An interesting forbidden matrix problem

Jun Yan

University of Warwick

Joint work with Wallace Peaslee and Attila Sali

LSE PhD Seminar

1st December, 2023

Preliminaries

- The forbidden matrix problem
- An optimisation problem on multigraphs

2 Relating the two problems

3 Proof sketch

- Upper bound
- Lower bound

Open questions

2/38

Preliminaries

- The forbidden matrix problem
- An optimisation problem on multigraphs

2 Relating the two problems

3 Proof sketch

- Upper bound
- Lower bound

Open questions

Preliminaries

- The forbidden matrix problem
- An optimisation problem on multigraphs

2 Relating the two problems

3 Proof sketch

- Upper bound
- Lower bound

Open questions

Forbidden number forb(m, r, F)

Definition

- An *r*-matrix is a matrix whose entries all belong to the set $\{0, 1, \dots, r-1\}$.
- A configuration of a matrix *F* is a matrix that can be obtained by permuting the rows and columns of *F*.
- forb(*m*, *r*, *F*) is the maximum number of distinct columns in an *m*-rowed *r*-matrix that does not contain a configuration of *F*.

for (m, r, F) is the maximum number of distinct columns in an *m*-rowed *r*-matrix that does not contain a configuration of *F*.

Example

forb $(m, 2, l_2) = m + 1$ as any two distinct columns with the same number of 1's give rise to a configuration of I_2 , while $\begin{bmatrix} 0 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$ contains no configuration of I_2 .

The r = 2 case has been extensively studied.

- The exact value of forb(m, 2, F) is known for many small matrices F and many infinite families of matrices F.
- Asymptotic growth of forb(m, 2, F) is known for many other family of matrices. But there is no complete characterisation yet.

For more information on the r = 2 case, see A survey of forbidden configuration results by Richard Anstee.

The $r \ge 3$ case has hardly been explored. We will focus on forb(m, r, F) in the case when F is a (0,1)-matrix.

Definition

The support of a column c is the set of row indices i satisfying $c_i = 0$ or 1.

Theorem (Dillon, Sali, 2021)

For every (0,1)-matrix F and $r \geq 3$,

$$\operatorname{forb}(m, r, F) \leq \sum_{j=0}^{m} {m \choose j} (r-2)^{m-j} \operatorname{forb}(j, 2, F).$$

Moreover, equality holds if the sequence of extremal matrices (M_j) attaining forb(j, 2, F) are "nested".

Theorem (Dillon, Sali, 2021)

For every (0,1)-matrix F and $r \geq 3$,

$$\operatorname{forb}(m,r,F) \leq \sum_{j=0}^{m} \binom{m}{j} (r-2)^{m-j} \operatorname{forb}(j,2,F).$$

Moreover, equality holds if the sequence of extremal matrices (M_j) attaining forb(j, r, F) are "nested".

Using this, Dillon and Sali determined forb(m, r, F) exactly for all 2-rowed and up to 3×3 (0,1)-matrices F with no repeated columns, except

$$\boldsymbol{M} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Improve the following bounds on forb(m, r, M) for $r \ge 3$.

$$(r-1)^m + m(r-1)^{m-1} \le \operatorname{forb}(m, r, M) \le (r-1)^m + 1.5m(r-1)^{m-1}.$$

$$\uparrow \qquad \qquad \uparrow$$
number of columns the upper bound theorem and with at most one 0 forb $(m, 2, M) = \lfloor \frac{3m}{2} \rfloor + 1$

Theorem (Peaslee, Sali, Y., 2023+)

For all $r \geq 3$,

$$(r-1)^m + 1.360m(r-1)^{m-1} \le \operatorname{forb}(m, r, M) \le (r-1)^m + 1.433m(r-1)^{m-1}.$$

Preliminaries

- The forbidden matrix problem
- An optimisation problem on multigraphs

2 Relating the two problems

3 Proof sketch

- Upper bound
- Lower bound

Open questions

11/38

A triangular choice multigraph (TCM) \mathcal{G} on a vertex set V is a multigraph obtained by choosing one of edge ij, ik, jk for every unordered triple $i, j, k \in V$, and including it in \mathcal{G} .

					_						
					5						
Vertex Triplet	1,2,3	1,2,4	$1,\!2,\!5$	1,3,4	$1,\!3,\!5$	1,4,5	2,3,4	2,3,5	2,4,5	3,4,5	
Subgraph	0 0 0 0	0 8 9	0 8 9	() () () () ()	() () () () () ()	0 9 9	() () () () () () () () () () () () () (0 0 0 0 0 0	0 8 9 9	

< ロト < 同ト < ヨト < ヨト

For every TCM G on [m] and $\alpha \in \mathbb{R}$, let m_{ij} be the multiplicity of ij in G, and let

$$w(\mathcal{G}, \alpha) = \sum_{ij} \alpha^{m_{ij}}.$$

Question

Determine the values of

$$H(m,\alpha) = \max\{w(\mathcal{G},\alpha) \colon \mathcal{G} \text{ is a TCM on } [m]\}$$

 $H_2(m,\alpha) = \max\{w(\mathcal{G},\alpha): \mathcal{G} \text{ is a } 2\text{-recursive}^* \text{ TCM on } [m]\}$

*: 2-recursive TCM will be defined later.

Theorem (Peaslee, Sali, Y., 2023+)

For every $r \geq 3$, we have

- $forb(m, r, M) (r-1)^m m(r-1)^{m-1} \le H(m, \frac{r-1}{r-2})(r-2)^{m-2}$,
- forb $(m, r, M) (r-1)^m m(r-1)^{m-1} \ge H_2(m, \frac{r-1}{r-2})(r-2)^{m-2}$

Theorem (Peaslee, Sali, Y., 2023+)

- $H(m,2) \leq 0.433 m 2^{m-1}$.
- $H_2(m, \frac{r-1}{r-2})(r-2)^{m-2} \ge 0.360m(r-1)^{m-1}$

- * @ * * 图 * * 图 * - 图

Preliminaries

- The forbidden matrix problem
- An optimisation problem on multigraphs

2 Relating the two problems

3 Proof sketch

- Upper bound
- Lower bound

Open questions

Choices

Observation

If A contains no configuration of M, then for every triple i, j, k and each pair of columns below, A restricted to rows i, j, k contains at most one column in the pair.

$$\left\{ \begin{bmatrix} 1\\1\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\1\end{bmatrix} \right\}, \left\{ \begin{bmatrix} 1\\0\\1\\1\end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\end{bmatrix} \right\}, \left\{ \begin{bmatrix} 0\\1\\1\\1\end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0\end{bmatrix} \right\}$$

Definition

A choice is a sequence of 3×3 matrices $\mathcal{B} = (B_{i,j,k})$, where for each triple $i, j, k, B_{i,j,k}$ is formed by picking 1 column from each of the 3 pairs above, and putting them together.

< ロ > < 同 > < 回 > < 回 >

We say A forbids a choice \mathcal{B} if for every triple i, j, k, A restricted to rows i, j, k contains no column in $B_{i,j,k}$.

Observation

Every matrix A that contains no configuration of M forbids a choice \mathcal{B} .

Definition

Define forb(m, r, B) to be the maximum number of columns an *m*-rowed *r*-matrix *A* can have if *A* forbids *B*.

It follows that

 $forb(m, r, M) = max{forb(m, r, B): B is a choice}.$

Let \mathcal{B} be a choice on [m] and let $X \subset [m]$.

- A column c on X is valid with respect to B if for every triple i, j, k in X, c restricted to rows i, j, k is not a column in $B_{i,j,k}$.
- $c(\mathcal{B}, X)$ is defined to be the number of valid (0,1)-columns on X with respect to \mathcal{B} .

Observation

$$\operatorname{forb}(m,r,\mathcal{B}) = \sum_{X \subset [m]} c(\mathcal{B},X)(r-2)^{m-|X|}.$$

Let \mathcal{B} be a choice on [m]. For every $X \subset [m]$ and $i, j \in X$, we say there is a 0-implication from *i* to *j* on X if for every valid column *c* with support X with respect to \mathcal{B} , $c_i = 0$ implies $c_j = 0$.

Example

The forbidden conditions imposed by every $B_{i,j,k}$ correspond to 0-implications. In this example, they are represented as arrows.

$$B_{i,j,k} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \\ k \end{bmatrix}$$

Given a choice \mathcal{B} on [m] and $X \subset [m]$, the directed multigraph $\mathcal{D}_{\mathcal{B}}(X)$ associated to \mathcal{B} is obtained by drawing all the arrows corresponding to 0-implications imposed by matrices $B_{i,j,k}$.

Example

< 47 ►

Lemma (Peaslee, Sali, Y., 2023+)

Let \mathcal{B} be a good choice and let $X \subset [m]$, then $c(\mathcal{B}, X) \leq n(\mathcal{B}, X) + |X| + 1$, where $n(\mathcal{B}, X)$ is the number of unordered pairs of vertices in $\mathcal{D}_{\mathcal{B}}(X)$ with no directed edge between them.

"Proof" by example.

Any valid column is constant on each strongly connected component.

< □ > < 同 > < 回 > < 回 > < 回 >

Number of valid columns

Therefore, we have

forb
$$(m, r, \mathcal{B}) = \sum_{X \subset [m]} c(\mathcal{B}, X)(r-2)^{m-|X|}$$

 $\leq \sum_{X \subset [m]} (n(\mathcal{B}, X) + |X| + 1)(r-2)^{m-|X|}$
 $= (r-1)^m + m(r-1)^{m-1} + \sum_{X \subset [m]} n(\mathcal{B}, X)(r-2)^{m-|X|}.$

Theorem (Peaslee, Sali, Y., 2023+) forb $(m, r, M) - (r - 1)^m - m(r - 1)^{m-1} \le (r - 2)^{m-2} H(m, \frac{r-1}{r-2}).$

> <ロト < 部 ト < 目 ト < 目 ト 目 の Q (~) 22 / 38

- Given a choice \mathcal{B} on [m] and $X \subset [m]$, the directed multigraph $\mathcal{D}_{\mathcal{B}}(X)$ associated to \mathcal{B} is obtained by drawing all the arrows corresponding to 0-implications imposed by matrices $B_{i,j,k}$.
- If B is a "good" choice, the undirected multigraph G_B associated to B is the "complement" of D_B([m]), which is a TCM.

Example

$B_{1,2,3}$	$B_{1,2,4}$	$B_{1,2,5}$	$B_{1,3,4}$	$B_{1,3,5}$	$B_{1,4,5}$	$B_{2,3,4}$	$B_{2,3,5} = A_2$	$B_{2,4,5}$	$B_{3,4,5}$
A_1	A_2	A_2	A_2	A_2	A_1	A_2		A_1	A_1
() () () () () () () () () () () () () (1 2 3 3	0 2 3						1) 2,4 3	

Theorem (Peaslee, Sali, Y., 2023+)

forb
$$(m, r, M) - (r-1)^m - m(r-1)^{m-1} \le (r-2)^{m-2} H(m, \frac{r-1}{r-2}).$$

Proof sketch.

For every pair *ij* in [m], let m_{ij} be the multiplicity of *ij* in $\mathcal{G}_{\mathcal{B}}$. Then

$$\sum_{X \subset [m]} n(\mathcal{B}, X)(r-2)^{m-|X|} = (r-2)^{m-2} \sum_{ij} \left(\frac{r-1}{r-2}\right)^{m_{ij}},$$

roughly because no *ij* edge in $\mathcal{D}_{\mathcal{B}}(X) \iff$ a copy of edge *ij* in $\mathcal{G}_{\mathcal{B}}$.

It then follows from the definition of $H(m, \frac{r-1}{r-2})$ because $\mathcal{G}_{\mathcal{B}}$ is a TCM.

forb
$$(m, r, M) - (r-1)^m - m(r-1)^{m-1} \le (r-2)^{m-2} H(m, \frac{r-1}{r-2}).$$

Theorem (Peaslee, Sali, Y., 2023+)

forb
$$(m, r, M) - (r - 1)^m - m(r - 1)^{m-1} \ge (r - 2)^{m-2} H_2(m, \frac{r-1}{r-2}).$$

25 / 38

Preliminaries

- The forbidden matrix problem
- An optimisation problem on multigraphs

2 Relating the two problems

3 Proof sketch

- Upper bound
- Lower bound

Open questions

Preliminaries

- The forbidden matrix problem
- An optimisation problem on multigraphs

2 Relating the two problems

3 Proof sketch

- Upper bound
- Lower bound

Open questions

27 / 38

Closed sets

Definition

- A set S in a TCM G is closed if for every i, j ∈ S and k ∉ S, edge ij is chosen in triangle ijk.
- A closed set S is maximal if the only proper closed set containing S is S itself.

- A set S in a TCM G is closed if for every i, j ∈ S and k ∉ S, edge ij is chosen in triangle ijk.
- A closed set S is maximal if the only proper closed set containing S is S itself.

Lemma (Peaslee, Sali, Y., 2023+)

Maximal closed sets partition the vertex set of a TCM.

Lemma (Peaslee, Sali, Y., 2023+)

If $\alpha \geq 2$, then there exists a TCM \mathcal{G} maximising $w(\mathcal{G}, \alpha)$, whose maximal closed sets all have size at least 2.

Upper bound

Theorem (Peaslee, Sali, Y., 2023+) $H(m,2) \le \frac{83}{102}m2^{m-1} \le 0.433m2^{m-1}.$

Proof sketch.

- Suppose the maximal closed sets in \mathcal{G} are S_1, \dots, S_k , and they have sizes $2 \leq a_1 \leq \dots \leq a_k$. Split the sum $w(\mathcal{G}, 2) = \sum_{ij} 2^{m_{ij}}$ according to whether pair ij is within a maximal closed set or across two of them.
- Contribution from all edges within a closed set S_{ℓ} is at most $H(a_{\ell}, 2)2^{m-a_{\ell}}$.
- Bound the contributions from edges going across closed sets by some expression $f(a_1, \dots, a_k)$.
- Show that $\sum_{\ell} H(a_{\ell}) 2^{m-a_{\ell}} + f(a_1, \cdots, a_k)$ is maximised when all $a_{\ell} = 2$.

3

イロン イ団 と イヨン イヨン

 $H(m,2) \leq \frac{83}{192}m2^{m-1} \leq 0.433m2^{m-1}.$

Theorem (Peaslee, Sali, Y., 2023+)

For all
$$r \ge 3$$
, forb $(m, r, M) \le (r - 1)^m + 1.433m(r - 1)^{m-1}$.

Proof.

The r = 3 case directly follows from upper bound on H(m, 2). For $r \ge 4$ and any column c in an r-matrix, let the 3-support of c be the set of indices i such that $c_i \in \{0, 1, 2\}$. Then, the number of columns with 3-support X is at most forb $(|X|, 3, M)(r - 3)^{m-|X|}$, so forb $(m, r, M) \le \sum_{j=0}^{m} {m \choose j} (r - 3)^{m-j}$ forb(j, 3, M).

Preliminaries

- The forbidden matrix problem
- An optimisation problem on multigraphs

2 Relating the two problems

- Upper bound
- Lower bound

Open questions

A TCM \mathcal{G} is 2-recursive if \mathcal{G} has exactly two maximal closed sets, and the "restriction" of \mathcal{G} to both maximal closed sets are still 2-recursive TCMs.

A 2-recursive TCM on 5 vertices.

(B)

4 円

From the definition of 2-recursive TCM, we obtain the recurrence relation $H_2(m, \alpha) = \max\{H_2(a, \alpha)\alpha^b + H_2(b, \alpha)\alpha^b + ab: a + b = m\}.$

Definition

For all
$$\alpha > 1$$
, let $\lambda(\alpha) = \sum_{j=1}^{\infty} \frac{2^{j-1}}{\alpha^{2^j}}$.

Theorem (Peaslee, Sali, Y., 2023+)

• For all $\alpha > 1$, $\liminf_{m \to \infty} \frac{2H_2(m,\alpha)}{m\alpha^{m-1}} \ge \lambda(\alpha)$. • For all $\alpha \ge 2$, $\lim_{m \to \infty} \frac{2H_2(m,\alpha)}{m\alpha^{m-1}} = \lambda(\alpha)$.

Theorem (Peaslee, Sali, Y., 2023+)

For all α > 1, lim inf_{m→∞} ^{2H₂(m,α)}/_{mα^{m-1}} ≥ λ(α).
For all α ≥ 2, lim_{m→∞} ^{2H₂(m,α)}/_{mα^{m-1}} = λ(α).

Proof sketch.

For every integer m, let k = k(m) be the unique integer satisfying $2^{k-1} + 2^k \le m < 2^k + 2^{k+1}$.

- When $\alpha \ge 2$, we prove that $H_2(a, \alpha)\alpha^b + H_2(b, \alpha)\alpha^b + ab$ is maximised when $a = 2^k$ and $b = m 2^k$.
- For other α , we obtain a lower bound by always splitting *m* into $2^k + (m 2^k)$.

- 《御》 《문》 《문》 - 문

Lower bound

Theorem (Peaslee, Sali, Y., 2023+)

For all $\alpha > 1$, $\liminf_{m \to \infty} \frac{2H_2(m,\alpha)}{m\alpha^{m-1}} \ge \lambda(\alpha)$.

Theorem (Peaslee, Sali, Y., 2023+)

For all $r \ge 3$, $\epsilon > 0$ and all sufficiently large m,

forb
$$(m, r, M) \ge (r-1)^m + \left(1 + \frac{r-1}{2(r-2)^2}\lambda\left(\frac{r-1}{r-2}\right) - \epsilon\right)m(r-1)^{m-1}$$

 $\ge (r-1)^m + 1.360m(r-1)^{m-1}$

Proof.

Follows from the theorem above and forb $(m, r, M) \ge (r-1)^m + m(r-1)^{m-1} + H_2(m, \frac{r-1}{r-2})(r-2)^{m-2}$.

э

イロン イ理 とく ヨン イヨン

Preliminaries

- The forbidden matrix problem
- An optimisation problem on multigraphs

2 Relating the two problems

3 Proof sketch

- Upper bound
- Lower bound

Open questions

Conjecture (Peaslee, Sali, Y., 2023+)

For all $\alpha \ge 2$, $H(m, \alpha) = H_2(m, \alpha)$. In particular, forb $(m, 3, M) - 2^m - m2^{m-1} = H(m, 2) \sim \lambda(2)m2^{m-1} (\approx 0.391m2^{m-1})$.

- Determine the exact value, or at least the asymptotic growth of forb(m, r, M) for $r \ge 3$.
- Determine the values of $H(m, \alpha)$ for every α and $H_2(m, \alpha)$ for every $\alpha < 2$.
- Determine forb(m, r, F) for other (not necessarily (0,1)-) matrices F.

イロト イ団ト イヨト イヨト