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Domino Tilings

Definition
@ A dominoisalx2or2x 1 rectangle.

@ A domino tiling of a bounded region on the square grid is a set of
non-intersecting dominoes that all lie inside the region and completely
covers it.

4 x 6 rectangle Ry A domino tiling of Ra
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Domino Tilings

Count the number of domino tilings of the m x n rectangle Ry, p. \

Ra6 A domino tiling of Rs6
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@ Domino Tilings of the Rectangle
@ Recurrence Approach
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Recurrence Approach: 2 x n

Count the number F(n) of domino tilings of Ry .

F(n)

4””””””’/ \\\\\\\\\\‘\\\‘

F(n—1) F(n—2)
F(n)=F(n—1)+ F(n—2)
Since F(1) =1 and F(2) =2, F(n) are the Fibonacci numbers.
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Recurrence Approach: 3 x 2n

Count the number f(2n) of domino tilings of R3 2.

m g(2n—1) f(2n — 2)
/ . l /

f(2n — 2) [

—_—
£(2n) \ m 2n—1) g(2n — 1) \ ‘:M g 3)
| [ ]

f(2n) =2g(2n — 1) + f(2n — 2) g(2n—1)=f(2n—2) + g(2n—3)

Solving this, we obtain f(2n) = 4f(2n — 2) — f(2n — 4).
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Problems with the Recurrence Approach

@ It quickly becomes infeasible to analyse all the possible domino
positions and find the recurrence formula.

@ In fact, the order of the recurrence seems to grow exponentially.
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@ Domino Tilings of the Rectangle

@ Adjacency Matrix Approach
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Balanced Bipartite Graph

Definition

@ A graph G is bipartite if its vertices can be coloured with either red or
blue, such that no edge in G connects vertices of the same colour.

@ A bipartite graph is balanced if it can be coloured in this way with
equal number of red and blue vertices.

Balanced Bipartite Graph
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Perfect Matching

Definition

A perfect matching of a graph G is a collection M of edges in G, such that
each vertex in G is contained in exactly 1 edge in M.
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Balanced Bipartite Graph Perfect Matching
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From Domino Tilings to Perfect Matchings

Rm,n Balanced Bipartite Graph

o o oo o
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¢ o—o o—o o
Domino Tilings Perfect Matchings
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Adjacency Matrix

Definition
Let G be a balanced bipartite graph on 2n vertices such that vy, -- , v, are
coloured blue and v, 11, -+, va, are coloured red. The adjacency matrix B

for G is the n x n matrix given by

B . — 1, if vivyqjis an edge in G
0, otherwise

Vi Vo v3
g V4, %2 val 11 1
-~ Vi 1 0 1
V5 V3 Ve
Y| 0 1 1
G B



Permanent and Determinant

Let M be a n X n matrix.

o The permanent of M is perm(M) =3~ s TIiZ1 Mio(i)-
In other words, perm(M) is the sum over all possible products of n
entries in M, all coming from different rows and columns.

o The determinant of M is det(M) = 3~ s sgn(o) [Ti21 Mj o(i)-
In other words, det(M) is the same sum as perm(M), except that each
term is multiplied by +1.

v
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Permanent Counts Perfect Matchings

Let G be a balanced bipartite graph and B be its adjacency matrix. Then
perm(B) is equal to the number of perfect matchings in G.
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perfect ~— % 1 01 perm(B) =3
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Determinant Counts Perfect Matchings

Let G be the graph corresponding to Ry, , and let B be the matrix
obtained by from the adjacency matrix B by changing the entry
corresponding to every vertical edge in G from 1 to i.

Then ‘det(é)‘ is equal to the number of perfect matchings in G, and

hence equal to the number of domino tilings of Ry, p.

Vi V2 v
3 1 va v2 Vs 11
perfect ~— i 01 det(B) = —3i
. Vs V3 Ve
matchings Ve 0 /i 1
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Kasteleyn's Formula
Theorem (Kasteleyn's Formula)

The number of domino tilings of Ry, is

m 1/4
HH(4cos ( >+4cos2< km >) .
B +1 n+1

Proof Sketch.
~ o BT

- ~ 12
IfA=| _ , then ’det(A)‘ = ‘det(B)‘ = (number of tilings)?.
B 0
It can be shown that the mn eigenvalues of A are exactly
2COS<m+1>+2ICOS( >f0r1<J<mand1<k<n O
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© Lozenge Tilings of the Hexagon
@ Plane Partition Approach
@ Non-Intersecting Lattice Paths Approach
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Lozenge Tilings

Definition
@ A lozenge is the shape obtained by gluing two equilateral triangles
along one of their sides.
@ A lozenge tiling of a bounded region in the triangle grid is a set of
non-intersecting lozenges that all lie inside the region and completely
covers it.

Hexagon H3 32 A lozenge tiling of H3 3
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Lozenge Tilings

Count the number of lozenge tilings of the hexagon H, p .. \

@

H3 32 A lozenge tiling of Hs 3
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© Lozenge Tilings of the Hexagon
@ Plane Partition Approach
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Plane Partition Approach

Definition

A plane partition 7 = (m;;)7%_; is a two dimensional array of non-negative
integers such that
@ Only finitely many 7; ; are non-zero.

@ T is non-increasing in both indices.

o onN

A plane partition.

O R, N W
o = = N
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From Lozenge Tilings to Plane Partitions

Let B(a, b, c) be the set of plane partitions such that
o Ifmjj#0, theni<aandj<b.
o mij<cforalli,j.

Then there is a bijection between lozenge tilings of H, p, . and plane
partitions in B(a, b, c).

21111
21110
0[(0]|0
Lozenge tiling
of Ha sz € B(3,3,2)
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MacMahon's Formula

Theorem (MacMahon's Formula)

It can be shown using the method of generating function that

k_ —

i=1j=1k=1 -1

Hence, the number of lozenge tilings of H, p, . is also equal to this number.

v

In particular, the number of lozenge tilings of H3 3 is

3Xx4x5x4x5x6xbx6x%x7
1 x2x3x2x3x4x3x4x5

= 175.
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© Lozenge Tilings of the Hexagon

@ Non-Intersecting Lattice Paths Approach
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A lattice path from (a, b) to (a + m, b+ n) consists of m + n unit-length
steps, with m step going to the right and n steps going up.

There are exactly (™*") lattice paths from (a, b) to (a-+ m, b+ n).

The (3) = 6 lattice paths from (0,0) to (2,2).
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From Lozenge Tilings to Lattice Paths

There is a bijection between lozenge tilings of H, p . and a-tuples of
non-intersecting lattices paths (Py,--- , P;), where P; goes from
Ai=(i—l,a—i)toBi=(b+i—1c+a—i).

By

B>

Az

As

Non-Intersecting Lattice Paths
Lozenge Tiling P1:(0,2) — (3,4)
of H3,372 P2 : (1, 1) — (4, 3)
P3:(2,0) — (5,2)
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Lindstrom-Gessel-Viennot Lemma

Lemma (Lindstrom-Gessel-Viennot Lemma)

Let Ay,--- ,A, and By, --- , B, be lattice points in “good position”.
Suppose M; j is the number of lattice paths from A; to B; and let M be the
n x n matrix whose (i, j)-entry is M; j. Then the number of
non-intersecting lattice paths (Pi,--- , P,) with P; connecting A; to B; for
each i is det(M).

Bi1

2 (3)
Bs

- =0 0 0
. ®

Lozenge Tiling Non-Intersecting
of H332 Lattice Paths Py, Py, P3

det(M) = 175
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MacMahon's Formula revisited

Theorem (MacMahon's Formula)

For positive integers a, b, c, let M be the a x a matrix with M;; = (bl:;'ii)'
Then the number of lozenge tilings of H, p, . is equal to

+j+k—1 +j+c—1
detM) HHH:+j+k 2 HHI J - ’

i=1j=1k=1 I+J_1

See the excellent paper Advanced Determinant Calculus by Christian
Krattenthaler for a comprehensive guide on evaluating complicated

determinant, especially those involving binomial coefficients or arising from
tiling problems.
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© Further Results / Open Problems
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Aztec Diamond AZs Aztec Pillow AP,
l | l |
l ] l ]
It is known that AZ, has Number of domino tilings
me ) domino tilings for AP, is only conjectured
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a

-+

b b
X1 X2 Xp
a+b n
Number of lozenge tilings is Explicit formula for

Xj — Xi the number of

H i—i lozenge tilings is unknown.

1<i<j<b
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