) as above, we define

lim
n→∞

sup an = lim
n→∞

sn.

Note that the limit on the right exists, by Lemma 8.2.1.

For a convergent sequence, this definition is nothing new:

Proposition 8.2.3 If limn→∞ an = $ then limn→∞ sup an = $ also.

Proof Let ε > 0. By the convergence of (an), there exists N such that if
n ≥ N then

$− ε < an < $+ ε.

Since $+ ε is an upper bound for {aN , aN+1, . . .}, the supremum sN of this
set is less than or equal to a+ ε. As sn ≤ sN for n ≥ N , we have

sn ≤ $+ ε

for n ≥ N . And since sn ≥ an for all n, if n ≥ N we have

$− ε < an ≤ sn.
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Thus, if n ≥ N , then
$− ε < sn ≤ $+ ε.

This shows that sn → $ as n → ∞. !

Example 8.2.4 1. Let bn = 1− 1
n . Then

sup

{
1− 1

n
, 1− 1

n+ 1
, . . .

}
= 1.

Hence

lim sup
n→∞

(1− 1

n
) = lim

n→∞
1 = 1.

2. Let bn = 1 + 1
n . Then sup{1 + 1

n , 1 +
1

n+1 , . . . } = 1 + 1
n . Hence

lim sup
n→∞

(1+
1

n
) = lim

n→∞
sup

{
1 +

1

n
, 1 +

1

n+ 1
, . . .

}
= lim

n→∞
(1+

1

n
) = 1.

Exercises 8.2.5 1. Show that if b ∈ R≥0 then lim sup ban = b lim sup an.
What can you say if b < 0?

2. Suppose $ = lim supn→∞ bn is finite, and let ε > 0. Show

(a) There is a natural number Nε such that if n > N then bn < $+ε.
That is, bn is bounded above by $+ ε, eventually.

(b) For any natural number N , there exists n > N s.t. bn > $ − ε.
That is, there is a sub-sequence bnk with bnk > $− ε.

Deduce that if $ = lim supn→∞ bn there is a sub-sequence bnk such that
limk→∞ bnk = $.

3. We say that $ is a limit point of the sequence (xn) if there is a sub-
sequence (xnk) tending to $. Let L((xn)) be the set of limit points of
(xn). Show that

lim sup
n→∞

bn = maxL((xn))

lim inf
n→∞

bn = minL((xn)).

4. Suppose that (bn) is a sequence tending to b ∈ R, and (xn) is another
sequence, not necessarily convergent. Show that

lim sup(bnxn) = b lim supxn.
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8.3 Hadamard’s Test

Theorem 8.3.1 (Cauchy’s root test) The infinite sum
∑∞

n=1 zn is

1. convergent if lim supn→∞ |zn|
1
n < 1.

2. divergent if lim supn→∞ |zn|
1
n > 1.

Proof Let
a = lim sup

n→∞
|zn|

1
n .

1. Suppose that a < 1. Choose ε > 0 so that a+ε < 1. Then there exists
N0 such that whenever n > N0, |zn| < (a + ε)n. As

∑∞
n=1(a + ε)n is

convergent,
∑∞

n=N0
|zn| is convergent by comparison. And

∞∑

n=1

|zn| =
N0−1∑

n=1

|zn|+
∞∑

n=N0

|zn|

is convergent.

2. Suppose that a > 1. Choose ε so that a − ε > 1. Then for infinitely
many n, |zn| > (a − ε)n > 1. Consequently |zn| '→ 0 and hence∑∞

n=1 zn is divergent.

!

Theorem 8.3.2 (Hadamard’s Test) Let
∑∞

n=0 anx
n be a power series.

1. If lim supn→∞ |an|
1
n = ∞, the power series converges only at x = 0.

2. If lim supn→∞ |an|
1
n = 0, the power series converges for all x ∈ (−∞,∞).

3. Let r = lim supn→∞ |an|
1
n . If 0 < r < ∞, the radius of convergence R

of the power series is equal to 1/r.

Proof We only prove case 3. If |x| < R, lim supn→∞ |anxn|
1
n = r|x| < 1

and by Cauchy’s root test the series
∑∞

n=0 anx
n converges.

Suppose that |x| > R, then lim supn→∞ |anxn|
1
n = r|x| > 1, and by

Cauchy’s root test, the series
∑∞

n=0 anx
n diverges.

!
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Example 8.3.3 Consider
∑∞

n=0
(−3)nxn
√
n+1

. We have

lim
n→∞

(
|(−3)n|√
n+ 1

) 1
n

= 3 lim
n→∞

1

(n+ 1)
1
2n

= 3.

So R = 1
3 . If x = −1/3, we have a divergent sequence. The interval of

convergence is x = (−1/3, 1/3].

Example 8.3.4 Consider
∑∞

n=1 anx
n where a2k = 22k and a2k+1 = 5(32k+1).

This means

an =

{
2n, n is even
5(3n), n is odd

Thus

|an|
1
n =

{
2, n is even

3(5
1
n ), n is odd

,

which has two limit points: 2 and 3.

lim sup |an|
1
n = 3.

and R = 1/3. For x = 1
3 , x = −1

3 , |anx
n| '= 0 and does not converge to 0

(check). So the interval of convergence is (−1/3, 1/3).

Example 8.3.5 Consider
∑∞

n=1 anx
n where a2k = (15)

2k and a2k+1 =
(
−1

3

)2k+1
.

lim sup |an|
1
n = 1/3.

So R = 3. For x = 3, x = −3, |anxn| ≥ 1 and does not tend to 0. So the
interval of convergence is (−3, 3).

Example 8.3.6 Consider the series
∑∞

k=1 k
2xk

2
. We have

an =

{
n, if n is the square of a natural number
0, otherwise.

Thus lim sup |an|
1
n = 1 and R = 1. Does the series converge when x = ±1?
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8.4 Term by Term Differentiation

If fN (x) =
∑N

n=0 anx
n = a0 + a1x+ · · ·+ aNxN then

f ′
N (x) =

N∑

n=0

nanx
n−1, f ′′

N (x) =
N∑

n=0

n(n− 1)anx
n−2.

Does it hold, if f(x) =
∑∞

n=0 anx
n, that

f ′(x) ≡ d

dx

( ∞∑

n=0

anx
n

)
=

∞∑

n=0

nanx
n−1

f ′′(x) ≡ d2

dx2

( ∞∑

n=0

anx
n

)
=

∞∑

n=0

n(n− 1)anx
n−2 ?

These equalities hold if it is true that the derivative of a power series is the
sum of the derivatives of its terms; that is, if

d

dx

∞∑

n=0

anx
n =

∞∑

n=0

d

dx
anx

n.

In other words, we are asking whether it is correct to differentiate a power
series term by term. As preliminary question, we ask: if R is the radius of
convergence of

∑∞
n=0 anx

n, what are the radii of convergence of the power
series

∑∞
n=0 nanx

n−1 and
∑∞

n=0 n(n− 1)anxn−2?

Lemma 8.4.1 The power series
∑∞

n=0 anx
n,

∑∞
n=0 nanx

n−1 and
∑∞

n=0 n(n−
1)anxn−2 have the same radius of convergence.

Proof Let R1, R2, R3 be respectively the radii of convergence of the first,
the second and the third series. Recall Hadamard’s Theorem: if $ =
lim supn→∞ |an|

1
n , then R1 = 1

# . We interpret 1
0 as ∞ and 1

∞ as 0 to cover
all three cases for the radius of convergence.

Observe that

x

( ∞∑

n=0

nanx
n−1

)
=

∞∑

n=0

nanx
n

so
∑∞

n=0 nanx
n−1 and

∑∞
n=0 nanx

n have the same radius of convergence R2.
By Hadamard’s Theorem

R2 =
1

lim supn→∞ |nan|
1
n
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and note that

lim sup
n→∞

|nan|
1
n = lim

n→∞
n

1
n lim sup

n→∞
|an|

1
n = $.

The last step follows from the fact that limn→∞ n
1
n = 1 and from Exercise

8.2.5(4). So R1 = R2.
!

Exercise: show that R3 = R1. You may use the fact that

lim
n→∞

(n− 1)
1
n = 1.

Below we prove that a function defined by a power series can be differ-
entiated term by term, and in the process show that f is differentiable on
(−R,R). From this theorem it follows that f is continuous.

Theorem 8.4.2 (Term by Term Differentiation) Let R be the radius of
convergence of the power series

∑∞
n=0 anx

n. Let f : (−R,R) → R be the
function defined by this power series,

f(x) =
∞∑

n=0

anx
n.

Then f is differentiable at every point of (−R,R) and

f ′(x) =
∞∑

n=0

nanx
n−1.

Proof Let x0 ∈ (−R,R). We show that f is differentiable at x0 and
f ′(x0) =

∑∞
n=0 nanx

n−1
0 . We wish to show that for any ε > 0 there exists

δ > 0 such that if |x− x0| < δ,

∣∣∣∣
|f(x)− f(x0)

x− x0
− f ′(x0)

∣∣∣∣ < ε. (8.4.1)
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We simplify the left hand side:
∣∣∣∣
|f(x)− f(x0)

x− x0
− f ′(x0)

∣∣∣∣

=

∣∣∣∣∣

∑∞
n=0 anx

n −
∑∞

n=0 anx
n
0

x− x0
−

∞∑

n=0

nanx
n−1
0

∣∣∣∣∣

=

∣∣∣∣∣

∞∑

n=1

an(xn − xn0 )

x− x0
−

∞∑

n=1

nanx
n−1
0

∣∣∣∣∣

=

∣∣∣∣∣

∞∑

n=2

an

[
xn − xn0
x− x0

− nxn−1
0

]∣∣∣∣∣

≤
∞∑

n=2

|an|
∣∣∣∣
xn − xn0
x− x0

− nxn−1
0

∣∣∣∣ . (8.4.2)

To prove (8.4.1), we thus need to control each term
∣∣∣x

n−xn
0

x−x0
− nxn−1

0

∣∣∣. We

do this by means of the following lemma.
Note that if x ∈ (a, b) then |x| ≤ max(a, b); similarly

max{|x| : x ∈ [x0 − δ, x0 + δ]} = max{|x0 − δ|, |x0 + δ|}.

Lemma 8.4.3 Let x0 ∈ R and let n ∈ N. If δ > 0 and 0 < |x − x0| < δ,
then ∣∣∣∣

xn − xn0
x− x0

− nxn−1
0

∣∣∣∣ ≤ n(n− 1)ρn−2|x− x0|,

where ρ = max(|x0 − δ|, |x0 + δ|).

Proof We assume that x > x0. The case that x < x0 can be proved
analogously. Apply the Mean Value Theorem to fn(x) = xn, on [x0, x]:
there exists cn ∈ (x0, x) such that

fn(x)− fn(x0)

x− x0
= f ′

n(cn).

Since f ′
n(x) = nxn−1 this becomes

xn − xn0
x− x0

= ncn−1
n .
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It follows that
∣∣∣∣
xn − xn0
x− x0

− nxn−1
0

∣∣∣∣ = |ncn−1
n − nxn−1

0 |

= n|cn−1
n − xn−1

0 |.

Apply the mean value theorem again, this time to fn−1(x) = xn−1 on [x0, cn]:
there exists ξn ∈ (x0, cn) such that

fn−1(x)− fn−1(x0)

x− x0
= f ′

n−1(ξn).

Since f ′
n−1(x) =

d
dx(x

n−1) = (n− 1)xn−2,

cn−1
n − xn−1

0

cn − x0
= (n− 1)(ξn)

n−2

and
|cn−1
n − xn−1

0 | = (n− 1)|ξn|n−2|cn − x0|.
We see that

∣∣∣∣
xn − xn0
x− x0

− nxn−1
0

∣∣∣∣ = n|cn−1
n − xn−1

0 |

= n(n− 1)|ξn|n−2|cn − x0|.

Since ξn ∈ (x0, cn) ⊂ (x0, x), |ξn| ≤ ρ and |cn − x0| ≤ |x − x0| we finally
obtain that ∣∣∣∣

xn − xn0
x− x0

− nxn−1
0

∣∣∣∣ ≤ n(n− 1)ρn−2|x− x0|.

!

Proof of 8.4.2 (continued): Applying the Lemma to each of the terms
in (8.4.2), we get

∣∣∣∣
f(x)− f(x0)

x− x0
− f ′(x0)

∣∣∣∣ ≤
[ ∞∑

n=2

n(n− 1)|an|ρn−2

]
|x− x0|.

We need to chose δ so that if ρ = max{|x| : x ∈ [x0 − δ, x0 + δ]}, then the
power series

∑∞
n=2 n(n− 1)|an|ρn−2 converges. Since, by Lemma 8.4.1, this

power series has radius of convergence R, it converges if ρ < R.

We must now choose δ. We use the midpoint y1 of [−R, x0] and the
midpoint y2 of [x0, R]. We then choose a sub-interval

(x0 − δ0, x0 + δ0) ⊂ (y1, y2).
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−R y1 x0 y2 R
·

x0−R
2

x0+R
2

Let

δ0 := min{1
2
|R− x0|,

1

2
|x0 +R|}

and

ρ := max{1
2
|R− x0|,

1

2
|x0 +R|}.

Then ρ < R, as required.
Since the radius of convergence of

∑∞
n=2 n(n − 1)anxn−2 is also R, and

ρ < R,
∞∑

n=2

n(n− 1)anρ
n−2

is absolutely convergent. Let

A :=
∞∑

n=2

n(n− 1)|an|ρn−2 < ∞.

Finally, let δ = min{ ε
A , δ0}. Then if 0 < |x− x0| < δ,

∣∣∣∣
f(x)− f(x0)

x− x0
− f ′(x0)

∣∣∣∣ < A|x− x0| ≤ ε.

!

Since the derivative of f is a power series with the same radius of con-
vergence, we apply Theorem 8.4.2 to f ′ to see that f is twice differentiable
with the second derivative again a power series with the same radius of
convergence. Iterating this procedure we obtain the following corollary.

Corollary 8.4.4 Let f : (−R,R) → R,

f(x) =
∞∑

n=0

anx
n,

where R is the radius of convergence of the power series. Then f is in
C∞(−R,R).
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Example 8.4.5 If x ∈ (−1, 1), evaluate
∑∞

n=0 nx
n.

Solution. The power series
∑∞

n=0 x
n has R = 1. But if |x| < 1 the

geometric series has a limit and

∞∑

n=0

xn =
1

1− x
.

By term by term differentiation, for x ∈ (−1, 1),

d

dx

( ∞∑

n=0

xn
)

=
∞∑

n=1

nxn−1.

Hence

∞∑

n=0

nxn = x
d

dx

( ∞∑

n=0

xn
)

= x
d

dx

(
1

1− x

)
=

x

(1− x)2
.
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Chapter 9

Classical Functions of
Analysis

The following power series have radius of convergence R equal to ∞.

∞∑

n=0

xn

n!
,

∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!
,

∞∑

n=0

(−1)n
x2n

(2n)!
.

You can check this yourself using Theorem 8.3.2.

Definition 9.0.6 1. We define the exponential function exp : R → R
by

exp(x) =
∞∑

n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ . . . , ∀x ∈ R.

2. We define the sine function sin : R → R by

sinx = x− x3

3!
+

x5

5!
− . . .

=
∞∑

n=0

(−1)n

(2n+ 1)!
x2n+1.

3. We define the cosine function cos : R → R by

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ . . .

=
∞∑

n=0

(−1)n

(2n)!
x2n
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9.1 The Exponential and the Natural Logarithm
Function

Consider the exponential function exp : R → R,

exp(x) =
∞∑

n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ . . . , ∀x ∈ R.

Note that exp(0) = 1. By the term-by-term differentiation theorem 8.4.2,
d
dx exp(x) = exp(x), and so exp is infinitely differentiable.

Proposition 9.1.1 For all x, y ∈ R,

exp(x+ y) = exp(x) exp(y),

exp(−x) =
1

exp(x)
.

Proof For any y ∈ R considered as a fixed number, let

f(x) = exp(x+ y) exp(−x).

Then

f ′(x) =
d

dx
exp(x+ y) exp(−x) + exp(x+ y)

d

dx
exp(−x)

= exp(x+ y) exp(−x) + exp(x+ y)[− exp(−x)]

= 0.

By the corollary to the Mean Value Theorem, f(x) is a constant. Since
f(0) = exp(y), f(x) = exp(y), i.e.

exp(x+ y) exp(−x) = exp(y).

Take y = 0, we have

exp(x+ 0) exp(−x) = exp(0) = 1.

So

exp(−x) =
1

exp(x)

and

exp(x+ y) = exp(y)
1

exp(−x)
= exp(y) exp(x).

!

A neat argument, no?
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Proposition 9.1.2 exp is the only solution to the ordinary differential equa-
tion (ODE) {

f ′(x) = f(x)
f(0) = 1.

Proof Since d
dx exp(x) = exp(x) and exp(0) = 1, the exponential func-

tion is one solution of the ODE. Let f(x) be any solution. Define g(x) =
f(x) exp(−x).Then

g′(x) = f ′(x) exp(−x) + f(x)
d

dx
[exp(−x)]

= f(x) exp(−x)− f(x) exp(−x)

= 0.

Hence for all x, g(x) = g(0) = f(0) exp(0) = 1 · 1 = 1. Thus

f(x) exp(−x) = 1

and any solution f(x) must be equal to exp(x). !

It is obvious from the power series that exp(x) > 0 for all x ≥ 0. Since
exp(−x) = 1/ exp(x), it follows that exp(x) > 0 for all x ∈ R.

Exercise 9.1.3 1. Prove that the range of exp is all of R>0. Hint: If
exp(x) > 1 for some x then exp(xn) can be made as large, or as small,
as you wish, by suitable choice of n ∈ Z.

2. Show that exp : R → R>0 is a bijection.

We would like to say next:

Proposition 9.1.4 For all x ∈ R,

exp(x) = ex

where e =
∑∞

n=0
1
n! .

But what does “ ex ” mean? We all know that “ e2 ” means “e × e”, but
what about “ eπ ”? Operations of this kind need a definition!

It is easy to extend the simplest definition, that of raising a number to
an integer power, to define what it means to raise a number to a rational
power: first, for each n ∈ N! {0} we define an “n’th root” function

n√ : R≥0 → R
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as the inverse function of the (strictly increasing, infinitely differentiable)
function

x %→ xn.

Then for any m/n ∈ Q, we set

xm/n =
(
n√x

)m
,

where we assume, as we may, that n > 0. But this does not tell us what eπ

is. We could try approximation: choose a sequence of rational numbers xn
tending to π, and define

eπ = lim
n→∞

exn .

We would have to show that the result is independent of the choice of se-
quence xn (i.e. depends only on its limit). This can be done. But then
proving that the function f(x) = ax is differentiable, and finding its deriva-
tive, are rather hard. There is a much more elegant approach. First, we
define ln : R>0 → R as the inverse to the function exp : R → R>0, which
we know to be injective since its derivative is everywhere strictly positive,
and surjective by Exercise 9.1.3. Then we make the following definition:

Definition 9.1.5 For any x ∈ R and a ∈ R>0,

ax := exp(x ln a).

Before anything else we should check that this agrees with the original def-
inition of ax where it applies, i.e. where x ∈ Q. This is easy: because
ln is the inverse of exp, and (by Proposition 9.1.1) exp turns addition into
multiplication, it follows that ln turns multiplication into addition:

ln(a× b) = ln a+ ln b,

from which we easily deduce that ln(am) = m ln a (for m ∈ N) and then
that ln(am/n) = m/n ln a for m,n ∈ Z. Thus

exp(
m

n
ln a) = exp(ln(am/n) = am/n,

the last equality because exp and ln are mutually inverse.
We have given a meaning to “ ex ”, and we have shown that when x ∈ Q

this new meaning coincides with the old meaning. Now that Proposition
9.1.4 is meaningful, we will prove it.
Proof In the light of Definition 9.1.5, Proposition 9.1.4 reduces to

exp(x) = exp(x ln e). (9.1.1)

But ln e = 1, since exp(1) = e; thus (9.1.1) is obvious! !
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Exercise 9.1.6 Show that Definition 9.1.5, and the definition of “ ax ”
sketched in the paragraph preceding Definition 9.1.5 agree with one another.

Proposition 9.1.7 The natural logarithm function ln : (0,∞) → R is dif-
ferentiable and

ln′(x) =
1

x
.

Proof Since the differentiable bijective map exp(x) has exp′(x) '= 0 for
all x, the differentiability of its inverse follows from the Inverse Function
Theorem. And

ln′(x) =
1

exp′(y)

∣∣∣
y=ln(x)

=
1

exp(ln(x))
=

1

x
.

lnx • • x

lnx

ex

!

Remark: In some computer programs, eg. gnuplot, x
1
n is defined as

following, x
1
n = exp(ln(x

1
n )) = exp( 1n lnx). Note that ln(x) is defined only

for x > 0. This is the reason that typing in (−2)
1
3 returns an error message:

it is not defined!

9.2 The Sine and Cosine Functions

We have defined

sinx = x− x3

3!
+

x5

5!
− . . .

=
∞∑

n=0

(−1)n

(2n+ 1)!
x2n+1

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ . . .

=
∞∑

n=0

(−1)n

(2n)!
x2n
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Term by term differentiation shows that sin′(x) = cos(x) and cos′(x) =
− sin(x).

Exercise 9.2.1 For a fixed y ∈ R, put

f(x) = sin(x+ y)− sinx cos y − cosx sin y.

Compute f ′(x) and f ′′(x). Then let E(x) = (f(x))2+(f ′(x))2. What is E′?
Apply the Mean Value Theorem to E, and hence prove the addition formulae

sin(x+ y) = sinx cos y + cosx sin y

cos(x+ y) = cosx cos y − sinx sin y.

The sine and cosine functions defined by means of power series behave very
well, and it is gratifying to be able to prove things about them so easily.
But what relation do they bear to the sine and cosine functions defined in
elementary geometry?

h
o

a
θ

θ

θθ

. θ

(x,y)

1
θ

θ

sin   = y

cosin   = x

sin   = o/h

cosin   = a/h

coordinate geometryelementary trigonometry

We cannot answer this question now, but will be able to answer it after
discussing Taylor’s Theorem in the next chapter.
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Chapter 10

Taylor’s Theorem and Taylor
Series

We have seen that some important functions can be defined by means of
power series, and that any such function is infinitely differentiable.

If we are given an infinitely differentiable function, does there always
exist a power series which converges to it? And if such a power series exists,
how can we determine its coefficients?

We approach an answer to the question by first looking at polynomials,
i.e. at finite power series, and proving Taylor’s Theorem. This is con-
cerned with the following problem. Suppose that the function f is n times
differentiable in the interval (a, b), and that x0 ∈ (a, b). If we know the
values of f and its first n derivatives at x0, how much can we say about
the behaviour of f in the rest of (a, b)? It turns out (and is easy to prove)
that there is a unique polynomial P of degree n such that f(x0) = P (x0),
f ′(x0) = P ′(x0), . . . , f (n)(x0) = P (n)(x0). Taylor’s theorem gives a way of
estimating the difference between f(x) and P (x) at other points x ∈ (a, b).

Proposition 10.0.2 Let f : (a, b) → R be n times differentiable and let
x0 ∈ (a, b). Then there is a unique polynomial of degree n, Pn(x), such that

f(x0) = Pn(x0), f
′(x0) = P ′

n(x0), . . . , f
(n)(x0) = P (n)

n (x0), (10.0.1)
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namely

Pn(x) = f(x0) + f ′(x0)(x− x0) +
f (2)(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n

=
n∑

k=0

f (k)(x0)

k!
(x− x0)

k. (10.0.2)

!

Proof Evaluate the polynomial Pn at x0; it is clear that it satisfies Pn(x0) =
f(x0). Now differentiate and again evaluate at x0. It is clear that P ′

n(x0) =
f ′(x0). By repeatedly differentiating and evaluating at x0, we see that Pn

satisfies (10.0.1). !

The polynomial

Pn(x) =
n∑

k=0

f (k)(x0)(x− x0)k

k!

is called the degree n Taylor polynomial of f about x0.

Warning Pn(x) depends on the choice of point x0. Consider the function
f(x) = sinx. Let us determine the polynomial P2(x) for two different values
of x0.

1. Taking x0 = 0 we get

P2(x) = sin(0) + sin′(0)x+
sin′′(0)

2
x2 = x.

2. Taking x0 = π/2 we get

P2(x) = sin(π/2)+sin′(π/2)(x−π/2)+
sin′′(π/2)

2
(x−π/2)x2 = 1−1

2
(x−π/2)2.

Questions:

1. Let Rn(x) = f(x)− Pn(x) be the “error term”. It measures how well
the polynomial Pn approximates the value of f . How large is the error
term? Taylor’s Theorem is concerned with estimating the value of the
error Rn(x).

110



2. Is it true that limn→∞Rn(x) = 0? If so, then

f(x) = lim
n→∞

Pn(x) = lim
n→∞

n∑

k=0

f (k)(x0)

k!
(x−x0)

k =
∞∑

k=0

f (k)(x0)

k!
(x−x0)

k.

and we have a “power series expansion” for f .

3. Does every infinitely differentiable function have a power series expan-
sion?

Definition 10.0.3 If f is C∞ on its domain, the infinite series

∞∑

k=0

f (k)(x0)(x− x0)k

k!

is called the Taylor series for f about x0, or around x0.

Does the Taylor series of f about x0 converge on some neighbourhood of x0?
If so, it defines an infinitely differentiable function on this neighbourhood.
Is this function equal to f?

The answers to both questions are yes for some functions and no for
some others.

Definition 10.0.4 If f is C∞ on its domain (a, b) and x0 ∈ (a, b), we say
Taylor’s formula holds for f near x0 if for all x in some neighbourhood of
x0,

f(x) =
∞∑

k=0

f (k)(x0)(x− x0)k

k!
.

The following is an example of a C∞ function whose Taylor series con-
verges, but does not converge to f :

Example 10.0.5 (Cauchy’s Example (1823))

f(x) =

{
exp(− 1

x2 ), x '= 0
0 x = 0

.

It is easy to see that if x '= 0 then f(x) '= 0. Below we sketch a proof that
f (k)(0) = 0 for all k. The Taylor series for f about 0 is therefore:

∞∑

k=0

0

k!
xk = 0 + 0 + 0 + . . . .

This Taylor series converges everywhere, obviously, and the function it de-
fines is the zero function. So it does not converge to f(x) unless x = 0.
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How do we show that f (k)(0) = 0 for all k? Let y = 1
x ,

f ′
+(0) = lim

x→0+

exp(− 1
x2 )

x
= lim

y→+∞

y

exp(y2)
.

Since exp(y2) ≥ y2, limy→+∞
y

exp(y2) = 0 and limy→−∞
y

exp(y2) = 0. It follows

that
f ′
+(0) = f ′

−(0) = 0.

A similar argument gives the conclusion for k > 1. An induction is
needed. Details are given in the last exercise in Section C of Assignment 8.

Remark 10.0.6 By Taylor’s Theorem below, if

Rn(x) =
xn+1

(n+ 1)!
f (n+1)(ξn) → 0

where ξn is between 0 and x, Taylor’s formula holds. It follows that, for the
function above, either limn→∞Rn(x) does not exist, or, if it exists, it cannot
be 0. Convince yourself of this (without rigorous proof) by observing that
Qn+1(y) contains a term of the form (−1)n+1(n+ 2)!y−(n+2). And indeed

xn+1

(n+ 1)!
(−1)n+1(n+ 2)!ξ−n−2

n

may not converge to 0 as n → ∞.

Definition 10.0.7 * A C∞ function f : (a, b) → R is said to be real ana-
lytic if for each x0 ∈ (a, b), its Taylor series about x0 converges, and con-
verges to f , in some neighbourhood of x0.

The preceding example shows that the function e−1/x2
is not real analytic in

any interval containing 0, even though it is infinitely differentiable. Complex
analytic functions are studied in the third year Complex Analysis course.
Surprisingly, every complex differentiable function is complex analytic.

Example 10.0.8 Find the Taylor series for exp(x) =
∑∞

k=0
xk

k! about x0 =
1. For which x does the Taylor series converge? For which x does Taylor’s
formula hold?

Solution. For all k, exp(k)(1) = e1 = e. So the Taylor series for exp
about 1 is

∞∑

k=0

exp(k)(1)(x− 1)k

k!
=

∞∑

k=0

e(x− 1)k

k!
= e

∞∑

k=0

(x− 1)k

k!
.
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The radius of convergence of this series is +∞. Hence the Taylor series
converges everywhere.

Furthermore, since exp(x) =
∑∞

k=0
xk

k! , it follows that

∞∑

k=0

(x− 1)k

k!
= exp(x− 1)

and thus

e
∞∑

k=0

(x− 1)k

k!
= e exp(x− 1) = exp(1) exp(x− 1) = exp(x)

and Taylor’s formula holds.

Exercise 10.0.9 Show that exp is real analytic on all of R.

10.1 More on Power Series

Definition 10.1.1 If x0 ∈ R, a formal power series centred at x0 is an
expression of the form:

∞∑

n=0

an(x− x0)
n = a0 + a1(x− x0) + a2(x− x0)

2 + a3(x− x0)
3 + . . . .

Example 10.1.2 Take
∑∞

n=0
1
3n (x− 2)n. If x = 1,

∞∑

n=0

1

3n
(x− 2)n =

∞∑

n=0

1

3n
(1− 2)n =

∞∑

n=0

(−1)n
1

3n

is a convergent series.

What we learnt about power series
∑∞

n=0 anx
n can be applied here.

For example,

1. There is a radius of convergence R such that the series
∑∞

n=0 an(x −
x0)n converges when |x− x0| < R, and diverges when |x− x0| > R.

2. R can be determined by the Hadamard Theorem:

R =
1

r
, r = lim sup

n→∞
|an|

1
n .
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3. The open interval of convergence for
∑∞

n=0 an(x− x0)n is

(x0 −R, x0 +R).

The functions

f(x) =
∞∑

n=0

an(x− x0)
n and g(x) =

∞∑

n=0

anx
n

are related by
f(x) = g(x− x0).

4. The term by term differentiation theorem holds for x in (x0−R, x0+R)
and

f ′(x) =
∞∑

n=0

nan(x− x0)
n−1 = a1 + 2a2(x− x0) + 3a3(x− x0)

2 + . . . .

Example 10.1.3 Consider
∑∞

n=0
1
3n (x− 2)n.

Then

lim sup(
1

3n
)
1
n =

1

3
, so R = 3.

The power series converges for all x with |x− 2| < 3.
For x ∈ (−1, 5), f(x) =

∑∞
n=0

1
3n (x− 2)n is differentiable and

f ′(x) =
∞∑

n=0

n
1

3n
(x− 2)n−1.

10.2 Uniqueness of Power Series Expansion

Example 10.2.1 What is the Taylor’s series for sin(x) =
∑∞

k=0(−1)k x2k+1

(2k+1)!
about x = 0?
Solution. sin(0) = 0, sin′(0) = cos 0 = 1, sin(2)(0) = − sin 0 = 0,
cos(3)(0) = − cos 0 = −1, By induction, sin(2n)(0) = 0, sin(2n+1) = (−1)n.
Hence the Taylor series of sin(x) at 0 is

∞∑

k=0

(−1)k
1

(2k + 1)!
x2k+1.

This series converges everywhere and equals sin(x).
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The following proposition shows that we would have needed no computation
to compute the Taylor series of sinx at 0:

Proposition 10.2.2 (Uniqueness of Power Series expansion) Let x0 ∈
(a, b). Suppose that f : (a, b) ⊂ (x0 −R, x0 +R) → R is such that

f(x) =
∞∑

n=0

an(x− x0)
n,

where R is the radius of convergence. Then

a0 = f(x0), a1 = f ′(x0), . . . , ak =
f (k)(x0)

k!
, . . . .

Proof Take x = x0 in

f(x) =
∞∑

n=0

an(x− x0)
n = a0 + a1(x− x0) + a2(x− x0)

2 + . . . ,

it is clear that f(x0) = a0. By term by term differentiation,

f ′(x) = a1 + 2a2(x− x0) + 3a3(x− x0)
2 + . . . .

Take x = x0 to see that f ′(x0) = a1. Iterating this argument, we get

f (k)(x) = akk!+ak+1(k + 1)!(x−x0)+ak+2
(k + 2)!

2!
(x−x0)

2+ak+3
(k + 3)!

3!
(x−x0)

3+. . . .

Take x = x0 to see that

ak =
f (k)(x0)

k!
.

!

Moral of the proposition: if the function is already in the form of a power
series centred at x0, this is the Taylor series of f about x0.

Example 10.2.3 What is the Taylor series of f(x) = x2+x about x0 = 2?

Solution 1. f(2) = 6, f ′(2) = 5, f ′′(2) = 2. Since f ′′′(x) = 0 for all x, the
Taylor series about x0 = 2 is

6 +
5

1
(x− 2) +

2

2!
(x− 2) = 6 + 5(x− 2) + (x− 2)2.

Solution 2. On the other hand, we may re-write

f(x) = x2 + x = (x− 2 + 2)2 + (x− 2 + 2) = (x− 2)2 + 5(x− 2) + 6.

The Taylor series for f at x0 = 2 is (x− 2)2 + 5(x− 2) + 6.
The Taylor series is identical to f and so Taylor’s formula holds.
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Example 10.2.4 Find the Taylor series for f(x) = ln(x) about x0 = 1.
Solution. If x > 0,

f(1) = 0

f ′(x) =
1

x
, f ′(1) = 1

f ′′(x) = − 1

x2
, f ′′(1) = −1

f (3)(x) = 2
1

x3
, f ′′′(1) = −2

. . .

f (k)(x) = (−1)k+1(k − 1)!
1

xk
, f (k)(1) = (−1)(k+1)(k − 1)!

f (k+1)(x) = (−1)k+2k!
1

xk+1
.

Hence the Taylor series is:

∞∑

k=0

f (k)(1)

k!
(x−1)k =

∞∑

k=1

(−1)(k+1)

k
(x−1)k = (x−1)−1

2
(x−1)2+

1

3
(x−1)3−. . . .

It has radius of convergence R = 1.
Question: Does Taylor’s formula hold? i.e. is it true that

ln(x) =
∞∑

k=1

(−1)(k+1)

k
(x− 1)k?

If we write x− 1 = y, we are asking whether

ln(1 + y) =
∞∑

k=1

(−1)(k+1)

k
yk.

We will need Taylor’s Theorem (which tells us how good is the approxima-
tion) to answer this question.

Remark: We could borrow a little from Analysis III, Since
∑∞

k=0(−x)k =
1

1+x , term by term integration (which we are not yet able to justify) would
give:

∞∑

k=0

(−1)k
xk+1

k + 1
= ln(1 + x).
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10.3 Taylor’s Theorem with remainder in Lagrange
form

If f is continuous on [a, b] and differentiable on (a, b), the Mean Value The-
orem states that

f(b) = f(a) + f ′(c)(b− a)

for some c ∈ (a, b). We could treat f(a) = P0, a polynomial of degree 0.
We have seen earlier in Lemma 8.4.3, iterated use of the Mean Value

Theorem gives nice estimates. Let us try that.
Let f : [a, b] → R be continuously differentiable and twice differentiable

on (a, b). Consider

f(b) = f(x) + f ′(x)(b− x) + error.

The quantity f(x)+ f ′(x)(b−x) describes the value at b of the tangent line
of f at x. We now vary x. We guess that the error is of the order (b− x)2.
Define

g(x) := f(b)− f(x)− f ′(x)(b− x)−A(b− x)2

with A a number to be determined so that we can apply Rolle’s Theorem
to g on the interval [a, b] — in other words, so that g(a) = g(b).

Note that g(b) = 0 and g(a) = f(b)− f(a)− f ′(a)(b− a)+A(b− a)2. So
set

A =
f(b)− f(a)− f ′(a)(b− a)

(b− a)2
.

Then also g(a) = 0. Applying Rolle’s theorem to g we see that there exists
a ξ ∈ (a, b) such that g′(ξ) = 0. Since,

g′(x) = −f ′(x)− [f ′′(x)(b− x)− f ′(x)] + 2
f(b)− f(a)− f ′(a)(b− a)

(b− a)2
(b− x)

= −f ′′(x)(b− x) + 2
f(b)− f(a)− f ′(a)(b− a)

(b− a)2
(b− x).

we see that
1

2
f ′′(ξ) =

f(b)− f(a)− f ′(a)(b− a)

(b− a)2
.

This gives

f(b) = f(a) + f ′(a)(b− a) +
1

2
f ′′(ξ)(b− a)2.

The following is a theorem of Lagrange (1797). To prove it we apply
MVT to f (n) and hence we need to assume that f (n) satisfies the conditions
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of the Mean Value Theorem. By “f is n times continuously differentiable on
[x0, x]” we mean that its nth derivative is defined and continuous (so that
all the earlier derivatives must also be defined, of course). We denote by
Cn([a, b]) the set of all n times continuously differentiable functions on the
interval [a, b].

Theorem 10.3.1 [Taylor’s theorem with Lagrange Remainder Form]

1. Let x > x0. Suppose that f is n times continuously differentiable on
[x0, x] and n+ 1 times differentiable on (x0, x). Then

f(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k +Rn(x)

where

Rn(x) =
(x− x0)n+1

(n+ 1)!
f (n+1)(ξ)

some ξ ∈ (x0, x).

2. The conclusion holds also for x < x0, if f is (n+1) times continuously
differentiable on [x, x0] and n+ 1 times differentiable on (x, x0).

Proof Let us vary the starting point of the interval and consider [y, x] for
any y ∈ [x0, x]. We will regard x as fixed (it does not move!).

We are interested in the function with variable y:

g(y) = f(x)−
n∑

k=0

f (k)(y)(x− y)k

k!
.

In long form,

g(y) = f(x)− [f(y)+f ′(y)(x−y)+f ′′(y)(x−y)2/2+ · · ·+ f (n)(y)(x− y)n

n!
].

Then g(x0) = Rn(x) and g(x) = 0. Define

h(y) = g(y)−A(x− y)n+1

where

A =
g(x0)

(x− x0)n+1
.

We check that h satisfies the conditions of Rolle’s Theorem on [x0, x]:
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• h(x0) = g(x0)−A(x− x0)n+1 = 0

• h(x) = g(x) = 0.

• h is continuous on [x0, x] and differentiable on (x0, x).

Hence, by Rolle’s Theorem, there exists some ξ ∈ (x0, x) such that h′(ξ) = 0.
Now we calculate h′(y). First, by the product rule,

g′(y) = − d

dy

n∑

k=0

f (k)(y)(x− y)k

k!

= −
n∑

k=0

f (k+1)(y)(x− y)k

k!
+

n∑

k=1

f (k)(y)k(x− y)k−1

k!

= −
n∑

k=0

f (k+1)(y)(x− y)k

k!
+

n∑

k=1

f (k)(y)(x− y)k−1

(k − 1)!

= −f (n+1)(y)(x− y)n

n!
.

Next,
d

dy

(
A(x− y)n+1

)
= (n+ 1)A(x− y)n.

Thus,

h′(y) = −f (n+1)(y)(x− y)n

n!
− (n+ 1)A(x− y)n

and the vanishing of h′(ξ) means that

f (n+1)(ξ)(x− ξ)n

n!
=

(
g(x0)

(x− x0)n+1

)
(n+ 1)(x− ξ)n

(we have replaced A by g(x0)/(x−x0)n+1). Since Rn(x) = g(x0), we deduce
that

Rn(x) =
(x− x0)(n+1)

(n+ 1)!
f (n+1)(ξ).

!

Corollary 10.3.2 Let x0 ∈ (a, b). If f is C∞ on [a, b] and the derivatives
of f are uniformly bounded on (a, b), i.e. there exists some K such that

for all k and for all x ∈ [a, b], |f (n)(x)| ≤ K

119



then Taylor’s formula holds, i.e. for each x, x0 ∈ [a, b]

f(x) =
∞∑

k=0

f (k)(x0)(x− x0)k

k!
, x ∈ [a, b].

In other words f has a Taylor series expansion at every point of (a, b). In
yet other words, f is real analytic in [a, b].

Proof For each x ∈ [a, b],

|Rn(x)| =

∣∣∣∣
(x− x0)n+1

(n+ 1)!
fn+1(ξ)

∣∣∣∣

≤ K
|x− x0|n+1

(n+ 1)!

and this tends to 0 as n → ∞. This means

lim
n→∞

n∑

k=0

f (k)(x0)(x− x0)k

k!
= f(x)

as required. !

10.3.1 Taylor’s Theorem in Integral Form

This section is not included in the lectures nor in the exam for this mod-
ule. The integral form for the remainder term Rn(x) is the best; the other
forms (Lagrange’s and Cauchy’s) follow easily from it. But we need to know
something of the Theory of Integration (Analysis III). With what we learnt
in school and a little flexibility we should be able to digest the information.
Please read on.

Theorem 10.3.3 (Taylor’s Theorem with remainder in integral form) If f
is Cn+1 on [a, x], then

f(x) =
n∑

k=0

f (k)(a)

k
(x− a)k +Rn(x)

where

Rn(x) =

∫ x

a

(x− t)n

n!
f (n+1)(t)dt.

Proof See Spivack, Calculus, pages 415-417. !
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Lemma 10.3.4 (Intermediate Value Theorem in Integral Form) If g is con-
tinuous on [a, b] and f is positive everywhere and integrable, then for some
c ∈ (a, b), ∫ b

a
f(x)g(x)dx = g(c)

∫ b

a
f(x)dx.

!

By the lemma, the integral remainder term in Theorem 10.3.3 can take
the folllowing form:

Rn(x) =

∫ x

a

(x− t)n

n!
f (n+1)(t)dt

= f (n+1)(c)

∫ x

a

(x− t)n

n!
dt

=
f (n+1)(c)

(n+ 1)!
(x− a)(n+1).

This is the Lagrange form of the remainder term Rn(x) in Taylor’s The-
orem, as shown in 10.3.1 above.

The Cauchy form for the remainder Rn(x) is

Rn = f (n+1)(c)
(x− c)n

n!
(x− a).

This can be obtained in the same way:

Rn(x) =

∫ x

a

(x− t)n

n!
f (n+1)(t)dt

= f (n+1)(c)(x− c)n
∫ x

a

1

n!
dt

= f (n+1)(c)(x− c)n
x− a

n!
.

Other integral techniques:

Example 10.3.5 For |x| < 1, by term by term integration (proved in second
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year modules)

arctanx =

∫ x

0

dy

1 + y2
=

∫ x

0

∞∑

n=0

(−y2)ndy

=
∞∑

n=0

∫ x

0
(−y2)ndy

=
∞∑

n=0

(−1)n
y2n+1

2n+ 1

∣∣∣
y=x

y=0

=
∞∑

n=0

(−1)n
x2n+1

2n+ 1

10.3.2 Trigonometry Again

Now we can answer the question we posed at the end of Section 10. Consider
the sine and cosine functions defined using elementary geometry. We have
seen in Example 6.0.6 that cosine is the derivative of sine and the derivative
of cosine is minus sine. Since both |sine| and |cosine| are bounded by 1
on all of R, both sine and cosine satisfy the conditions of Corollary 10.3.2,
with K = 1. It follows that both sine and cosine are analytic on all of
R. Power series 2 and 3 of Definition 9.0.6 are the Taylor series of sine
and cosine about x0 = 0. Corollary 10.3.2 tells us that they converge to
sine and cosine. So the definition by means of power series gives the same
function as the definition in elementary geometry. Just in case you think
that elementary geometry is for children and that grown-ups prefer power
series, try proving, directly from the power series definition, that sine and
cosine are periodic with period 2π.

Example 10.3.6 Compute sin(1) to the precision 0.001.
Solution: For some ξ ∈ (0, 1),

|Rn(1)| =

∣∣∣∣∣
sin(n+1)(ξ)

(n+ 1)!
1n+1

∣∣∣∣∣ ≤
1

(n+ 1)!
.

We wish to have
1

(n+ 1)!
≤ 0.001 =

1

1000
.

Take n such that n! ≥ 1000. Take n = 7, 7! = 5040 is sufficient. Then

sin(1) ∼ [x− x3

3!
+

x5

5!
− x7

7!
]|x=1 = 1− 1

3!
+

1

5!
− 1

7!
.
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Now use your calculator if needed.

Example 10.3.7 Show that limx→0
cosx−1

x = 0.

By Taylor’s Theorem cosx−1 = x2

2 +R3(x). For x → 0 we may assume
that x ∈ [−1, 1]. Then for some c ∈ (−1, 1),

|R3(x)| = |cos
(3)(c)

3!
x3| = |sin(c)

3!
x3| ≤| x3|.

It follows that
∣∣∣∣
cosx− 1

x

∣∣∣∣ ≤
x2/2 + |x|3

|x| = |x/2|+ |x2| → 0,

as x → 0.

10.3.3 Taylor Series for Exponentials and Logarithms

How do we prove that limn→∞
rn

n! = 0 for any r > 0? Note that

∞∑

n=0

rn

n!

converges by the Ratio Test, and so its individual terms rn

n! must converge
to 0.

Example 10.3.8 We can determine the Taylor series for ex about x0 = 0
using only the facts that d

dxe
x = ex and e0 = 1. For

d2

dx2
ex =

d

dx

(
d

dx
ex
)

=
d

dx
ex = ex,

and so, inductively, dn

dxn ex = ex for all n ∈ N. Hence, evaluating these
derivatives at x = 0, all take the value 1, and the Taylor series is

∞∑

k=0

xk

k!
.

The Taylor series has radius of convergence ∞. For any x ∈ R, there is
ξ ∈ (−x, x) s.t.

|Rn(x)| =
∣∣∣∣

xn+1

(n+ 1)!
eξ
∣∣∣∣ ≤ max(ex, e−x)| xn+1

(n+ 1)!
| → 0
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as n → ∞. So

ex =
∑

k=0∞

xk

k!
= exp(x)

for all x.

Example 10.3.9 The Taylor series for ln(1 + x) about 0 is

∞∑

k=1

(−1)(k+1)

k
xk

with R = 1. Do we have, for x ∈ (−1, 1),

ln(1 + x) =
∞∑

k=1

(−1)(k+1)

k
xk?

Solution. Let f(x) = ln(1 + x), then

f (n)(x) = (−1)n+1 (n− 1)!

(1 + x)n
.

and

|Rn(x)| =

∣∣∣∣∣
f (n+1)(ξ)

(n+ 1)!
xn+1

∣∣∣∣∣

=

∣∣∣∣
(−1)n+2n!

(n+ 1)!(1 + ξ)n+1
xn+1

∣∣∣∣

=
1

(n+ 1)

∣∣∣∣
x

1 + ξ

∣∣∣∣
n+1

If 0 < x < 1, then ξ ∈ (0, x) and
∣∣∣ x
1+ξ

∣∣∣ < 1.

lim
n→∞

|Rn(x)| ≤ lim
n→∞

1

(n+ 1)
= 0.

*For the case of −1 < x < 0, we use the integral form of the remainder
term Rn(x). Since

f (n+1)(x) = (−1)nn!
1

(1 + x)n+1
,
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and x < 0,

Rn(x) =

∫ x

0

(x− t)n

n!
f (n+1)(t)dt

= (−1)n
∫ x

0
(x− t)n

1

(1 + t)n+1
dt

= −
∫ 0

x
(t− x)n

1

(1 + t)n+1
dt.

Since
d

dt

(
t− x

1 + t

)
=

(1 + t)− (t− x)

(1 + t)2
=

(1 + x)

(1 + t)2
> 0,

t−x
1+t is an increasing function in t and

max
x≤t≤0

t− x

1 + t
=

0− x

1 + 0
= −x > 0.

min
x≤t≤0

t− x

1 + t
=

x− x

1 + x
= 0.

Note that −x > 0.

|Rn(x)| =

∫ 0

x
(x− t)n

1

(1 + t)n+1
dt

≤
∫ 0

x

(−x)n

(1 + t)
dt

= (−x)n[− ln(1 + x)].

Since 0 < x+ 1 < 1, ln(1 + x) < 0 and 0 < −x < 1. It follows that

lim
n→∞

|Rn(x)| ≤ lim
n→∞

(−x)n[− ln(1 + x)] = 0.

Thus Taylor’s formula hold for x ∈ (−1, 1).

10.4 A Table

Table of standard Taylor expansions:
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1

1− x
=

∞∑

n=0

xn = 1 + x+ x2 + x3 + . . . , |x| < 1

ex =
∞∑

n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ . . . , ∀x ∈ R

log(1 + x) =
∞∑

n=0

(−1)n
xn+1

n+ 1
= x− x2

2
+

x3

3
− x4

4
+ . . . , −1 < x ≤ 1

sinx =
∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− . . . , ∀x ∈ R

cosx =
∞∑

n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ . . . , ∀x ∈ R

arctanx =
∞∑

n=0

(−1)n
x2n+1

(2n+ 1)
= x− x3

3
+

x5

5
− . . . , ∀x ∈ R, |x| ≤ 1

Stirling’s Formula:

n! =
√
2πn

(n
e

)n
(1 +

a1
n

+
a2
n2

+ . . . ).
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Chapter 11

Techniques for Evaluating
Limits

Let c be an extended real number (i.e. c ∈ R or c = ±∞). Suppose that
limx→c f(x) and limx→c g(x) are both equal to 0, or both equal to∞, or both
equal to −∞. What can we say about limx→c f(x)/g(x)? Which function
tend to 0 (respectively ±∞) faster? We cover two techniques for answering
this kind of question: Taylor’s Theorem and L’Hôpital’s Theorem.

11.1 Use of Taylor’s Theorem

How do we compute limits using Taylor expansions?
Let r < s be two real numbers and a ∈ (r, s), and suppose that f, g ∈

Cn([r, s]). Suppose f and g are n+ 1 times differentiable on (r, s). Assume
that

f(a) = f (1)(a) = . . . f (n−1)(a) = 0

g(a) = g(1)(a) = . . . g(n−1)(a) = 0.

Suppose that f (n)(a) = an, g(n)(a) = bn '= 0. By Taylor’s Theorem,

f(x) =
an
n!

(x− a)n +Rf
n(x)

g(x) =
bn
n!

(x− a)n +Rg
n(x).

Here

Rf
n(x) = f (n+1)(ξf )

(x− a)n+1

(n+ 1)!
, Rg

n(x) = g(n+1)(ξg)
(x− a)n+1

(n+ 1)!
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for some ξf and ξg between a and x.

Theorem 11.1.1 Suppose that f, g ∈ Cn+1([r, s]), a ∈ (r, s). Suppose that

f(a) = f (1)(a) = . . . f (n−1)(a) = 0,

g(a) = g(1)(a) = . . . g(n−1)(a) = 0.

Suppose that g(n)(a) '= 0. Then

lim
x→a

f(x)

g(x)
=

f (n)(a)

g(n)(a)
.

Proof Write g(n)(a) = bn and f (n)(a) = an. By Taylor’s Theorem,

f(x) =
an
n!

(x− a)n +Rf
n(x)

g(x) =
bn
n!

(x− a)n +Rg
n(x).

Here

Rf
n(x) = f (n+1)(ξf )

(x− a)n+1

(n+ 1)!
, Rg

n(x) = g(n+1)(ξg)
(x− a)n+1

(n+ 1)!
,

where ξf , ξg ∈ [r, s]. If f (n+1) and g(n+1) are continuous, they are bounded
on [r, s] (by the Extreme Value Theorem). Then

lim
x→a

f (n+1)(ξ)
(x− a)

(n+ 1)
= 0,

lim
x→a

g(n+1)(ξ)
(x− a)

(n+ 1)
= 0.

So

lim
x→a

f(x)

g(x)
= lim

x→a

an
n! (x− a)n +Rf

n(x)
bn
n! (x− a)n +Rg

n(x)

= lim
x→a

an + f (n+1)(ξ) (x−a)
(n+1)

bn + g(n+1)(ξ) (x−a)
(n+1)

=
an
bn

.

!
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Example 11.1.2

lim
x→0

cosx− 1

x
= 0

Since cosx− 1 = −x2

2 + · · · = 0x− x2

2 + . . . .

lim
x→0

cosx− 1

x
=

0

2
= 0.

11.2 L’Hôpital’s Rule

Question: Suppose that limx→c
f ′(x)
g′(x) = $ where l ∈ R ∪ {±∞}. Suppose

that limx→c f(x) and limx→c g(x) are both equal to 0, or to ±∞. Can we

say something about limx→c
f(x)
g(x)? We call limits where both f and g tend

to 0, “0
0 -type limits”, and limits where both f and g tend to ±∞ “ ∞

∞ -type
limits”. We will deal with both 0

0 - and ∞
∞ - type limits and would like to

conclude in both cases that

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
= $.

Theorem 11.2.1 (A simple L’Hôpital’s rule) Let x0 ∈ (a, b). Suppose
that f, g are differentiable on (a, b). Suppose limx→x0 f(x) = limx→x0 g(x) =
0 and g′(x0) '= 0. Then

lim
x→x0

f(x)

g(x)
=

f ′(x0)

g′(x0)

Proof Since g′(x0) '= 0, there is an interval (x0 − r, x0 + r) ⊂ (a, b) on
which g(x)− g(x0) '= 0. By the algebra of limits, for x ∈ (x0 − r, x0 + r),

lim
x→x0

f(x)

g(x)
= lim

x→x0

f(x)−f(x0)
x−x0

g(x)−g(x0)
x−x0

=
limx→x0

f(x)−f(x0)
x−x0

limx→x0

g(x)−g(x0)
x−x0

=
f ′(x0)

g′(x0)
.

!

Example 11.2.2 Evaluate limx→0
sinx
x . This is a 0

0 type limit. Moreover,
taking g(x) = x, we have g′(x0) '= 0. So L’Hôpital’s rule applies, and

lim
x→0

sinx

x
=

cosx

1
|x=0 =

1

1
= 1.
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Example 11.2.3 Evaluate limx→0
x2

x2+sinx .

Since x2|x=0 = 0 and (x2 + sinx)|x=0 = 0 we identify this as 0
0 type. By

L’Hôpital’s rule,

lim
x→0

x2

x2 + sinx
=

2x

2x+ cosx
|x=0 =

0

0 + 1
= 0.

We will improve on this result by proving a version which needs fewer
assumptions. We will need the following theorem of Cauchy.

Lemma 11.2.4 (Cauchy’s Mean Value Theorem) If f and g are con-
tinuous on [a, b] and differentiable on (a, b) then there exists c ∈ (a, b) with

(f(b)− f(a))g′(c) = f ′(c)(g(b)− g(a)). (11.2.1)

If g′(c) '= 0 '= g(b)− g(a), then

f(b)− f(a)

g(b)− g(a)
=

f ′(c)

g′(c)
.

Proof Set

h(x) = g(x)(f(b)− f(a))− f(x)(g(b)− g(a)).

Then h(a) = h(b), h is continuous on [a, b] and differentiable on (a, b). By
Rolle’s Theorem, there is a point c ∈ (a, b) such that

0 = h′(c) = g′(c)(f(b)− f(a))− f ′(c)(g(b)− g(a)),

hence the conclusion. !

Now for the promised improved version of L’Hôpital’s rule.

Theorem 11.2.5 Let x0 ∈ (a, b). Consider f, g : (a, b) ! {x0} → R and
assume that they are differentiable at every point of (a, b) ! {x0}. Suppose
that g′(x) '= 0 for all x ∈ (a, b)! {x0}.

1. Suppose that
lim
x→x0

f(x) = 0 = lim
x→x0

g(x).

If

lim
x→x0

f ′(x)

g′(x)
= $

(with $ ∈ R ∪ {±∞}) then

lim
x→x0

f(x)

g(x)
= $.
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2. Suppose that

lim
x→x0

f(x) = ±∞, lim
x→x0

g(x) = ±∞.

If

lim
x→x0

f ′(x)

g′(x)
= $

(with $ ∈ R ∪ {±∞}) then

lim
x→x0

f(x)

g(x)
= $.

Proof For part 1, we prove only the case where $ ∈ R. The case where
$ = ±∞ is left as an exercise.

1. We may assume that f, g are defined and continuous at x0 and that
f(x0) = g(x0) = 0. For otherwise we simply define

f(x0) = 0 = lim
x→x0

f(x), g(x0) = 0 = lim
x→x0

g(x).

2. Let x > x0. Our functions are continuous on [x0, x] and differentiable
on (x0, x). Apply Cauchy’s Mean Value Theorem to see there exists
ξ ∈ (x0, x) with

f(x)− f(x0)

g(x)− g(x0)
=

f ′(ξ)

g′(ξ)
.

Hence

lim
x→x0+

f(x)

g(x)
= lim

x→x0+

f(x)− f(x0)

g(x)− g(x0)
= lim

x→x0+

f ′(ξ)

g′(ξ)
= $.

This is because as x → x0, also ξ ∈ (x0, x) → x0.

3. Let x < x0. The same ‘Cauchy’s Mean Value Theorem’ argument
shows that

lim
x→x0−

f(x)

g(x)
= lim

x→x0−

f(x)− f(x0)

g(x)− g(x0)
= lim

x→x0−

f ′(ξ)

g′(ξ)
= $.

In conclusion limx→x0

f(x)
g(x) = $.

For part 2. First the case $ = limx→x0

f ′(x)
g′(x) ∈ R.
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1. There exists δ > 0 such that if 0 < |x− x0| < δ,

$− ε <
f ′(x)

g′(x)
< $+ ε. (11.2.2)

Since g′(x) '= 0 on (a, b)\{x0}, the above expression makes sense.

2. Take x with 0 < |x−x0| < δ, and y '= x such that 0 < |y−x0| < δ, and
such that x−x0 and y−x0 have the same sign (so that x0 does not lie
between x and y). Then g(x)− g(y) '= 0 because if g(x) = g(y) there
would be some point ξ between x and y with g′(ξ) = 0, by the Mean
Value Theorem, whereas by hypothesis g′ is never zero on (a, b)!{x0}.
Thus

f(x)

g(x)
=

f(x)− f(y)

g(x)
+

f(y)

g(x)
=

(
f(x)− f(y)

g(x)− g(y)

)
g(x)− g(y)

g(x)
+

f(y)

g(x)
(11.2.3)

3. Fix any such y and let x approach x0. Since limx→x0 f(x) = limx→x0 g(x) =
+∞, we have

lim
x→x0

f(y)

f(x)
= 0, lim

x→x0

g(x)− g(y)

g(x)
= 1.

(exercise)

4. By Cauchy’s Mean Value Theorem,(11.2.3) can be written

f(x)

g(x)
=

(
f ′(ξ)

g′(ξ)

)(
g(x)− g(y)

g(x)

)
+

f(y)

g(x)
(11.2.4)

for some ξ between x and y. By choosing δ small enough, and x and y

as in (b), we can make f ′(ξ)
g′(ξ) as close as we wish to $. By taking x close

enough to x0 while keeping y fixed, we can make g(x)−g(y)
g(x) as close as

we like to 1, and f(y)
g(x) as close as we wish to 0. It follows from (11.2.4)

that

lim
x→x0

f(x)

g(x)
= $.

Part 2), case $ = +∞. For any A > 0 there exists δ > 0 such that

f ′(x)

g′(x)
> A
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whenever 0 < |x−x0| < δ. Consider the case x > x0. Fix y > x0 with
0 < |y − x0| < δ. By Cauchy’s mean value theorem,

f(x)− f(y)

g(x)− g(y)
=

f ′(c)

g′(c)

for some c between x and y.

Clearly

lim
x→x0

f(y)

f(x)
= 0, lim

x→x0

g(x)− g(y)

g(x)
= 1.

It follows (taking ε = 1/2 in the definition of limit) that there exists
δ1 such that if 0 < |x− x0| < δ1,

1

2
= 1− ε <

g(x)− g(y)

g(x)
< 1 + ε =

3

2
, −1

2
= −ε <

f(y)

f(x)
< ε =

1

2
.

Thus if 0 < |x− x0| < δ,

f(x)

g(x)
=

(
f(x)− f(y)

g(x)− g(y)

)
g(x)− g(y)

g(x)
+

f(y)

g(x)

≥ A

2
− 1

2
.

Since A
2 − 1

2 can be made arbitrarily large we proved that

lim
x→x0+

f(x)

g(x)
= +∞.

The proof for the case limx→x0−
f(x)
g(x) = +∞ is similar.

!

Example 11.2.6 1. Evaluate limx→0
cosx−1

x .
This is of 0

0 type.

lim
x→0

cosx− 1

x
= lim

x→0

− sinx

1
=

0

1
= 1.

2. Evaluate limx→0
arctan(ex−1)

x .

The limit limx→0
arctan(ex−1)

x is of 0
0 type, since ex−1 → 0 and arctan(ex−

1) → arctan(0) = 0 by the continuity of arctan.

lim
x→0

arctan(ex − 1)

x
= lim

x→0

1
1+(ex−1)2 e

x

1

=
e0

1 + (e0 − 1)2
= 1.
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Example 11.2.7 Evaluate limx→1
e2(x−1)−1

lnx .

All functions concerned are continuous, e2(x−1)−1
lnx = e2(1−1)−1

ln 1 = 0
0 .

lim
x→1

e2(x−1) − 1

lnx
= lim

x→1

2e2(x−1)

1
x

= 2.

Example 11.2.8 Don’t get carried away with l’Hôpital’s rule. Is the fol-
lowing correct and why?

lim
x→2

sinx

x2
= lim

x→2

cosx

2x
= lim

x→2

− sinx

2
=

− sin 2

2
?

Example 11.2.9 Evaluate limx→0
cosx−1

x2 . This is of 0
0 type.

lim
x→0

cosx− 1

x2
= lim

x→0

− sinx

2x

= lim
x→0

− cosx

2

= −1

2
.

The limit limx→0
− sinx
2x is again of 0

0 type and again we applied L’Hôpital’s
rule.

Example 11.2.10 Take f(x) = sin(x− 1) and

g(x) =

{
x− 1, x '= 1,
0, x = 1

lim
x→1

f(x) = 0, lim
x→1

g(x) = 0.

lim
x→1

f ′(x)

g′(x)
= 1.

Hence

lim
x→1

f(x)

g(x)
= 1.

Theorem 11.2.11 Suppose that f and g are differentiable on (a, x0) and
g(x) '= 0, g′(x) '= 0 for all x ∈ (a, x0). Suppose

lim
x→x0−

f(x) = lim
x→x0−

g(x)
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is either 0 or infinity. Then

lim
x→x0−

f(x)

g(x)
= lim

x→x0−

f ′(x)

g′(x)
.

provided that limx→x0−
f ′(x)
g′(x) exists.

Example 11.2.12 Evaluate limx→0+ x lnx.
Since limx→0+ lnx = −∞ we identify this as a “0 ·∞- type” limit. We have
not studied such limits, but can transform it into a ∞

∞ -type limit, which we
know how to deal with:

lim
x→0+

x lnx = lim
x→0+

lnx
1
x

= lim
x→0+

1
x

− 1
x2

= lim
x→0+

(−x) = 0.

Exercise 11.2.13 Evaluate limy→∞
− ln y

y .

Theorem 11.2.14 Suppose f and g are differentiable on (a,∞) and g(x) '=
0, g′(x) '= 0 for all x sufficiently large.

1. Suppose
lim

x→+∞
f(x) = lim

x→+∞
g(x) = 0

Then

lim
x→+∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
.

provided that limx→+∞
f ′(x)
g′(x) exists.

2. Suppose
lim

x→+∞
f(x) = lim

x→+∞
g(x) = ∞

Then

lim
x→+∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
.

provided that limx→+∞
f ′(x)
g′(x) exists.

Proof Idea of proof: Let t = 1
x , F (t) = f(1t ) and G(t) = g(1t )

lim
x→+∞

f(x) = lim
t→0

f(
1

t
) = lim

t→0
F (t).

lim
x→+∞

g(x) = lim
t→0

g(
1

t
) = lim

t→0
G(t).

135



Also
F ′(t)

G′(t)
=

f ′(1t )(−
1
t2 )

g′(1t )(−
1
t2 )

=
f ′(x)

g′(x)
.

Note that the limit as x → ∞ is into a limit as t →)+, which we do know
how to deal with. !

Example 11.2.15 Evaluate limx→∞
x2

ex .
We identify this as ∞

∞ type.

lim
x→∞

x2

ex
= lim

x→∞

2x

ex
= lim

x→∞

2

ex
= 0.

We have to apply L’Hôpital’s rule twice since the result after applying L’Hôpital’s
rule the first time is limx→∞

2x
ex , which is again ∞

∞ type.

Proposition 11.2.16 Suppose that f, g : (a, b) → R are differentiable, and

f(c) = g(c) = 0 for some c ∈ (a, b). Suppose that limx→c
f ′(x)
g′(x) = +∞. Then

limx→c
f(x)
g(x) = +∞

Proof For any M > 0 there is δ > 0 such that if 0 < |x− c| < δ,

f ′(x)

g′(x)
> M.

First take x ∈ (c, c + δ). By Cauchy’s mean value theorem applied to
the interval [c, x], there exists ξ with |ξ − c| < δ such that

f(x)

g(x)
=

f(x)− f(c)

f(x)− g(c)

=
f ′(ξ)

g′(ξ)
> M.

hence limx→x0+
f(x)
g(x) = +∞. A similar argument shows that limx→x0−

f(x)
g(x) =

+∞ !

Remark 11.2.17 We summarise the cases: Let x0 ∈ R ∪ {±∞} and I be
an open interval which either contains x0 or has x0 as an end point. Suppose
f and g are differentiable on I and g(x) '= 0, g′(x) '= 0 for all x ∈ I. Suppose

lim
x→x0

f(x) = lim
x→x0

g(x) = 0
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Then

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x0)

g′(x0)
.

provided that limx→x0

f ′(x)
g′(x) exists. Suitable one sided limits are used if x0 is

an end-point of the interval I.

Recall that if α is a number, for x > 0 we define

xα = eα log x.

So
d

dx
xα = eα log xα

x
= xα

α

x
= αxα−1.

Example 11.2.18 For α > 0,

lim
x→∞

log x

xα
= lim

x→∞

1
x

αxα−1
= lim

x→∞

1

αxα
= 0.

Conclusion: As x → +∞, log x goes to infinity slower than xα any α > 0.

Example 11.2.19 Evaluate limx→0(
1
x − 1

sinx).
This is apparently of “∞−∞-type”. We have

lim
x→0

(
1

x
− 1

sinx
) = lim

x→0

sinx− x

x sinx

= lim
x→0

cosx− 1

sinx+ x cosx

= lim
x→0

− sinx

2 cosx− x sinx

=
−0

2− 0
= 0.

Example 11.2.20 Evaluate limx→0(
1
x − 1

sinx).

We try Taylor’s method. For some ξ, sinx = x− x3

3! cos ξ:

lim
x→0

(
1

x
− 1

sinx
) = lim

x→0

sinx− x

x sinx

= lim
x→0

−x3

3! cos ξ

x(x− x3

3! cos ξ)

= lim
x→0

− x
3! cos ξ

(1− x
3! cos ξ)

= 0.
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