Counting Domino Tilings and Lozenge Tilings

Jun Yan

University of Warwick

21st February, 2023

▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 ― ���?

1/33

- Recurrence Approach
- Adjacency Matrix Approach

2 Lozenge Tilings of the Hexagon

- Plane Partition Approach
- Non-Intersecting Lattice Paths Approach

3 Further Results / Open Problems

2/33

Domino Tilings of the Rectangle

- Recurrence Approach
- Adjacency Matrix Approach

Lozenge Tilings of the Hexagon

- Plane Partition Approach
- Non-Intersecting Lattice Paths Approach

3 Further Results / Open Problems

Definition

- A domino is a 1×2 or 2×1 rectangle.
- A domino tiling of a bounded region on the square grid is a set of non-intersecting dominoes that all lie inside the region and completely covers it.

 4×6 rectangle $R_{4,6}$

A domino tiling of $R_{4,6}$

Question

Count the number of domino tilings of the $m \times n$ rectangle $R_{m,n}$.

A domino tiling of $R_{4,6}$

Domino Tilings of the Rectangle

- Recurrence Approach
- Adjacency Matrix Approach

Lozenge Tilings of the Hexagon

- Plane Partition Approach
- Non-Intersecting Lattice Paths Approach

3 Further Results / Open Problems

Recurrence Approach: $2 \times n$

Question

Count the number F(n) of domino tilings of $R_{2,n}$.

Since F(1) = 1 and F(2) = 2, F(n) are the Fibonacci numbers.

Recurrence Approach: $3 \times 2n$

Question

Count the number f(2n) of domino tilings of $R_{3,2n}$.

Solving this, we obtain f(2n) = 4f(2n-2) - f(2n-4).

- It quickly becomes infeasible to analyse all the possible domino positions and find the recurrence formula.
- In fact, the order of the recurrence seems to grow exponentially.

Domino Tilings of the Rectangle
Recurrence Approach

• Adjacency Matrix Approach

Lozenge Tilings of the Hexagon

- Plane Partition Approach
- Non-Intersecting Lattice Paths Approach

3 Further Results / Open Problems

10/33

Definition

- A graph G is bipartite if its vertices can be coloured with either red or blue, such that no edge in G connects vertices of the same colour.
- A bipartite graph is balanced if it can be coloured in this way with equal number of red and blue vertices.

Balanced Bipartite Graph

Definition

A perfect matching of a graph G is a collection M of edges in G, such that each vertex in G is contained in exactly 1 edge in M.

Balanced Bipartite Graph

Perfect Matching

From Domino Tilings to Perfect Matchings

13 / 33

∃▶ ∢∃≯

Definition

Let G be a balanced bipartite graph on 2n vertices such that v_1, \dots, v_n are coloured blue and v_{n+1}, \dots, v_{2n} are coloured red. The adjacency matrix B for G is the $n \times n$ matrix given by

$$B_{i,j} = egin{cases} 1, & ext{if } v_i v_{n+j} ext{ is an edge in } G \ 0, & ext{otherwise} \end{cases}$$

14/33

Definition

Let *M* be a $n \times n$ matrix.

- The permanent of M is perm(M) = ∑_{σ∈Sn} ∏ⁿ_{i=1} M_{i,σ(i)}. In other words, perm(M) is the sum over all possible products of n entries in M, all coming from different rows and columns.
- The determinant of M is det(M) = Σ_{σ∈S_n} sgn(σ) ∏ⁿ_{i=1} M_{i,σ(i)}. In other words, det(M) is the same sum as perm(M), except that each term is multiplied by ±1.

Lemma

Let G be a balanced bipartite graph and B be its adjacency matrix. Then perm(B) is equal to the number of perfect matchings in G.

Lemma

Let G be the graph corresponding to $R_{m,n}$ and let \tilde{B} be the matrix obtained by from the adjacency matrix B by changing the entry corresponding to every vertical edge in G from 1 to i. Then $\left|\det(\tilde{B})\right|$ is equal to the number of perfect matchings in G, and hence equal to the number of domino tilings of $R_{m,n}$.

Theorem (Kasteleyn's Formula)

The number of domino tilings of $R_{m,n}$ is

$$\prod_{j=1}^{m} \prod_{k=1}^{n} \left(4\cos^2\left(\frac{j\pi}{m+1}\right) + 4\cos^2\left(\frac{k\pi}{n+1}\right) \right)^{1/4}$$

Proof Sketch.

If
$$\widetilde{A} = \begin{bmatrix} 0 & \widetilde{B}^{\mathsf{T}} \\ \widetilde{B} & 0 \end{bmatrix}$$
, then $\left| \det(\widetilde{A}) \right| = \left| \det(\widetilde{B}) \right|^2 = (\text{number of tilings})^2$.

It can be shown that the *mn* eigenvalues of \overline{A} are exactly $2\cos\left(\frac{j\pi}{m+1}\right) + 2i\cos\left(\frac{k\pi}{n+1}\right)$ for $1 \le j \le m$ and $1 \le k \le n$.

Domino Tilings of the Rectangle

- Recurrence Approach
- Adjacency Matrix Approach

2 Lozenge Tilings of the Hexagon

- Plane Partition Approach
- Non-Intersecting Lattice Paths Approach

3 Further Results / Open Problems

Lozenge Tilings

Definition

- A lozenge is the shape obtained by gluing two equilateral triangles along one of their sides.
- A lozenge tiling of a bounded region in the triangle grid is a set of non-intersecting lozenges that all lie inside the region and completely covers it.

Hexagon $H_{3,3,2}$

A lozenge tiling of $H_{3,3,2}$

< □ > < 同 > < 回 > < 回 > < 回 >

Question

Count the number of lozenge tilings of the hexagon $H_{a,b,c}$.

A lozenge tiling of $H_{3,3,2}$

(本部) (本語) (本語)

3

Domino Tilings of the Rectangle

- Recurrence Approach
- Adjacency Matrix Approach

2 Lozenge Tilings of the Hexagon

- Plane Partition Approach
- Non-Intersecting Lattice Paths Approach

3 Further Results / Open Problems

22 / 33

Plane Partition Approach

Definition

A plane partition $\pi = (\pi_{i,j})_{i,j=1}^{\infty}$ is a two dimensional array of non-negative integers such that

- Only finitely many $\pi_{i,j}$ are non-zero.
- $\pi_{i,j}$ is non-increasing in both indices.

A plane partition.

From Lozenge Tilings to Plane Partitions

Theorem

Let $\mathcal{B}(a, b, c)$ be the set of plane partitions such that

- If $\pi_{i,j} \neq 0$, then $i \leq a$ and $j \leq b$.
- $\pi_{i,j} \leq c$ for all i, j.

Then there is a bijection between lozenge tilings of $H_{a,b,c}$ and plane partitions in $\mathcal{B}(a, b, c)$.

Theorem (MacMahon's Formula)

It can be shown using the method of generating function that

$$|\mathcal{B}(a,b,c)| = \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2} = \prod_{i=1}^{a} \prod_{j=1}^{b} \frac{i+j+c-1}{i+j-1}.$$

Hence, the number of lozenge tilings of $H_{a,b,c}$ is also equal to this number.

In particular, the number of lozenge tilings of $H_{3,3,2}$ is

$$\frac{3 \times 4 \times 5 \times 4 \times 5 \times 6 \times 5 \times 6 \times 7}{1 \times 2 \times 3 \times 2 \times 3 \times 4 \times 3 \times 4 \times 5} = 175.$$

Domino Tilings of the Rectangle

- Recurrence Approach
- Adjacency Matrix Approach

2 Lozenge Tilings of the Hexagon

- Plane Partition Approach
- Non-Intersecting Lattice Paths Approach

3 Further Results / Open Problems

Definition

A lattice path from (a, b) to (a + m, b + n) consists of m + n unit-length steps, with m step going to the right and n steps going up.

Lemma

There are exactly $\binom{m+n}{m}$ lattice paths from (a, b) to (a + m, b + n).

The $\binom{4}{2} = 6$ lattice paths from (0,0) to (2,2).

イロト イヨト イヨト イヨト

Theorem

There is a bijection between lozenge tilings of $H_{a,b,c}$ and a-tuples of non-intersecting lattices paths (P_1, \dots, P_a) , where P_i goes from $A_i = (i - 1, a - i)$ to $B_i = (b + i - 1, c + a - i)$.

Lozenge Tiling of $H_{3,3,2}$

Non-Intersecting Lattice Paths

$$egin{aligned} P_1 : (0,2) & o (3,4) \ P_2 : (1,1) & o (4,3) \ P_3 : (2,0) & o (5,2) \end{aligned}$$

Lemma (Lindström-Gessel-Viennot Lemma)

Let A_1, \dots, A_n and B_1, \dots, B_n be lattice points in "good position". Suppose $M_{i,j}$ is the number of lattice paths from A_i to B_j and let M be the $n \times n$ matrix whose (i, j)-entry is $M_{i,j}$. Then the number of non-intersecting lattice paths (P_1, \dots, P_n) with P_i connecting A_i to B_i for each i is det(M).

Theorem (MacMahon's Formula)

For positive integers a, b, c, let M be the a × a matrix with $M_{i,j} = {b+c \choose b+j-i}$. Then the number of lozenge tilings of $H_{a,b,c}$ is equal to

$$\det(M) = \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2} = \prod_{i=1}^{a} \prod_{j=1}^{b} \frac{i+j+c-1}{i+j-1}$$

Remark

See the excellent paper Advanced Determinant Calculus by Christian Krattenthaler for a comprehensive guide on evaluating complicated determinant, especially those involving binomial coefficients or arising from tiling problems.

Domino Tilings of the Rectangle

- Recurrence Approach
- Adjacency Matrix Approach

Lozenge Tilings of the Hexagon

- Plane Partition Approach
- Non-Intersecting Lattice Paths Approach

3 Further Results / Open Problems

Domino

Aztec Diamond AZ_5

Aztec Pillow AP₄

It is known that AZ_n has $2^{\frac{n(n+1)}{2}}$ domino tilings

Number of domino tilings for AP_n is only conjectured

32 / 33

-∢ ∃ ▶

Number of lozenge tilings is

$$\prod_{1\leq i< j\leq b}\frac{x_j-x_i}{j-i}.$$

Explicit formula for the number of lozenge tilings is unknown.

33 / 33