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Catalan paths

Definition
A Catalan path of length 2n is a sequence of n up-steps and n
down-steps that never goes below the y-axis.
The set of Catalan paths of length 2n is denoted by Cn.
For every Catalan path C, let u(C) be the vector recording the
lengths of maximum blocks of consecutive up-steps in C.

A Catalan path C ∈ C7

u(C) = (3, 1, 2, 1)

·
·

·
·

·
·

·
·

·
·
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·

·
·

·
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Sums over Catalan paths

In this talk, we consider sums of the following form:

∑
C∈Cn

|u(C)|∏
i=1

u(C)i,
∑
C∈Cn

|u(C)|∏
i=1

(u(C)i)!,
∑
C∈Cn

|u(C)|∏
i=1

(1 +mu(C)i),

∑
C∈Cn

|u(C)|−1∏
i=1

(1 +mu(C)i),
∑
C∈Cn

|u(C)|∏
i=2

(1 +mu(C)i),

∑
C∈Cn

|u(C)|∏
i=2

1 +m

|u(C)|∑
j=i

u(C)j

 .
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Canonical decompositions of Catalan paths

Definition
For each C ∈ Cn, it is easy to see that C has a unique decomposition of
the form

C = U1 · · ·UkD1C1 · · ·DkCk,

where U1, · · · , Uk are the first k consecutive up-steps in C, D1, · · · , Dk

are down-steps, and C1, · · · , Ck are themselves Catalan paths, possibly of
length 0. Moreover, this decomposition is reversible.

We call this the canonical decomposition of C.

Note that u(C) = (k,u(C1), · · · ,u(Ck)).

·
·
·
·
·
·
·
·
·
·
·
·
·
·
· ·

·
·
·
··
·
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·
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·
··
·
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Evaluations using canonical decomposition

Theorem (Y., 2024+)

pn =
∑
C∈Cn

|u(C)|∏
i=1

u(C)i =
1

n+ 1

n∑
k=1

(
n+ 1

k

)(
n+ k − 1

2k − 1

)

Proof.
From the canonical decomposition C = U1 · · ·UkD1C1 · · ·DkCk, it follows
that the generating function P (x) = 1 +

∑
n≥1 pnx

n satisfies

P (x) = 1 +
∑
k≥1

kxkP (x)k = 1 +
xP (x)

(1− xP (x))2
.

We can now apply Lagrange’s Implicit Function Theorem to get a formula
for the coefficients pn, without having to solve for P (x) explicitly.
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Evaluations using canonical decomposition

We can use the same method to obtain the following evaluations.

Theorem (Y., 2024+)

∑
C∈Cn

|u(C)|∏
i=1

(u(C)i)! =
1

n+ 1

∑
a1+···+an+1=n
a1,··· ,an+1≥0

a1! · · · an+1!, (1)

∑
C∈Cn

|u(C)|∏
i=1

(1 +mu(C)i) =
1

n+ 1

n∑
k=0

(
n+ 1

k

)(
3n+ 1− k

2n+ 1

)
(m− 1)k.

In general, all sums of the following type can be transformed into something
like (1). Depending on f , further simplifications might be possible.

∑
C∈Cn

|u(C)|∏
i=1

f(u(C)i).
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Evaluation of variants using canonical decomposition

Theorem (Y., 2024+)

pn =
∑
C∈Cn

|u(C)|−1∏
i=1

(1 + u(C)i) =

(
3n+1
n

)
n+ 1

−
n−1∑
k=0

(
3n−3k+1

n−k

)
2k+1(n− k + 1)

.

Proof sketch.
Let P (x) be the generating function of pn.
Let Q(x) be the g.f. of qn =

∑
C∈Cn

∏|u(C)|
i=1 (1 + u(C)i), which can be

computed as before.
Then, using the canonical decomposition we get

P (x) =
∑
k≥1

xk +
∑
k≥1

(k + 1)xk
k∑

j=1

Q(x)j−1P (x).
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A trickier sum

Theorem (Y., 2024+)
Fix m ≥ 1 and let

pn =
∑
C∈Cn

|u(C)|∏
i=2

1 +m

|u(C)|∑
j=i

u(C)j

 .

Then, pn =
∑n

k=1 pn,k, where

pn,k =


1, if k = n,

(1 +m(n− k))

n−1∑
i=n−k

i∑
j=k+1−n+i

pi,j , if 1 ≤ k ≤ n− 1.

10 / 24



A trickier sum

Theorem (Y., 2024+)
Fix m ≥ 1 and let

pn =
∑
C∈Cn

|u(C)|∏
i=2

1 +m

|u(C)|∑
j=i

u(C)j

 .

Then the sequence pn satisfies

x

1− x
=

∞∑
n=1

pn
xn(1− x)n∏n
ℓ=1(1 +mℓx)

.

Question (Open)
Is there a more explicit formula for either pn or its generating function?
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Parking functions

One by one, n cars enter a one-way parking lot with n parking spots.

For each i ∈ [n], the i-th car drives straight to the f(i)-th parking spot,
and parks there if it is still available.

Otherwise, it continues down the parking lot and parks at the first available
spot, or exits without parking if there isn’t one.

Definition
A function f : [n] → [n] is a parking function if all n cars park successfully.

13 / 24



An example parking function

i 1 2 3 4 5 6

f(i) 4 2 4 5 2 1

1 → 2 1

→ 2 1 3 → 2 1 3 4

→ 2 5 1 3 4 → 6 2 5 1 3 4
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Application 1: pattern avoidance in parking functions

Definition
A parking function f : [n] → [n] avoids pattern σ if its final parking
position ρf , viewed as a permutation in Sn, avoids σ.

i 1 2 3 4 5 6

f(i) 4 2 4 5 2 1

6 2 5 1 3 4

ρf = 625134

Definition
Let pkn(σ1, · · · , σk) be the number of parking functions f : [n] → [n]
avoiding all of σ1, · · · , σk.
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Example: pkn(123)

Theorem (Y., 2024+)

pkn(123) =
∑
C∈Cn

|u(C)|∏
i=1

u(C)i =
1

n+ 1

n∑
k=1

(
n+ 1

k

)(
n+ k − 1

2k − 1

)
.

Lemma
For any ρ ∈ Sn and i ∈ [n], let

ℓ(i, ρ) = max{ℓ | ρ(j) ≤ ρ(i) for all i− ℓ+ 1 ≤ j ≤ i},

ℓ(ρ) =

n∏
i=1

ℓ(i, ρ).

Then, ℓ(ρ) is the number of parking function f : [n] → [n] with ρf = ρ.
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Example: pkn(123)

Proof sketch.
From the lemma, we have

pkn(123) =
∑
ρ∈Sn

ρ avoids 123

ℓ(ρ) =
∑
ρ∈Sn

ρ avoids 123

n∏
i=1

ℓ(i, ρ).

There is a bijection mapping every ρ ∈ Sn avoiding 123 to a Catalan
path C of length 2n, such that ℓ(ρ) =

∏|u(C)|
i=1 u(C)i.

ρ = 5471632

·
·

·
·

·
·

·
·

·
·

·
·

·
·

·
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More results

Using similar bijections to Cn, and determining the correspondence between
ℓ(ρ) and u(C), we obtain the following.

Theorem (Y., 2024+)

pkn(213) =
∑
C∈Cn

|u(C)|∏
i=1

(u(C)i)! =
1

n+ 1

∑
a1+···+an+1=n
a1,··· ,an+1≥0

a1! · · · an+1!,

pkn(312) =
∑
C∈Cn

|u(C)|∏
i=2

1 +

|u(C)|∑
j=i

u(C)j

 ,

pkn(321) =
∑
C∈Cn

|u(C)|∏
i=2

1 +

|u(C)|∑
j=i

u(C)j

 |u(C)|∏
i=1

(u(C)i − 1)!.
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Application 2: another notion of pattern avoidance

Under a different notion of pattern avoidance in parking functions,
Adeniran and Pudwell obtained the following.

Theorem (Adeniran, Pudwell, 2023)

pfn(312, 321) =
∑
C∈Cn

|u(C)|−1∏
i=1

(1 + u(C)i).

Using the canonical decomposition, we can evaluate this sum as

Theorem (Y., 2024+)

pfn(312, 321) =
∑
C∈Cn

|u(C)|−1∏
i=1

(1+u(C)i) =

(
3n+1
n

)
n+ 1

−
n−1∑
k=0

(
3n−3k+1

n−k

)
2k+1(n− k + 1)

.
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Application 3: Hopf algebras of generalised parking functions

These sums can also be applied to Novelli and Thibon’s work on Hopf
algebras of generalised parking functions to compute their dimensions,
which are equal to the number of congruence classes.

Theorem (Novelli, Thibon, 2020 & Y., 2024+)
The number of hyposylvester classes of m-multiparking functions is

∑
C∈Cn

|u(C)|∏
i=2

(1 +mu(C)i) =
1

n

n−1∑
k=0

(
n

k

)(
3n− k

2n+ 1

)
(m− 1)k.

The number of metasylvester classes of m-multiparking functions is

∑
C∈Cn

|u(C)|∏
i=2

1 +m

|u(C)|∑
j=i

u(C)j

 .
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Application 3: Hopf algebras of generalised parking functions

Let C(m)
n be the set of m-Catalan paths and define u(C) analogously.

Theorem (Novelli, Thibon, 2020 & Y., 2024+)
The number of hyposylvester classes of m-parking functions is

∑
C∈C(m)

n

|u(C)|∏
i=2

(1 + u(C)i) =
1

2mn+ 1

(
(2m+ 1)n

n

)
.

The number of metasylvester classes of m-parking functions is

∑
C∈C(m)

n

|u(C)|∏
i=2

1 +

|u(C)|∑
j=i

u(C)j

 . (2)

Notably, unlike its Cn counterpart, we haven’t been able to obtain even a
nice recurrence formula for (2).
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Open problems and further directions

Are there more explicit formulas for sums, or their generating
functions, of the following type?∑

C∈Cn

|u(C)|∏
i=2

1 +

|u(C)|∑
j=i

u(C)j

 .

Investigate analogous sums over generalised Catalan paths, Schröder
paths or Motzkin paths, or with different summands. Are they
connected to other enumeration problems on parking functions or
other objects?
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