Counting Domino Tilings and Lozenge Tilings

Jun Yan
University of Warwick
21st February, 2023

Outline

(1) Domino Tilings of the Rectangle

- Recurrence Approach
- Adjacency Matrix Approach
(2) Lozenge Tilings of the Hexagon
- Plane Partition Approach
- Non-Intersecting Lattice Paths Approach
(3) Further Results / Open Problems

Outline

(1) Domino Tilings of the Rectangle

- Recurrence Approach
- Adjacency Matrix Approach

2 Lozenge Tilings of the Hexagon

- Plane Partition Approach
- Non-Intersecting Lattice Paths Approach
(3) Further Results / Open Problems

Domino Tilings

Definition

- A domino is a 1×2 or 2×1 rectangle.
- A domino tiling of a bounded region on the square grid is a set of non-intersecting dominoes that all lie inside the region and completely covers it.

4×6 rectangle $R_{4,6}$

A domino tiling of $R_{4,6}$

Domino Tilings

Question

Count the number of domino tilings of the $m \times n$ rectangle $R_{m, n}$.

A domino tiling of $R_{4,6}$

Outline

(1) Domino Tilings of the Rectangle

- Recurrence Approach
- Adjacency Matrix Approach
(2) Lozenge Tilings of the Hexagon
- Plane Partition Approach
- Non-Intersecting Lattice Paths Approach
(3) Further Results / Open Problems

Recurrence Approach: $2 \times n$

Question

Count the number $F(n)$ of domino tilings of $R_{2, n}$.

Since $F(1)=1$ and $F(2)=2, F(n)$ are the Fibonacci numbers.

Recurrence Approach: $3 \times 2 n$

Question

Count the number $f(2 n)$ of domino tilings of $R_{3,2 n}$.

$f(2 n)=2 g(2 n-1)+f(2 n-2) \quad g(2 n-1)=f(2 n-2)+g(2 n-3)$

Solving this, we obtain $f(2 n)=4 f(2 n-2)-f(2 n-4)$.

Problems with the Recurrence Approach

- It quickly becomes infeasible to analyse all the possible domino positions and find the recurrence formula.
- In fact, the order of the recurrence seems to grow exponentially.

Outline

(1) Domino Tilings of the Rectangle

- Recurrence Approach
- Adjacency Matrix Approach
(2) Lozenge Tilings of the Hexagon
- Plane Partition Approach
- Non-Intersecting Lattice Paths Approach
(3) Further Results / Open Problems

Balanced Bipartite Graph

Definition

- A graph G is bipartite if its vertices can be coloured with either red or blue, such that no edge in G connects vertices of the same colour.
- A bipartite graph is balanced if it can be coloured in this way with equal number of red and blue vertices.

Balanced Bipartite Graph

Perfect Matching

Definition

A perfect matching of a graph G is a collection M of edges in G, such that each vertex in G is contained in exactly 1 edge in M.

Balanced Bipartite Graph

Perfect Matching

From Domino Tilings to Perfect Matchings

$R_{m, n}$

Domino Tilings

Balanced Bipartite Graph

Perfect Matchings

Adjacency Matrix

Definition

Let G be a balanced bipartite graph on $2 n$ vertices such that v_{1}, \cdots, v_{n} are coloured blue and $v_{n+1}, \cdots, v_{2 n}$ are coloured red. The adjacency matrix B for G is the $n \times n$ matrix given by

$$
B_{i, j}= \begin{cases}1, & \text { if } v_{i} v_{n+j} \text { is an edge in } G \\ 0, & \text { otherwise }\end{cases}
$$

Permanent and Determinant

Definition

Let M be a $n \times n$ matrix.

- The permanent of M is perm $(M)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} M_{i, \sigma(i)}$. In other words, perm (M) is the sum over all possible products of n entries in M, all coming from different rows and columns.
- The determinant of M is $\operatorname{det}(M)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} M_{i, \sigma(i)}$.

In other words, $\operatorname{det}(M)$ is the same sum as perm (M), except that each term is multiplied by ± 1.

Permanent Counts Perfect Matchings

Lemma

Let G be a balanced bipartite graph and B be its adjacency matrix. Then perm (B) is equal to the number of perfect matchings in G.

Determinant Counts Perfect Matchings

Lemma

Let G be the graph corresponding to $R_{m, n}$ and let \widetilde{B} be the matrix obtained by from the adjacency matrix B by changing the entry corresponding to every vertical edge in G from 1 to i. Then $|\operatorname{det}(\widetilde{B})|$ is equal to the number of perfect matchings in G, and hence equal to the number of domino tilings of $R_{m, n}$.

Kasteleyn's Formula

Theorem (Kasteleyn's Formula)

The number of domino tilings of $R_{m, n}$ is

$$
\prod_{j=1}^{m} \prod_{k=1}^{n}\left(4 \cos ^{2}\left(\frac{j \pi}{m+1}\right)+4 \cos ^{2}\left(\frac{k \pi}{n+1}\right)\right)^{1 / 4}
$$

Proof Sketch.

If $\widetilde{A}=\left[\begin{array}{cc}0 & \widetilde{B}^{\top} \\ \widetilde{B} & 0\end{array}\right]$, then $|\operatorname{det}(\widetilde{A})|=|\operatorname{det}(\widetilde{B})|^{2}=\left(\right.$ number of tilings) ${ }^{2}$.
It can be shown that the $m n$ eigenvalues of \widetilde{A} are exactly
$2 \cos \left(\frac{j \pi}{m+1}\right)+2 i \cos \left(\frac{k \pi}{n+1}\right)$ for $1 \leq j \leq m$ and $1 \leq k \leq n$.

Outline

(1) Domino Tilings of the Rectangle

- Recurrence Approach
- Adjacency Matrix Approach
(2) Lozenge Tilings of the Hexagon
- Plane Partition Approach
- Non-Intersecting Lattice Paths Approach
(3) Further Results / Open Problems

Lozenge Tilings

Definition

- A lozenge is the shape obtained by gluing two equilateral triangles along one of their sides.
- A lozenge tiling of a bounded region in the triangle grid is a set of non-intersecting lozenges that all lie inside the region and completely covers it.

Hexagon $H_{3,3,2}$

A lozenge tiling of $H_{3,3,2}$

Lozenge Tilings

Question

Count the number of lozenge tilings of the hexagon $\mathrm{H}_{a, b, c}$.

$H_{3,3,2}$

A lozenge tiling of $H_{3,3,2}$

Outline

(1) Domino Tilings of the Rectangle

- Recurrence Approach
- Adjacency Matrix Approach
(2) Lozenge Tilings of the Hexagon
- Plane Partition Approach
- Non-Intersecting Lattice Paths Approach
(3) Further Results / Open Problems

Plane Partition Approach

Definition

A plane partition $\pi=\left(\pi_{i, j}\right)_{i, j=1}^{\infty}$ is a two dimensional array of non-negative integers such that

- Only finitely many $\pi_{i, j}$ are non-zero.
- $\pi_{i, j}$ is non-increasing in both indices.

3	2	2	0	\cdots
2	1	0	\cdots	
1	1	0	\cdots	
0	0	\cdots		

From Lozenge Tilings to Plane Partitions

Theorem

Let $\mathcal{B}(a, b, c)$ be the set of plane partitions such that

- If $\pi_{i, j} \neq 0$, then $i \leq a$ and $j \leq b$.
- $\pi_{i, j} \leq c$ for all i, j.

Then there is a bijection between lozenge tilings of $H_{a, b, c}$ and plane partitions in $\mathcal{B}(a, b, c)$.

Lozenge tiling of $H_{3,3,2}$

2	1	1
2	1	0
0	0	0

$\pi \in \mathcal{B}(3,3,2)$

MacMahon's Formula

Theorem (MacMahon's Formula)

It can be shown using the method of generating function that

$$
|\mathcal{B}(a, b, c)|=\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}=\prod_{i=1}^{a} \prod_{j=1}^{b} \frac{i+j+c-1}{i+j-1}
$$

Hence, the number of lozenge tilings of $H_{a, b, c}$ is also equal to this number.

In particular, the number of lozenge tilings of $H_{3,3,2}$ is

$$
\frac{3 \times 4 \times 5 \times 4 \times 5 \times 6 \times 5 \times 6 \times 7}{1 \times 2 \times 3 \times 2 \times 3 \times 4 \times 3 \times 4 \times 5}=175 .
$$

Outline

(1) Domino Tilings of the Rectangle

- Recurrence Approach
- Adjacency Matrix Approach
(2) Lozenge Tilings of the Hexagon
- Plane Partition Approach
- Non-Intersecting Lattice Paths Approach
(3) Further Results / Open Problems

Lattice Paths

Definition

A lattice path from (a, b) to $(a+m, b+n)$ consists of $m+n$ unit-length steps, with m step going to the right and n steps going up.

Lemma

There are exactly $\binom{m+n}{m}$ lattice paths from (a, b) to $(a+m, b+n)$.

The $\binom{4}{2}=6$ lattice paths from $(0,0)$ to $(2,2)$.

From Lozenge Tilings to Lattice Paths

Theorem

There is a bijection between lozenge tilings of $H_{a, b, c}$ and a-tuples of non-intersecting lattices paths $\left(P_{1}, \cdots, P_{a}\right)$, where P_{i} goes from $A_{i}=(i-1, a-i)$ to $B_{i}=(b+i-1, c+a-i)$.

\longrightarrow

Non-Intersecting Lattice Paths

Lozenge Tiling of $H_{3,3,2}$

$$
\begin{aligned}
& P_{1}:(0,2) \rightarrow(3,4) \\
& P_{2}:(1,1) \rightarrow(4,3) \\
& P_{3}:(2,0) \rightarrow(5,2)
\end{aligned}
$$

Lindström-Gessel-Viennot Lemma

Lemma (Lindström-Gessel-Viennot Lemma)

Let A_{1}, \cdots, A_{n} and B_{1}, \cdots, B_{n} be lattice points in "good position".
Suppose $M_{i, j}$ is the number of lattice paths from A_{i} to B_{j} and let M be the $n \times n$ matrix whose (i, j)-entry is $M_{i, j}$. Then the number of non-intersecting lattice paths $\left(P_{1}, \cdots, P_{n}\right)$ with P_{i} connecting A_{i} to B_{i} for each i is $\operatorname{det}(M)$.

Lozenge Tiling of $H_{3,3,2}$

Non-Intersecting Lattice Paths P_{1}, P_{2}, P_{3}

$$
\operatorname{det}(M)=175
$$

MacMahon's Formula revisited

Theorem (MacMahon's Formula)

For positive integers a, b, c, let M be the $a \times$ a matrix with $M_{i, j}=\binom{b+c}{b+j-i}$. Then the number of lozenge tilings of $H_{a, b, c}$ is equal to

$$
\operatorname{det}(M)=\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}=\prod_{i=1}^{a} \prod_{j=1}^{b} \frac{i+j+c-1}{i+j-1}
$$

Remark

See the excellent paper Advanced Determinant Calculus by Christian Krattenthaler for a comprehensive guide on evaluating complicated determinant, especially those involving binomial coefficients or arising from tiling problems.

Outline

(1) Domino Tilings of the Rectangle

- Recurrence Approach
- Adjacency Matrix Approach
(2) Lozenge Tilings of the Hexagon
- Plane Partition Approach
- Non-Intersecting Lattice Paths Approach
(3) Further Results / Open Problems

Domino

Aztec Diamond $A Z_{5}$

It is known that $A Z_{n}$ has $2^{\frac{n(n+1)}{2}}$ domino tilings

Aztec Pillow $A P_{4}$

Number of domino tilings for $A P_{n}$ is only conjectured

Lozenge

Number of lozenge tilings is

$$
\prod_{1 \leq i<j \leq b} \frac{x_{j}-x_{i}}{j-i}
$$

Explicit formula for the number of lozenge tilings is unknown.

