Ramsey goodness of bounded degree trees versus general graphs

Jun Yan

University of Warwick

Joint work with Richard Montgomery and Matiás Pavez-Signé

Birmingham-Warwick Combinatorics Meeting

12th December, 2023

Preliminaries

- The Ramsey goodness problem
- Known results
- Main result
- 2 Base case: k = 2
 - $m \gg \Delta$
 - $m \ll \Delta$

- $\bullet\ T$ has many leaves
- $\bullet\ T$ has many bare paths and G is well-connected
- \bullet G is not well-connected

Preliminaries

- The Ramsey goodness problem
- Known results
- Main result
- 2 Base case: k = 2• $m \gg \Delta$ • $m \ll \Delta$

3 Induction step: $k \ge 3$

- T has many leaves
- $\bullet\ T$ has many bare paths and G is well-connected
- $\bullet~G$ is not well-connected

Preliminaries

- The Ramsey goodness problem
- Known results
- Main result
- 2 Base case: k = 2• $m \gg \Delta$ • $m \ll \Delta$

3 Induction step: $k \geq 3$

- T has many leaves
- $\bullet\ T$ has many bare paths and G is well-connected
- $\bullet~G$ is not well-connected

Definition (Ramsey number)

Given two graphs H_1 and H_2 , the *Ramsey number* $R(H_1, H_2)$ is defined as the smallest integer N so that for any graph G with N vertices, either G contains either a copy of H_1 or G^c contains a copy of H_2 .

• In general, it is difficult to give good bounds on the Ramsey number $R(H_1,H_2)$, let alone finding its exact value.

Definition

For a graph H with chromatic number $\chi(H)$, define $\sigma(H)$ to be the smallest possible size of a colour class in any $\chi(H)$ -colouring of H.

Theorem (Burr, 1981)

Suppose G is connected and $|G| \ge \sigma(H)$, then $R(G,H) \ge (|G|-1)(\chi(H)-1) + \sigma(H)$.

Theorem (Burr, 1981)

Given two graphs G and H, if G is connected and $|G| \ge \sigma(H)$, then $R(G,H) \ge (|G|-1)(\chi(H)-1) + \sigma(H)$.

Definition (Ramsey goodness)

Given graphs G and H, G is said to be H-good if $R(G, H) = (|G| - 1)(\chi(H) - 1) + \sigma(H).$

Preliminaries

- The Ramsey goodness problem
- Known results
- Main result
- 2 Base case: k = 2• $m \gg \Delta$ • $m \ll \Delta$

3 Induction step: $k \ge 3$

- T has many leaves
- $\bullet\ T$ has many bare paths and G is well-connected
- $\bullet~G$ is not well-connected

Definition (Ramsey goodness)

Given graphs G and H, G is said to be H-good if $R(G, H) = (|G| - 1)(\chi(H) - 1) + \sigma(H).$

 P_n is H-good when ...

- $H = K_m$. [Erdős, 1947]
- $H = P_m$ and $n \ge m$. [Gerenscér, Gyárfás, 1967]
- $n \ge 4|H|$. [Pokrovskiy, Sudakov, 2017]

A tree T is H-good when ...

•
$$H = K_m$$
. [Chvátal, 1977]

• $\Delta(T) \leq \Delta$ and |T| sufficiently large compared to |H|. [Erdős, Faudree, Rousseau, Schelp, 1985] • Not when $T = K_{1,n}$ and $H = K_{2,2}$ or $K_{1,3}$. [Burr, Erdős, Faudree, Rousseau, Schelp, 1988] • $\chi(H) = k, \ \Delta(T) \leq \Delta$ and $|T| \geq C_{\Delta,k} |H| \log^4 |H|$. [Balla, Pokrovskiy, Sudakov, 2018]

Balla, Pokrovskiy and Sudakov also conjectured that this \log factor can be removed.

Preliminaries

- The Ramsey goodness problem
- Known results
- Main result
- 2 Base case: k = 2• $m \gg \Delta$ • $m \ll \Delta$

3 Induction step: $k \ge 3$

- T has many leaves
- $\bullet\ T$ has many bare paths and G is well-connected
- $\bullet~G$ is not well-connected

We confirm the conjecture of Balla, Pokrovskiy and Sudakov.

Theorem (Montgomery, Pavez-Signé, Y., 2023+)

For any fixed Δ, k , there exists a constant $C = C_{\Delta,k}$ such that for any graph H and any tree T satisfying $\chi(H) = k, \Delta(T) \leq \Delta$ and $|T| \geq C|H|$, T is H-good. In other words, $R(T, H) = (|T| - 1)(k - 1) + \sigma(H)$.

Theorem (Montgomery, Pavez-Signé, Y., 2023+)

For any fixed Δ, k , there exists a constant $C = C_{\Delta,k}$ such that for any graph H and any tree T satisfying $\chi(H) = k, \Delta(T) \leq \Delta$ and $|T| \geq C|H|$, T is H-good. In other words, $R(T, H) = (|T| - 1)(k - 1) + \sigma(H)$.

Note that it suffices to prove this for all H of the form K_{m_1,\dots,m_k} . Because if $\sigma(H) = m_1 \leq \dots \leq m_k$ are the colour class sizes of a k-colouring of H, then G^c containing K_{m_1,\dots,m_k} will imply G^c contains H.

Theorem (Montgomery, Pavez-Signé, Y., 2023+)

For any fixed Δ, k , there exists a constant $C = C_{\Delta,k}$ such that for any graph H and any tree T satisfying $\chi(H) = k, \Delta(T) \leq \Delta$ and $|T| \geq C|H|$, T is H-good. In other words, $R(T, H) = (|T| - 1)(k - 1) + \sigma(H)$.

Therefore, it suffices to prove the following, with μ corresponding to 1/kC.

Theorem (Montgomery, Pavez-Signé, Y., 2023+)

For any fixed Δ, k , there exists a constant $\mu = \mu_{\Delta,k}$ such that for any $m \leq \mu n$ and any tree T on n vertices satisfying $\Delta(T) \leq \Delta, T$ is $K_{m,\mu n,\cdots,\mu n}$ -good. In other words, $R(T, K_{m,\mu n,\cdots,\mu n}) = (n-1)(k-1) + m$. Setting: T is a tree on n vertices with $\Delta(T) \leq \Delta$. G is a graph on (k-1)(n-1) + m vertices, and G^c contains no copy of $K_{m,\mu n,\cdots,\mu n}$.

Goal: Find a copy of T in G.

Outline: Induction on k.

- Base case k = 2:
 - $m \gg \Delta$ is large. Build a vortex structure. \leftarrow Focus of the talk.
 - $m \ll \Delta$ is small.
- Inductive step $k \ge 3$:
 - T has many leaves.
 - T has many bare paths and G is well-connected.
 - G is not well-connected.

Preliminaries

- The Ramsey goodness problem
- Known results
- Main result
- 2 Base case: k = 2• $m \gg \Delta$ • $m \ll \Delta$

Induction step: $k \ge 3$

- T has many leaves
- $\bullet\ T$ has many bare paths and G is well-connected
- $\bullet~G$ is not well-connected

Preliminaries

- The Ramsey goodness problem
- Known results
- Main result

3 Induction step: $k\geq 3$

- T has many leaves
- $\bullet\ T$ has many bare paths and G is well-connected
- \bullet G is not well-connected

Definition

A graph G is (m, m')-joined if for any disjoint subsets $U, U' \subset V(G)$ with |U| = m, |U'| = m', there exists an edge between U and U' in G.

Observation

$$\begin{array}{l} G^c \text{ contains no } K_{m,m'} \iff G \text{ is } (m,m')\text{-joined} \\ \iff |N(U)| \geq |G| - m - m' \\ \text{ for every } U \subset V(G) \text{ of size } m \end{array}$$

- Setting: G has n + m 1 vertices and is $(m, \mu n)$ -joined. T is a tree with n vertices and $\Delta(T) \leq \Delta$. We need to find a copy of T in G.
- Main Tool: a vertex-by-vertex embedding technique of bounded degree trees into expander graphs.
 Expansion condition + Spare vertices = Tree embedding

Lemma (Balla, Pokrovskiy, Sudakov, 2018)

If $|G| \ge |T| + 13\Delta m + m'$, G is (m, m')-joined and $\Delta(T) \le \Delta$, then we can find a copy of T in G.

• Main difficulty: manage the limited amount of spare vertices. Currently, m-1 spare vertices, but $13\Delta m + \mu n$ needed. Main difficulty: manage the limited amount of spare vertices. Currently, m-1 spare vertices, but $13\Delta m + \mu n$ needed.

Idea: Use a vortex $V(G) = V_0 \supset V_1 \supset \cdots \supset V_\ell$ to gradually reduce the number of spare vertices needed.

Vortex

Main difficulty: manage the limited amount of spare vertices. Currently, m-1 spare vertices, but $13\Delta m + \mu n$ needed.

Pick a nested sequence of subsets $V(G) = V_0 \supset V_1 \supset \cdots \supset V_\ell$ of appropriate sizes uniformly at random. Using probablistic methods, we can guarantee the following conditions.

- For some $\lambda > 0$ and every $i \leq \ell 1$, $G[V_i]$ is $(m, \lambda |V_i|)$ -joined. $13\Delta m + \lambda |V_i|$ spare vertices needed, decreasing with i.
- For some $D \gg \Delta$, $G[V_{\ell}]$ is $(\frac{m}{D}, \frac{m}{D})$ -joined, only $13\Delta \frac{m}{D} + \frac{m}{D} < m - 1$ spare vertices needed.

Embed T into the vortex

Key conditions to maintain throughout the embedding process:

- T_i covers all that remains in $V_i \setminus V_{i+1}$ (difficult!),
- The rest of T_i , including v_i , is in $V_{i+1} \setminus V_{i+2}$,

Preliminaries

- The Ramsey goodness problem
- Known results
- Main result

Induction step: $k \ge 3$

- T has many leaves
- $\bullet\ T$ has many bare paths and G is well-connected
- $\bullet~G$ is not well-connected

Observation

Since $m \ll \Delta$ is quite small, and the graph G is $(m, \mu n)$ -joined, G is quite dense with at least $\Theta(n^2/m)$ edges.

If we embed a small portion T_0 of the tree T randomly to $\phi(T_0)$ in G, this enables us to obtain a switching property satisfied by $\phi(T_0)$.

A switching property

Suppose we are trying to embed a vertex ℓ whose parent in T is p.

- either $\phi(p)$ has a neighbour in G that is unused,
- or there exists $q \in T_0$ and an unused vertex $u \in G$, such u can take the place of $\phi(q)$, freeing up $\phi(q)$ to be the image of ℓ .

- The Ramsey goodness problem
- Known results
- Main result
- $m \gg \Delta$ • $m \ll \Delta$

Induction step: $k \ge 3$

- T has many leaves
- T has many bare paths and G is well-connected
- G is not well-connected

Using induction hypothesis

Setting: T is a tree on n vertices with $\Delta(T) \leq \Delta$. G is a graph on (k-1)(n-1) + m vertices, and G^c contains no copy of $K_{m,\mu n,\cdots,\mu n}$. Need to find a copy of T in G.

Lemma

Either G contains a copy of T, or G is $(m, (k-2)(n-1) + \mu n)$ -joined.

- $\bullet \ G[V]$ cannot contain T as G doesn't
 - $G[V]^c$ cannot contain $K_{\mu n, \cdots, \mu n}$ otherwise G^c contains $K_{m, \mu n, \cdots, \mu n}$
 - \bullet this contradicts induction applied to G[V]

Preliminaries

- The Ramsey goodness problem
- Known results
- Main result
- 2 Base case: k = 2• $m \gg \Delta$ • $m \ll \Delta$

- $\bullet\ T$ has many leaves
- $\bullet\ T$ has many bare paths and G is well-connected
- G is not well-connected

Definition

A path P in a tree T is a bare path if all vertices in P has degree exactly 2.

Lemma (Krivelevich, 2010)

Let T be a tree on n vertices, then

- either T contains at least ℓ leaves,
- or T contains at least $\frac{n}{s+1} 2\ell$ bare paths of length s.

Embedding T with many leaves

- Remove a set L of leaves, such that each $\ell \in L$ has a distinct parent in T and $|L| = \Theta(n)$.
- Now $|G| \ge |T L| + 13\Delta m + (k 2)(n 1) + \mu n$, so we can find an embedding ϕ of T L.
- To add the leaves in, use expansion properties to show Hall's matching conditions hold between $\phi(P)$ and the set U of unused vertices.

Preliminaries

- The Ramsey goodness problem
- Known results
- Main result
- 2 Base case: k = 2• $m \gg \Delta$ • $m \ll \Delta$

3 Induction step: $k \ge 3$

• T has many leaves

$\bullet\ T$ has many bare paths and G is well-connected

• G is not well-connected

Definition

G is well-connected if for any partition $V(G) = V_0 \cup V_1 \cup V_2$ satisfying $|V_0| \leq \lambda n$ and $|V_1|, |V_2| \geq m$,there exists an edge between V_1 and V_2 .

We use this to get the following connecting property.

There exists δ, ℓ such that for any disjoint $U, U' \subset V(G)$ of size m, there are δn disjoint paths of the same length ℓ connecting them.

Embedding T with many bare paths into a well-connected G

- Let \mathcal{P} be a large collection of bare paths in T.
- Use Ramsey goodness of path to find a LONG path in G, and divide it into a collection Q of shorter paths.
- Use the connecting property to embed most paths in \mathcal{P} via \mathcal{Q} .
- Use the expansion property to embed the rest of T.

Preliminaries

- The Ramsey goodness problem
- Known results
- Main result
- 2 Base case: k = 2• $m \gg \Delta$ • $m \ll \Delta$

3 Induction step: $k \ge 3$

- T has many leaves
- $\bullet\ T$ has many bare paths and G is well-connected
- \bullet G is not well-connected

Definition

A graph G on n vertices is not well-connected if there exists a partition $V(G)=V_0\cup V_1\cup V_2,$ such that

- $|V_0| \leq \lambda n$.
- $|V_1|, |V_2| \ge m.$
- There is no edge between V_1 and V_2 .

Embed T into a not well-connected G

If G is not well-connected, then one of the following is true.

or $V_0 \cup V_2$

Parts of T in V_1 and V_2 connected via $t \in V_0$

 $K_{m,\mu n,\cdots,\mu n}$ in G^c