Distribution of Colours in Rainbow H-free Colourings

Jun Yan
University of Warwick

Warwick Combinatorics Seminar

19th May, 2023

Outline

(1) Preliminaries
(2) $H=K_{3} /$ Gallai Colourings

- Background
- Lower Bound
- Upper Bound
(3) General H
- Degeneracy 1 / Trees
- Degeneracy ≥ 3
- Degeneracy 2 \& Open Questions

Preliminaries

Definition (Colour distribution sequence)

An edge colouring of K_{n} using k colours has colour distribution sequence $\left(e_{1}, \cdots, e_{k}\right)$ if there are exactly e_{i} edges of colour i for every $1 \leq i \leq k$.

Definition (Rainbow H-free colouring)

An edge colouring of K_{n} is rainbow H-free if any subgraph of K_{n} isomorphic to H contains at least two edges of the same colour.

a rainbow K_{3}-free colouring of K_{4}
colour distribution sequence $(3,2,1)$

Preliminaries

Question

If an edge colouring of K_{n} is rainbow H-free, what could its colour distribution sequence be?

Definition $(g(H, k))$

For any connected graph H and integer k, let $g(H, k)$ be the smallest integer N such that for all $n \geq N$ and any $\left(e_{1}, \cdots, e_{k}\right) \in \mathbb{N}^{k}$ satisfying $e_{1}+\cdots+e_{k}=\binom{n}{2}$ can be realised as the colour distribution sequence of a rainbow H-free colouring of K_{n}.

Question

- Is $g(H, k)$ finite?
- If so, what is its order of magnitude?

Outline

(1) Preliminaries

(2) $H=K_{3} /$ Gallai Colourings

- Background
- Lower Bound
- Upper Bound
(3) General H
- Degeneracy 1 / Trees
- Degeneracy ≥ 3
- Degeneracy 2 \& Open Questions

Gallai Colourings

Definition

An edge-colouring of K_{n} using k colours is a Gallai k-colouring if it does not contain a rainbow triangle, or equivalently if it is rainbow K_{3}-free.

a Gallai 3-colouring of K_{4}

a Gallai 4-colouring of K_{7}

$g\left(K_{3}, k\right)$

Theorem (Gyárfás, Pálvölgyi, Patkós, Wales, 2020)

For every integer $k \geq 2$, there exists an integer N such that for all $n \geq N$ and any $\left(e_{1}, \cdots, e_{k}\right) \in \mathbb{N}^{k}$ satisfying $\sum_{i=1}^{k} e_{i}=\binom{n}{2}$, there exists a Gallai k-colouring of K_{n} with colour distribution sequence $\left(e_{1}, \cdots, e_{k}\right)$. In other words, $g\left(K_{3}, k\right)<\infty$.

Bounds on $g\left(K_{3}, k\right)$:

- (Gyárfás, Pálvölgyi, Patkós, Wales, 2020)

$$
2 k-2 \leq g\left(K_{3}, k\right) \leq 8 k^{2}+1
$$

- (Feffer, Fu, Y., 2020)

$$
\Omega\left(k^{1.5} / \log k\right)=g\left(K_{3}, k\right)=O\left(k^{1.5}\right)
$$

$g\left(K_{3}, k\right)$

Bounds on $g\left(K_{3}, k\right)$:

- (Gyárfás, Pálvölgyi, Patkós, Wales, 2020)

$$
2 k-2 \leq g\left(K_{3}, k\right) \leq 8 k^{2}+1 .
$$

- (Feffer, Fu, Y., 2020)

$$
\Omega\left(k^{1.5} / \log k\right)=g\left(K_{3}, k\right)=O\left(k^{1.5}\right)
$$

Theorem (Y., 2023+)

$$
g\left(K_{3}, k\right)=\Theta\left(k^{1.5} /(\log k)^{0.5}\right)
$$

Decomposition of Gallai Colourings

Theorem (Gyárfás, Simonyi, 2004)

Given a Gallai k-colouring of K_{n}, we can find at most 2 colours, which we call base colours, and a decomposition of K_{n} into $m \geq 2$ vertex disjoint complete graphs $K_{n_{1}}, \cdots, K_{n_{m}}$, such that

- For each $i \neq j$, there exists a base colour such that all edges between $K_{n_{i}}$ and $K_{n_{j}}$ have this colour.
Conversely, any such decomposition, along with Gallai k-colourings on each $K_{n_{i}}$ gives a Gallai k-colouring on K_{n}.

a decomposition of
a Gallai 4-colouring of K_{14}

Outline

(1) Preliminaries

(2) $H=K_{3} /$ Gallai Colourings

- Background
- Lower Bound
- Upper Bound
(3) General H
- Degeneracy 1 / Trees
- Degeneracy ≥ 3
- Degeneracy 2 \& Open Questions

Strengthened Version of the Decomposition Theorem

Theorem (Feffer, Fu, Y., 2020)

Given a Gallai k-colouring of K_{n}, we can find at most 2 colours, which we call base colours, and a decomposition of K_{n} into $m \geq 2$ vertex disjoint complete graphs $K_{n_{1}}, \cdots, K_{n_{m}}$, such that

- For each $i \neq j$, there exists a base colour such that all edges between $K_{n_{i}}$ and $K_{n_{j}}$ have this colour.
- Each base colour is used to colour at $\geq n-1$ edges between the $K_{n_{i}}$'s.

Corollary

Suppose we have a Gallai k-colouring of K_{n} with colour distribution sequence $\left(e_{1}, \cdots, e_{k}\right)$, where $e_{1} \geq \cdots \geq e_{\ell} \geq b+1>e_{\ell+1} \geq \cdots \geq e_{k}$. Then colours $\ell+1, \cdots, k$ will not be used as base colours until we are decomposing a complete graph of size at most $b+1$.

Lower Bound

Example

There is no Gallai 4-colouring of K_{6} with colour sequence $(4,4,4,3)$.

Example

There is no Gallai 4-colouring of K_{7} with colour sequence $(9,4,4,4)$.

Proof.

The only possible decomposition is $K_{7} \rightarrow K_{6} \cup K_{1}$, and we have to colour all 6 edges between with colour 1. But then we need to find a Gallai 4 -colouring of K_{6} with colour sequence (3, 4, 4, 4).

Lower Bound

Proposition (Y., 2023+)

Let $n=k^{1.5} / 10(\log k)^{0.5}$ and let $a=\Theta\left(k^{2} / \log k\right), b=\Theta(k)$. Then there is no Gallai k-colouring of K_{n} with colour distribution sequence $(a, a, \cdots, a, b, b, \cdots, b)$. This shows $g\left(K_{3}, k\right) \geq k^{1.5} / 10(\log k)^{0.5}$.

Proof (Sketch).

Not used
until size $b+1$

Before reaching

$$
\text { size } b+1
$$

$(a, a, \cdots, a, b, b, \cdots, b) \longrightarrow(\leq b, \leq b, \cdots, \leq b, b, b, \cdots, b)$ decomposition steps

Outline

(1) Preliminaries

(2) $H=K_{3} /$ Gallai Colourings

- Background
- Lower Bound
- Upper Bound
(3) General H
- Degeneracy 1 / Trees
- Degeneracy ≥ 3
- Degeneracy 2 \& Open Questions

Upper Bound

Proposition (Y., 2023+)

Let $n \geq 5000000 k^{1.5} /(\log k)^{0.5}$. Then for any $e_{1}+\cdots+e_{k}=\binom{n}{2}$, there is a Gallai k-colouring with colour sequence (e_{1}, \cdots, e_{k}). This shows $g\left(K_{3}, k\right) \leq 5000000 k^{1.5} /(\log k)^{0.5}$.

Proof (Sketch).

We show that a colouring of the following form is always possible.

Upper Bound

Lemma

Suppose there exists some $e_{i} \geq t(n-t)$, then we can decompose K_{n} into K_{t} and K_{n-t}, and colour all $t(n-t)$ edges between them with colour i. In particular, if $n \geq 2 k$, then we can decompose K_{n} into K_{n-1} and K_{1}.

Problem: How to colour $K_{2 k}$?

Cushions

Observation

Suppose at some stage of this process, the complete graphs remaining have sizes $x \geq y_{1} \geq \cdots \geq y_{m}$, and we still need to colour e_{i} edges with colour i. Then we must have $\sum_{i=1}^{k} e_{i}=\binom{x}{2}+\sum_{j=1}^{m}\binom{y_{j}}{2}$.

We view the quantity $\sum_{j=1}^{m}\binom{y_{j}}{2}$ as the cushion we have available to colour the complete graph K_{x}.

Creating Cushions

Lemma (Y., 2023+)

If $e_{1}+\cdots+e_{k} \geq\binom{ 2 k}{2}+\frac{1}{2} k^{2}$, then there exists a Gallai k-colouring of $K_{2 k}$ with at most e_{i} edges of colour i.

Problem: How to colour these $K_{c_{i}}$?

Reservoirs

Use an absorption type argument.

- Use the cushions created by $K_{c_{1}}, \cdots, K_{c_{m}}$ to colour $K_{2 k}$.
- Use the cushions created by $K_{r_{1}}, \cdots, K_{r_{k}}$ to colour both $K_{c_{1}}, \cdots, K_{c_{m}}$ and $K_{r_{1}}, \cdots, K_{r_{k}}$.

Outline

(1) Preliminaries

(2) $H=K_{3} /$ Gallai Colourings

- Background
- Lower Bound
- Upper Bound
(3) General H
- Degeneracy 1 / Trees
- Degeneracy ≥ 3
- Degeneracy 2 \& Open Questions

Degeneracy

Definition (Degeneracy)

- A graph H is k-degenerate if every subgraph of H has a vertex of degree at most k.
- The degeneracy of H is the smallest integer k such that H is k-degenerate.

Example

- A connected graphs has degeneracy 1 if and only if it is a tree.
- If a graph has degeneracy at least k, then it has a subgraph with minimum degree at least k.

$H=K_{1, m} /$ Star

Proposition（Wu，Y．，2023＋＋）

If $n \geq 10 \sqrt{k}$ and $k \geq 10 m^{2}$ ，then there is no rainbow $K_{1, m}$－free k－colouring of K_{n} with the balanced colour distribution sequence． In particular，this shows that $g\left(K_{1, m}, k\right)=\infty$ for large k ．

Proof．

Double count $N=$ the number of pairs (v, c) ，where v is a vertex of K_{n} and c is the colour of some edge adjacent to v ．
If the colouring is rainbow $K_{1, m}$－free，then $N \leq n(m-1)$ ．
If the colouring has colour distribution sequence $\left(e_{1}, \cdots, e_{k}\right)$ ，then
$N \geq \sum_{i=1}^{k} \sqrt{2 e_{i}}$ as edges with colour i is incident with least $\sqrt{2 e_{i}}$ vertices． We have a contradiction if conditions in the proposition are satisfied．

Trees

Theorem（Wu，Y．，2023＋＋）

Let H be a tree on m vertices．If $n \geq 10 \sqrt{k}$ and $k \geq(10 m)^{10 m}$ ，then any k－colouring of K_{n} with＂almost balanced＂colour distribution sequence contains a rainbow H ． In particular，this shows that $g(H, k)=\infty$ for large k ．

Proof（Sketch）．

Induction on m ．Let v be a leaf of H ．
－The set A of vertices in K_{n} adjacent to edges of at least $2 m+1$ colours has size at least $n / 2$ ．
－Colour distribution inside A is still＂almost balanced＂．
－Induction gives a rainbow $H-v$ in A ．
－Can attach leaf v by the defining property of A ．

Outline

(1) Preliminaries

(2) $H=K_{3} /$ Gallai Colourings

- Background
- Lower Bound
- Upper Bound
(3) General H
- Degeneracy 1 / Trees
- Degeneracy ≥ 3
- Degeneracy 2 \& Open Questions

Degeneracy ≥ 3

Theorem (Wu, Y., 2023++)

Let H be a graph on m vertices with degeneracy at least 3 , then

$$
g(H, k)=\Theta_{m}(k)
$$

Degeneracy ≥ 3 Lower Bound

Proposition (Wu, Y., 2023++)

Let H be a graph on m vertices and let $n \leq k / m^{3}$. Then any k-colouring of K_{n} with the balanced colour sequence $\left(e_{1}, \cdots, e_{k}\right)$ contains a rainbow H. In particular, this shows $g(H, k) \geq k / m^{3}$.

Proof (Sketch).

- Fix any balanced k-colouring of $G=K_{n}$.
- Let S be a size m subset of $V(G)$ chosen uniformly at random.
- Show that the expected number of edge pairs in $G[S]$ with the same colour is <1.
- Thus, there is a realisation of S such that $G[S]$ is rainbow, and so contains a rainbow copy of H.

Degeneracy ≥ 3 Upper Bound

Proposition (Wu, Y., 2023++)

Let H be a graph with minimum degree at least 3 . Let $n \geq 2 k$, and let $e_{1} \geq \cdots \geq e_{k}$ be such that $e_{1}+\cdots+e_{k}=\binom{n}{2}$. Then there exists a rainbow H-free colouring of K_{n} with colour distribution sequence $\left(e_{1}, \cdots, e_{k}\right)$.

Proof (Sketch).

Induction on k. Let t be the smallest integer satisfying $\binom{t}{2}+t(n-t) \geq e_{k}$.

$$
t \leq \frac{n}{k} \quad n-t \geq 2(k-1)
$$

no rainbow H can contain these t vertices

rainbow H -free colouring from induction

So this colouring is rainbow H-free.

Degeneracy ≥ 3 Upper Bound

Proposition (Wu, Y., 2023++)

Let H be a graph with minimum degree at least 3 . Let $n \geq 2 k$, and let $e_{1} \geq \cdots \geq e_{k}$ be such that $e_{1}+\cdots+e_{k}=\binom{n}{2}$. Then there exists a rainbow H-free colouring of K_{n} with colour distribution sequence $\left(e_{1}, \cdots, e_{k}\right)$. Therefore, $g(H, k) \leq 2 k$.

Corollary

Let H be a graph with degeneracy at least 3 . Then $g(H, k) \leq 2 k$.

Proof.

From definition of degeneracy, H contains a subgraph H^{\prime} with minimum degree at least 3. Since rainbow H^{\prime}-free implies rainbow H-free, we have $g(H, k) \leq g\left(H^{\prime}, k\right) \leq 2 k$.

Outline

(1) Preliminaries

(2) $H=K_{3} /$ Gallai Colourings

- Background
- Lower Bound
- Upper Bound
(3) General H
- Degeneracy 1 / Trees
- Degeneracy ≥ 3
- Degeneracy 2 \& Open Questions

Degeneracy 2

Let H be a graph on m vertices with degeneracy 2. From the definition of degeneracy, H contains a cycle.

- The random lower bound argument works for any graph, so $g(H, k)=\Omega_{m}(k)$.
- Can show that the upper bound construction for K_{3} is not only rainbow K_{3}-free, but in fact contains no rainbow cycle. So $g(H, k)=O\left(k^{1.5} /(\log k)^{0.5}\right)$.

Open Questions

- Determine the order of magnitude of $g\left(C_{4}, k\right)$.
- Determine the order of magnitude of $g(H, k)$ for all H with degeneracy 2.
- Better constants in the known Θ results for $g(H, k)$.
- More necessary and sufficient conditions for possible colour distribution sequence of rainbow H-free colourings of K_{n} when $n \leq g(H, k)$.

