Distribution of Colours in Rainbow H-free Colourings

Jun Yan

University of Warwick

Warwick Combinatorics Seminar

19th May, 2023

Preliminaries

2 $H = K_3$ / Gallai Colourings

- Background
- Lower Bound
- Upper Bound
- 3 General H
 - Degeneracy 1 / Trees
 - Degeneracy \geq 3
 - Degeneracy 2 & Open Questions

Definition (Colour distribution sequence)

An edge colouring of K_n using k colours has colour distribution sequence (e_1, \dots, e_k) if there are exactly e_i edges of colour i for every $1 \le i \le k$.

Definition (Rainbow *H*-free colouring)

An edge colouring of K_n is rainbow *H*-free if any subgraph of K_n isomorphic to *H* contains at least two edges of the same colour.

a rainbow K_3 -free colouring of K_4

colour distribution sequence (3, 2, 1)

Question

If an edge colouring of K_n is rainbow *H*-free, what could its colour distribution sequence be?

Definition (g(H, k))

For any connected graph H and integer k, let g(H, k) be the smallest integer N such that for all $n \ge N$ and any $(e_1, \dots, e_k) \in \mathbb{N}^k$ satisfying $e_1 + \dots + e_k = \binom{n}{2}$ can be realised as the colour distribution sequence of a rainbow H-free colouring of K_n .

Question

- Is g(H, k) finite?
- If so, what is its order of magnitude?

< □ > < 同 > < 回 > < 回 > < 回 >

1 Preliminaries

H = *K*₃ / Gallai Colourings Background

- Lower Bound
- Upper Bound

3 General *H*

- Degeneracy 1 / Trees
- Degeneracy \geq 3
- Degeneracy 2 & Open Questions

Definition

An edge-colouring of K_n using k colours is a Gallai k-colouring if it does not contain a rainbow triangle, or equivalently if it is rainbow K_3 -free.

a Gallai 3-colouring of K_4

a Gallai 4-colouring of K_7

Theorem (Gyárfás, Pálvölgyi, Patkós, Wales, 2020)

For every integer $k \ge 2$, there exists an integer N such that for all $n \ge N$ and any $(e_1, \dots, e_k) \in \mathbb{N}^k$ satisfying $\sum_{i=1}^k e_i = \binom{n}{2}$, there exists a Gallai k-colouring of K_n with colour distribution sequence (e_1, \dots, e_k) . In other words, $g(K_3, k) < \infty$.

Bounds on $g(K_3, k)$:

• (Gyárfás, Pálvölgyi, Patkós, Wales, 2020)

$$2k-2 \le g(K_3,k) \le 8k^2+1.$$

• (Feffer, Fu, Y., 2020)

$$\Omega(k^{1.5}/\log k) = g(K_3, k) = O(k^{1.5}).$$

$g(K_3, k)$

Bounds on $g(K_3, k)$:

• (Gyárfás, Pálvölgyi, Patkós, Wales, 2020)

$$2k-2 \leq g(K_3,k) \leq 8k^2+1.$$

• (Feffer, Fu, Y., 2020)

$$\Omega(k^{1.5}/\log k) = g(K_3, k) = O(k^{1.5}).$$

Theorem (Y., 2023+)

$$g(K_3, k) = \Theta(k^{1.5}/(\log k)^{0.5}).$$

э

- 4 聞 ト 4 恵 ト 4 恵 ト

Theorem (Gyárfás, Simonyi, 2004)

Given a Gallai k-colouring of K_n , we can find at most 2 colours, which we call base colours, and a decomposition of K_n into $m \ge 2$ vertex disjoint complete graphs K_{n_1}, \dots, K_{n_m} , such that

• For each $i \neq j$, there exists a base colour such that all edges between K_{n_i} and K_{n_i} have this colour.

Conversely, any such decomposition, along with Gallai k-colourings on each K_{n_i} gives a Gallai k-colouring on K_n .

a decomposition of

a Gallai 4-colouring of K_{14}

Preliminaries

H = *K*₃ / Gallai Colourings Background

- Lower Bound
- Upper Bound

3 General *H*

- Degeneracy 1 / Trees
- Degeneracy ≥ 3
- Degeneracy 2 & Open Questions

Theorem (Feffer, Fu, Y., 2020)

Given a Gallai k-colouring of K_n , we can find at most 2 colours, which we call base colours, and a decomposition of K_n into $m \ge 2$ vertex disjoint complete graphs K_{n_1}, \dots, K_{n_m} , such that

- For each i ≠ j, there exists a base colour such that all edges between K_{ni} and K_{ni} have this colour.
- Each base colour is used to colour at $\geq n-1$ edges between the K_{n_i} 's.

Corollary

Suppose we have a Gallai k-colouring of K_n with colour distribution sequence (e_1, \dots, e_k) , where $e_1 \ge \dots \ge e_\ell \ge b + 1 > e_{\ell+1} \ge \dots \ge e_k$. Then colours $\ell + 1, \dots, k$ will not be used as base colours until we are decomposing a complete graph of size at most b + 1.

Example

There is no Gallai 4-colouring of K_6 with colour sequence (4, 4, 4, 3).

Example

There is no Gallai 4-colouring of K_7 with colour sequence (9, 4, 4, 4).

Proof.

The only possible decomposition is $K_7 \rightarrow K_6 \cup K_1$, and we have to colour all 6 edges between with colour 1. But then we need to find a Gallai 4-colouring of K_6 with colour sequence (3, 4, 4, 4).

Let $n = k^{1.5}/10(\log k)^{0.5}$ and let $a = \Theta(k^2/\log k)$, $b = \Theta(k)$. Then there is no Gallai k-colouring of K_n with colour distribution sequence $(a, a, \dots, a, b, b, \dots, b)$. This shows $g(K_3, k) \ge k^{1.5}/10(\log k)^{0.5}$.

Proof (Sketch).

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Preliminaries

2 $H = K_3$ / Gallai Colourings

- Background
- Lower Bound
- Upper Bound

3 General *H*

- Degeneracy 1 / Trees
- Degeneracy ≥ 3
- Degeneracy 2 & Open Questions

Let $n \geq 500000 k^{1.5} / (\log k)^{0.5}$. Then for any $e_1 + \cdots + e_k = \binom{n}{2}$, there is a Gallai k-colouring with colour sequence (e_1, \cdots, e_k) . This shows $g(K_3, k) \leq 500000 k^{1.5} / (\log k)^{0.5}$.

Proof (Sketch).

We show that a colouring of the following form is always possible.

Lemma

Suppose there exists some $e_i \ge t(n-t)$, then we can decompose K_n into K_t and K_{n-t} , and colour all t(n-t) edges between them with colour *i*. In particular, if $n \ge 2k$, then we can decompose K_n into K_{n-1} and K_1 .

Problem: How to colour K_{2k} ?

Cushions

Observation

Suppose at some stage of this process, the complete graphs remaining have sizes $x \ge y_1 \ge \cdots \ge y_m$, and we still need to colour e_i edges with colour *i*. Then we must have $\sum_{i=1}^k e_i = {x \choose 2} + \sum_{j=1}^m {y_j \choose 2}$.

We view the quantity $\sum_{j=1}^{m} {\binom{y_j}{2}}$ as the cushion we have available to colour the complete graph K_x .

Creating Cushions

Lemma (Y., 2023+)

If $e_1 + \cdots + e_k \ge \binom{2k}{2} + \frac{1}{2}k^2$, then there exists a Gallai k-colouring of K_{2k} with at most e_i edges of colour *i*.

 $c_1, \cdots, c_m \ll k$, but $\binom{c_1}{2} + \cdots + \binom{c_m}{2} \geq \frac{1}{2}k^2$.

Problem: How to colour these K_{c_i} ?

 $r_1, \cdots, r_k \ll c_1, \cdots, c_m \ll k$, but $\binom{c_1}{2} + \cdots + \binom{c_m}{2} \geq \frac{1}{2}k^2$.

- Use the cushions created by K_{c_1}, \dots, K_{c_m} to colour K_{2k} .
- Use the cushions created by K_{r_1}, \dots, K_{r_k} to colour both K_{c_1}, \dots, K_{c_m} and K_{r_1}, \dots, K_{r_k} .

- Background
- I ower Bound
- Upper Bound

General H

• Degeneracy 1 / Trees

- Degeneracy ≥ 3
- Degeneracy 2 & Open Questions

Definition (Degeneracy)

- A graph *H* is *k*-degenerate if every subgraph of *H* has a vertex of degree at most *k*.
- The degeneracy of *H* is the smallest integer *k* such that *H* is *k*-degenerate.

Example

- $\bullet\,$ A connected graphs has degeneracy 1 if and only if it is a tree.
- If a graph has degeneracy at least k, then it has a subgraph with minimum degree at least k.

If $n \ge 10\sqrt{k}$ and $k \ge 10m^2$, then there is no rainbow $K_{1,m}$ -free k-colouring of K_n with the balanced colour distribution sequence. In particular, this shows that $g(K_{1,m}, k) = \infty$ for large k.

Proof.

Double count N = the number of pairs (v, c), where v is a vertex of K_n and c is the colour of some edge adjacent to v. If the colouring is rainbow $K_{1,m}$ -free, then $N \le n(m-1)$. If the colouring has colour distribution sequence (e_1, \dots, e_k) , then $N \ge \sum_{i=1}^k \sqrt{2e_i}$ as edges with colour i is incident with least $\sqrt{2e_i}$ vertices. We have a contradiction if conditions in the proposition are satisfied.

Theorem (Wu, Y., 2023++)

Let H be a tree on m vertices. If $n \ge 10\sqrt{k}$ and $k \ge (10m)^{10m}$, then any k-colouring of K_n with "almost balanced" colour distribution sequence contains a rainbow H.

In particular, this shows that $g(H, k) = \infty$ for large k.

Proof (Sketch).

Induction on m. Let v be a leaf of H.

- The set A of vertices in K_n adjacent to edges of at least 2m + 1 colours has size at least n/2.
- Colour distribution inside A is still "almost balanced".
- Induction gives a rainbow H v in A.
- Can attach leaf v by the defining property of A.

イロト イヨト イヨト イヨト

- Background
- I ower Bound
- Upper Bound

General H

Degeneracy 1 / Trees

- Degeneracy ≥ 3
- Degeneracy 2 & Open Questions

Theorem (Wu, Y., 2023++)

Let H be a graph on m vertices with degeneracy at least 3, then

 $g(H,k)=\Theta_m(k).$

3

イロト イ団ト イヨト イヨトー

Let H be a graph on m vertices and let $n \le k/m^3$. Then any k-colouring of K_n with the balanced colour sequence (e_1, \dots, e_k) contains a rainbow H. In particular, this shows $g(H, k) \ge k/m^3$.

Proof (Sketch).

- Fix any balanced k-colouring of $G = K_n$.
- Let S be a size m subset of V(G) chosen uniformly at random.
- Show that the expected number of edge pairs in G[S] with the same colour is < 1.
- Thus, there is a realisation of S such that G[S] is rainbow, and so contains a rainbow copy of H.

(日) (間) (ヨ) (ヨ)

Let *H* be a graph with minimum degree at least 3. Let $n \ge 2k$, and let $e_1 \ge \cdots \ge e_k$ be such that $e_1 + \cdots + e_k = \binom{n}{2}$. Then there exists a rainbow *H*-free colouring of K_n with colour distribution sequence (e_1, \cdots, e_k) .

Proof (Sketch).

Induction on k. Let t be the smallest integer satisfying $\binom{t}{2} + t(n-t) \ge e_k$. $t \le \frac{n}{k}$ $n-t \ge 2(k-1)$ no rainbow H rainbow H-free

can contain colouring these t vertices others colour 1 from induction So this colouring is rainbow H-free.

3

イロト イヨト イヨト イヨト

Let H be a graph with minimum degree at least 3. Let $n \ge 2k$, and let $e_1 \ge \cdots \ge e_k$ be such that $e_1 + \cdots + e_k = \binom{n}{2}$. Then there exists a rainbow H-free colouring of K_n with colour distribution sequence (e_1, \cdots, e_k) . Therefore, $g(H, k) \le 2k$.

Corollary

Let H be a graph with degeneracy at least 3. Then $g(H, k) \leq 2k$.

Proof.

From definition of degeneracy, H contains a subgraph H' with minimum degree at least 3. Since rainbow H'-free implies rainbow H-free, we have $g(H, k) \leq g(H', k) \leq 2k$.

Preliminaries

2) $H = K_3$ / Gallai Colourings

- Background
- Lower Bound
- Upper Bound

General H

- Degeneracy 1 / Trees
- Degeneracy \geq 3
- Degeneracy 2 & Open Questions

Let H be a graph on m vertices with degeneracy 2. From the definition of degeneracy, H contains a cycle.

- The random lower bound argument works for any graph, so $g(H, k) = \Omega_m(k)$.
- Can show that the upper bound construction for K_3 is not only rainbow K_3 -free, but in fact contains no rainbow cycle. So $g(H, k) = O(k^{1.5}/(\log k)^{0.5})$.

- Determine the order of magnitude of $g(C_4, k)$.
- Determine the order of magnitude of g(H, k) for all H with degeneracy 2.
- Better constants in the known Θ results for g(H, k).
- More necessary and sufficient conditions for possible colour distribution sequence of rainbow *H*-free colourings of K_n when $n \leq g(H, k)$.