An interesting forbidden matrix problem

Jun Yan
University of Warwick

Joint work with Wallace Peaslee and Attila Sali

LSE PhD Seminar

1st December, 2023

Outline

(1) Preliminaries

- The forbidden matrix problem
- An optimisation problem on multigraphs
(2) Relating the two problems
(3) Proof sketch
- Upper bound
- Lower bound
(4) Open questions

Outline

(1) Preliminaries

- The forbidden matrix problem
- An optimisation problem on multigraphs
(2) Relating the two problems
(3) Proof sketch
- Upper bound
- Lower bound

4 Open questions

Outline

(1) Preliminaries

- The forbidden matrix problem
- An optimisation problem on multigraphs
(2) Relating the two problems
(3) Proof sketch
- Upper bound
- Lower bound

4 Open questions

Forbidden number forb (m, r, F)

Definition

－An r－matrix is a matrix whose entries all belong to the set $\{0,1, \cdots, r-1\}$ ．
－A configuration of a matrix F is a matrix that can be obtained by permuting the rows and columns of F ．
－forb (m, r, F) is the maximum number of distinct columns in an m－rowed r－matrix that does not contain a configuration of F ．

Example

The 4－matrix $\left[\begin{array}{ccc}2 & 1 & 0 \\ 2 & 3 & 2 \\ 0 & 1 & 1\end{array}\right]$ contains a configuration of $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ ．

Forbidden number forb (m, r, F)

Definition

forb (m, r, F) is the maximum number of distinct columns in an m-rowed r-matrix that does not contain a configuration of F.

Example

forb $\left(m, 2, l_{2}\right)=m+1$ as any two distinct columns with the same number
of 1 's give rise to a configuration of I_{2}, while $\left[\begin{array}{cccccc}0 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1\end{array}\right]$
contains no configuration of I_{2}.

Known results for $r=2$

The $r=2$ case has been extensively studied.

- The exact value of forb $(m, 2, F)$ is known for many small matrices F and many infinite families of matrices F.
- Asymptotic growth of forb $(m, 2, F)$ is known for many other family of matrices. But there is no complete characterisation yet.

For more information on the $r=2$ case, see A survey of forbidden configuration results by Richard Anstee.

Known results for $r \geq 3$

The $r \geq 3$ case has hardly been explored. We will focus on forb (m, r, F) in the case when F is a (0,1)-matrix.

Definition

The support of a column c is the set of row indices i satisfying $c_{i}=0$ or 1 .

Theorem (Dillon, Sali, 2021)

For every $(0,1)$-matrix F and $r \geq 3$,

$$
\text { forb }(m, r, F) \leq \sum_{j=0}^{m}\binom{m}{j}(r-2)^{m-j} \text { forb }(j, 2, F)
$$

Moreover, equality holds if the sequence of extremal matrices $\left(M_{j}\right)$ attaining forb $(j, 2, F)$ are "nested".

Known results for $r \geq 3$

Theorem (Dillon, Sali, 2021)

For every (0,1)-matrix F and $r \geq 3$,

$$
\text { forb }(m, r, F) \leq \sum_{j=0}^{m}\binom{m}{j}(r-2)^{m-j} \text { forb }(j, 2, F)
$$

Moreover, equality holds if the sequence of extremal matrices $\left(M_{j}\right)$ attaining forb (j, r, F) are "nested".

Using this, Dillon and Sali determined forb (m, r, F) exactly for all 2-rowed and up to $3 \times 3(0,1)$-matrices F with no repeated columns, except

$$
M=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

Main problem and result

Improve the following bounds on forb (m, r, M) for $r \geq 3$.
$(r-1)^{m}+m(r-1)^{m-1} \leq$ forb $(m, r, M) \leq(r-1)^{m}+1.5 m(r-1)^{m-1}$.
number of columns
with at most one 0
the upper bound theorem and forb $(m, 2, M)=\left\lfloor\frac{3 m}{2}\right\rfloor+1$

Theorem (Peaslee, Sali, Y., 2023+)

For all $r \geq 3$,
$(r-1)^{m}+1.360 m(r-1)^{m-1} \leq$ forb $(m, r, M) \leq(r-1)^{m}+1.433 m(r-1)^{m-1}$.

Outline

(1) Preliminaries

- The forbidden matrix problem
- An optimisation problem on multigraphs
(2) Relating the two problems
(3) Proof sketch
- Upper bound
- Lower bound

4 Open questions

Triangular choice multigraph (TCM)

Definition

A triangular choice multigraph (TCM) \mathcal{G} on a vertex set V is a multigraph obtained by choosing one of edge $i j, i k, j k$ for every unordered triple $i, j, k \in V$, and including it in \mathcal{G}.

Example

Vertex Triplet	1,2,3	1,2,4	1,2,5	1,3,4	1,3,5	1,4,5	2,3,4	2,3,5	2,4,5	3,4,5
Subgraph	$\begin{array}{ll} \text { (1) } \\ \text { (3) } \\ \text { () } \end{array}$	$\begin{aligned} & \text { (1) } \\ & \text { (3) } \\ & \text { (ㄱ) } \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (3) } \\ & \text { (2) } \end{aligned}$	(1) (3)	(3) (1)	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & \text { (3) } \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \\ & \text { (8) } \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & \text { (3) } \\ & \text { (3) } \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (2) } 19 \\ & \text { (3) } \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (ㄱ) } \\ & \text { (3) } \\ & \hline \end{aligned}$

An optimisation problem on TCM

Definition

For every $\operatorname{TCM} \mathcal{G}$ on $[m]$ and $\alpha \in \mathbb{R}$, let $m_{i j}$ be the multiplicity of $i j$ in \mathcal{G}, and let

$$
w(\mathcal{G}, \alpha)=\sum_{i j} \alpha^{m_{i j}}
$$

Question

Determine the values of

$$
\begin{gathered}
H(m, \alpha)=\max \{w(\mathcal{G}, \alpha): \mathcal{G} \text { is a TCM on }[m]\} \\
H_{2}(m, \alpha)=\max \{w(\mathcal{G}, \alpha): \mathcal{G} \text { is a 2-recursive* TCM on }[m]\}
\end{gathered}
$$

*: 2-recursive TCM will be defined later.

Relationship between forb (m, r, M) and $H(m, \alpha), H_{2}(m, \alpha)$

Theorem (Peaslee, Sali, Y., 2023+)

For every $r \geq 3$, we have

- forb $(m, r, M)-(r-1)^{m}-m(r-1)^{m-1} \leq H\left(m, \frac{r-1}{r-2}\right)(r-2)^{m-2}$,
- forb $(m, r, M)-(r-1)^{m}-m(r-1)^{m-1} \geq H_{2}\left(m, \frac{r-1}{r-2}\right)(r-2)^{m-2}$

Theorem (Peaslee, Sali, Y., 2023+)

- $H(m, 2) \leq 0.433 m 2^{m-1}$.
- $H_{2}\left(m, \frac{r-1}{r-2}\right)(r-2)^{m-2} \geq 0.360 m(r-1)^{m-1}$

Outline

（1）Preliminaries

－The forbidden matrix problem
－An optimisation problem on multigraphs
（2）Relating the two problems
（3）Proof sketch
－Upper bound
－Lower bound

4 Open questions

Choices

Observation

If A contains no configuration of M ，then for every triple i, j, k and each pair of columns below，A restricted to rows i, j, k contains at most one column in the pair．

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\},\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\},\left\{\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}
$$

Definition

A choice is a sequence of 3×3 matrices $\mathcal{B}=\left(B_{i, j, k}\right)$ ，where for each triple $i, j, k, B_{i, j, k}$ is formed by picking 1 column from each of the 3 pairs above， and putting them together．

forb (m, r, \mathcal{B})

Definition

We say A forbids a choice \mathcal{B} if for every triple i, j, k, A restricted to rows i, j, k contains no column in $B_{i, j, k}$.

Observation

Every matrix A that contains no configuration of M forbids a choice \mathcal{B}.

Definition

Define forb (m, r, \mathcal{B}) to be the maximum number of columns an m-rowed r-matrix A can have if A forbids \mathcal{B}.

It follows that

$$
\text { forb }(m, r, M)=\max \{\operatorname{forb}(m, r, \mathcal{B}): \mathcal{B} \text { is a choice }\}
$$

forb (m, r, \mathcal{B}) and valid columns

Definition

Let \mathcal{B} be a choice on $[m]$ and let $X \subset[m]$.

- A column c on X is valid with respect to \mathcal{B} if for every triple i, j, k in X, c restricted to rows i, j, k is not a column in $B_{i, j, k}$.
- $c(\mathcal{B}, X)$ is defined to be the number of valid $(0,1)$-columns on X with respect to \mathcal{B}.

Observation

$$
\text { forb }(m, r, \mathcal{B})=\sum_{X \subset[m]} c(\mathcal{B}, X)(r-2)^{m-|X|}
$$

0-implications

Definition

Let \mathcal{B} be a choice on $[m]$. For every $X \subset[m]$ and $i, j \in X$, we say there is a 0 -implication from i to j on X if for every valid column c with support X with respect to $\mathcal{B}, c_{i}=0$ implies $c_{j}=0$.

Example

The forbidden conditions imposed by every $B_{i, j, k}$ correspond to 0 -implications. In this example, they are represented as arrows.

$$
\left.B_{i, j, k}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \quad \begin{array}{l}
i \\
j
\end{array}\right)
$$

Associated multigraph $\mathcal{D}_{\mathcal{B}}(X)$

Definition

Given a choice \mathcal{B} on $[m]$ and $X \subset[m]$ ，the directed multigraph $\mathcal{D}_{\mathcal{B}}(X)$ associated to \mathcal{B} is obtained by drawing all the arrows corresponding to 0 －implications imposed by matrices $B_{i, j, k}$ ．

Example

Number of valid columns on X

Lemma（Peaslee，Sali，Y．，2023＋）

Let \mathcal{B} be a good choice and let $X \subset[m]$ ，then

$$
c(\mathcal{B}, X) \leq n(\mathcal{B}, X)+|X|+1
$$

where $n(\mathcal{B}, X)$ is the number of unordered pairs of vertices in $\mathcal{D}_{\mathcal{B}}(X)$ with no directed edge between them．

＂Proof＂by example．

Any valid column is constant on each strongly connected component．

The valid columns if C_{1}, \cdots, C_{4} are strongly connected components．

Number of valid columns

Therefore, we have

$$
\text { forb } \begin{aligned}
(m, r, \mathcal{B}) & =\sum_{X \subset[m]} c(\mathcal{B}, X)(r-2)^{m-|X|} \\
& \leq \sum_{X \subset[m]}(n(\mathcal{B}, X)+|X|+1)(r-2)^{m-|X|} \\
& =(r-1)^{m}+m(r-1)^{m-1}+\sum_{X \subset[m]} n(\mathcal{B}, X)(r-2)^{m-|X|}
\end{aligned}
$$

Theorem (Peaslee, Sali, Y., 2023+)
forb $(m, r, M)-(r-1)^{m}-m(r-1)^{m-1} \leq(r-2)^{m-2} H\left(m, \frac{r-1}{r-2}\right)$.

Associated multigraph $\mathcal{G}_{\mathcal{B}}$

Definition

- Given a choice \mathcal{B} on $[m]$ and $X \subset[m]$, the directed multigraph $\mathcal{D}_{\mathcal{B}}(X)$ associated to \mathcal{B} is obtained by drawing all the arrows corresponding to 0 -implications imposed by matrices $B_{i, j, k}$.
- If \mathcal{B} is a "good" choice, the undirected multigraph $\mathcal{G}_{\mathcal{B}}$ associated to \mathcal{B} is the "complement" of $\mathcal{D}_{\mathcal{B}}([m])$, which is a TCM.

Example

$B_{1,2,3}$	$B_{1,2,4}$	$B_{1,2,5}$	$B_{1,3,4}$	$B_{1,3,5}$	$B_{1,4,5}$	$B_{2,3,4}$	$B_{2,3,5}$	$B_{2,4,5}$	$B_{3,4,5}$
A_{1}	A_{2}	A_{2}	A_{2}	A_{2}	A_{1}	A_{2}	A_{2}	A_{1}	A_{1}
$\begin{aligned} & \text { (1) } \\ & \text { (1) } \\ & \text { (3) } \\ & \hline(3) \\ & \hline 18) \end{aligned}$	(3)	$\begin{aligned} & \text { (1) (1) } \\ & \text { (2) } \\ & \text { (3) } \end{aligned}$	(3) (3)		$\begin{aligned} & \text { (1) } 1(10 \\ & \text { (2) } \\ & \text { (3) } \end{aligned}$	$\text { (1) }_{1}^{2}+(3)$	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & \text { (3) } \end{aligned}$	(1)	(1) (2)

Relating the two problems

Theorem (Peaslee, Sali, Y., 2023+)
forb $(m, r, M)-(r-1)^{m}-m(r-1)^{m-1} \leq(r-2)^{m-2} H\left(m, \frac{r-1}{r-2}\right)$.

Proof sketch.

For every pair $i j$ in $[m]$, let $m_{i j}$ be the multiplicity of $i j$ in $\mathcal{G}_{\mathcal{B}}$. Then

$$
\sum_{X \subset[m]} n(\mathcal{B}, X)(r-2)^{m-|X|}=(r-2)^{m-2} \sum_{i j}\left(\frac{r-1}{r-2}\right)^{m_{i j}}
$$

roughly because no ij edge in $\mathcal{D}_{\mathcal{B}}(X) \Longleftrightarrow$ a copy of edge ij in $\mathcal{G}_{\mathcal{B}}$.
It then follows from the definition of $H\left(m, \frac{r-1}{r-2}\right)$ because $\mathcal{G}_{\mathcal{B}}$ is a TCM.

Relating the two problems

Theorem (Peaslee, Sali, Y., 2023+)
forb $(m, r, M)-(r-1)^{m}-m(r-1)^{m-1} \leq(r-2)^{m-2} H\left(m, \frac{r-1}{r-2}\right)$.

$$
\text { forb }(m, r, M) \quad \text { forb }(m, r, \mathcal{B}) \quad H\left(m, \frac{r-1}{r-2}\right)
$$

matrix A with no configuration of M
choice $\mathcal{B} \longrightarrow \mathrm{TCM} \mathcal{G B}_{\mathcal{B}}$
2-recursive TCM \mathcal{G}

Theorem (Peaslee, Sali, Y., 2023+)
forb $(m, r, M)-(r-1)^{m}-m(r-1)^{m-1} \geq(r-2)^{m-2} H_{2}\left(m, \frac{r-1}{r-2}\right)$.

Outline

(1) Preliminaries

- The forbidden matrix problem
- An optimisation problem on multigraphs
(2) Relating the two problems
(3) Proof sketch
- Upper bound
- Lower bound

4) Open questions

Outline

（1）Preliminaries

－The forbidden matrix problem
－An optimisation problem on multigraphs
（2）Relating the two problems
（3）Proof sketch
－Upper bound
－Lower bound

4 Open questions

Closed sets

Definition

- A set S in a TCM \mathcal{G} is closed if for every $i, j \in S$ and $k \notin S$, edge $i j$ is chosen in triangle ijk.
- A closed set S is maximal if the only proper closed set containing S is S itself.

Example

$\{1,2,3\}$ and $\{4,5\}$ are maximal closed sets, $\{1,2\}$ is also a closed set.

Closed sets

Definition

- A set S in a TCM \mathcal{G} is closed if for every $i, j \in S$ and $k \notin S$, edge ij is chosen in triangle ijk.
- A closed set S is maximal if the only proper closed set containing S is S itself.

Lemma (Peaslee, Sali, Y., 2023+)
Maximal closed sets partition the vertex set of a TCM.

Lemma (Peaslee, Sali, Y., 2023+)
If $\alpha \geq 2$, then there exists a TCM \mathcal{G} maximising $w(\mathcal{G}, \alpha)$, whose maximal closed sets all have size at least 2.

Upper bound

Theorem (Peaslee, Sali, Y., 2023+)

$$
H(m, 2) \leq \frac{83}{192} m 2^{m-1} \leq 0.433 m 2^{m-1} .
$$

Proof sketch.

- Suppose the maximal closed sets in \mathcal{G} are S_{1}, \cdots, S_{k}, and they have sizes $2 \leq a_{1} \leq \cdots \leq a_{k}$. Split the sum $w(\mathcal{G}, 2)=\sum_{i j} 2^{m_{i j}}$ according to whether pair $i j$ is within a maximal closed set or across two of them.
- Contribution from all edges within a closed set S_{ℓ} is at most $H\left(a_{\ell}, 2\right) 2^{m-a_{\ell}}$.
- Bound the contributions from edges going across closed sets by some expression $f\left(a_{1}, \cdots, a_{k}\right)$.
- Show that $\sum_{\ell} H\left(a_{\ell}\right) 2^{m-a_{\ell}}+f\left(a_{1}, \cdots, a_{k}\right)$ is maximised when all $a_{\ell}=2$.

Upper bound

Theorem (Peaslee, Sali, Y., 2023+)

$$
H(m, 2) \leq \frac{83}{192} m 2^{m-1} \leq 0.433 m 2^{m-1} .
$$

Theorem (Peaslee, Sali, Y., 2023+)

For all $r \geq 3$, forb $(m, r, M) \leq(r-1)^{m}+1.433 m(r-1)^{m-1}$.

Proof.

The $r=3$ case directly follows from upper bound on $H(m, 2)$.
For $r \geq 4$ and any column c in an r-matrix, let the 3-support of c be the set of indices i such that $c_{i} \in\{0,1,2\}$. Then, the number of columns with 3-support X is at most forb $(|X|, 3, M)(r-3)^{m-|X|}$, so forb $(m, r, M) \leq \sum_{j=0}^{m}\binom{m}{j}(r-3)^{m-j}$ forb $(j, 3, M)$.

Outline

(1) Preliminaries

- The forbidden matrix problem
- An optimisation problem on multigraphs
(2) Relating the two problems
(3) Proof sketch
- Upper bound
- Lower bound

4 Open questions

2-recursive TCM

Definition

A TCM \mathcal{G} is 2-recursive if \mathcal{G} has exactly two maximal closed sets, and the "restriction" of \mathcal{G} to both maximal closed sets are still 2-recursive TCMs.

Example

Vertex Triplet	1,2,3	1,2,4	1,2,5	1,3,4	1,3,5	1,4,5	2,3,4	2,3,5	2,4,5	$3,4,5$
Subgraph	$\begin{aligned} & \text { (1) (1) } \\ & \text { (ㄹ) } \\ & \text { (ㄷ) } \end{aligned}$	$\begin{array}{ll} \text { (1) } \\ \text { (3) } \\ \text { (3) } \\ \text { (3) } \end{array}$	$\begin{aligned} & \text { (1) () } \\ & \text { (3) } \\ & \text { (3) } \end{aligned}$	(3) (1)	(ㄹ) () ()	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & \text { (3) } \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \\ & \text { (ㄱ) } \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \\ & \text { (3) } \\ & \text { (3) } \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & \text { (3) } \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (3) } \\ & \text { (3) } \end{aligned}$

A 2-recursive TCM on 5 vertices.

Lower bound

From the definition of 2-recursive TCM, we obtain the recurrence relation $H_{2}(m, \alpha)=\max \left\{H_{2}(a, \alpha) \alpha^{b}+H_{2}(b, \alpha) \alpha^{b}+a b: a+b=m\right\}$.

Definition

For all $\alpha>1$, let $\lambda(\alpha)=\sum_{j=1}^{\infty} \frac{2^{j-1}}{\alpha^{2^{j}}}$.

Theorem (Peaslee, Sali, Y., 2023+)

- For all $\alpha>1$, $\lim _{\inf }^{m \rightarrow \infty}$ $\frac{2 H_{2}(m, \alpha)}{m \alpha^{m-1}} \geq \lambda(\alpha)$.
- For all $\alpha \geq 2, \lim _{m \rightarrow \infty} \frac{2 H_{2}(m, \alpha)}{m \alpha^{m-1}}=\lambda(\alpha)$.

Lower bound

Theorem (Peaslee, Sali, Y., 2023+)

- For all $\alpha>1$, liminf $\lim _{m \rightarrow \infty} \frac{2 H_{2}(m, \alpha)}{m \alpha^{m-1}} \geq \lambda(\alpha)$.
- For all $\alpha \geq 2, \lim _{m \rightarrow \infty} \frac{2 H_{2}(m, \alpha)}{m \alpha^{m-1}}=\lambda(\alpha)$.

Proof sketch.

For every integer m, let $k=k(m)$ be the unique integer satisfying $2^{k-1}+2^{k} \leq m<2^{k}+2^{k+1}$.

- When $\alpha \geq 2$, we prove that $H_{2}(a, \alpha) \alpha^{b}+H_{2}(b, \alpha) \alpha^{b}+a b$ is maximised when $a=2^{k}$ and $b=m-2^{k}$.
- For other α, we obtain a lower bound by always splitting m into $2^{k}+\left(m-2^{k}\right)$.

Lower bound

Theorem (Peaslee, Sali, Y., 2023+)
For all $\alpha>1, \operatorname{lim~inf}_{m \rightarrow \infty} \frac{2 H_{2}(m, \alpha)}{m \alpha^{m-1}} \geq \lambda(\alpha)$.

Theorem (Peaslee, Sali, Y., 2023+)

For all $r \geq 3, \epsilon>0$ and all sufficiently large m,

$$
\text { forb } \begin{aligned}
(m, r, M) & \geq(r-1)^{m}+\left(1+\frac{r-1}{2(r-2)^{2}} \lambda\left(\frac{r-1}{r-2}\right)-\epsilon\right) m(r-1)^{m-1} \\
& \geq(r-1)^{m}+1.360 m(r-1)^{m-1}
\end{aligned}
$$

Proof.

Follows from the theorem above and forb $(m, r, M) \geq(r-1)^{m}+m(r-1)^{m-1}+H_{2}\left(m, \frac{r-1}{r-2}\right)(r-2)^{m-2}$.

Outline

(1) Preliminaries

- The forbidden matrix problem
- An optimisation problem on multigraphs
(2) Relating the two problems
(3) Proof sketch
- Upper bound
- Lower bound
(4) Open questions

Open questions

Conjecture (Peaslee, Sali, Y., 2023+)

For all $\alpha \geq 2, H(m, \alpha)=H_{2}(m, \alpha)$. In particular, forb $(m, 3, M)-2^{m}-m 2^{m-1}=H(m, 2) \sim \lambda(2) m 2^{m-1}\left(\approx 0.391 m 2^{m-1}\right)$.

- Determine the exact value, or at least the asymptotic growth of forb (m, r, M) for $r \geq 3$.
- Determine the values of $H(m, \alpha)$ for every α and $H_{2}(m, \alpha)$ for every $\alpha<2$.
- Determine forb (m, r, F) for other (not necessarily $(0,1)-$) matrices F.

