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Ramsey numbers of trees

Definition
The Ramsey number of a graph 𝐺, denoted as 𝑅(𝐺), is the smallest integer 𝑛
such that any red/blue colouring of 𝐾𝑛 contains a monochromatic copy of 𝐺.

Theorem
[Gerencsér, Gyárfás, 1967]

𝑅(𝑃𝑘) =
{

3𝑘
2 if 𝑘 is even,

3𝑘+1
2 if 𝑘 is odd.

[Harary, 1972]

𝑅(𝐾1,𝑘) =
{

2𝑘 − 1 if 𝑘 is even,
2𝑘 if 𝑘 is odd.
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Burr and Erdős’ Conjecture

Conjecture (Burr, Erdős, 1976)
Let 𝑇 be a tree on 𝑛 vertices, then

𝑅(𝑇) ≤
{

2𝑛 − 3 if 𝑛 is odd,
2𝑛 − 2 if 𝑛 is even.

Theorem (Zhao, 2016)
Let 𝑇 be a tree on 𝑛 vertices with 𝑛 large, then 𝑅(𝑇) ≤ 2𝑛 − 2.

This confirms the conjecture for large even 𝑛, but the odd case is still open.
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Burr’s conjecture

Lemma
Let 𝑇 be a tree with bipartition classes of sizes 𝑡1 ≥ 𝑡2 ≥ 2, then

𝑅(𝑇) ≥ 𝑅𝐵 (𝑇) := max{2𝑡1, 𝑡1 + 2𝑡2} − 1.

𝑡1 + 𝑡2 − 1

𝑡2 − 1

𝑡1 − 1

𝑡1 − 1

Conjecture (Burr, 1974)
Let 𝑇 be a tree with bipartition classes of sizes 𝑡1 ≥ 𝑡2 ≥ 2, then

𝑅(𝑇) = 𝑅𝐵 (𝑇) = max{2𝑡1, 𝑡1 + 2𝑡2} − 1.
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Counterexamples

Definition
The double star 𝑆𝑚1,𝑚2 is the tree obtained by joining the central vertices of
the two stars 𝐾1,𝑚1 and 𝐾1,𝑚2 with an edge.

Note that if 𝑚1 ≥ 𝑚2, then

𝑅𝐵 (𝑆𝑚1,𝑚2) = max{2𝑚1 + 2, 𝑚1 + 2𝑚2 + 3} − 1.

[Grossman, Harary, Klawe, 1979]

𝑅(𝑆3𝑚,𝑚) = 6𝑚 + 2 = 𝑅𝐵 (𝑆3𝑚,𝑚) + 1.

[Norin, Sun, Zhao, 2016]

𝑅(𝑆2𝑚,𝑚) ≥ (4.2 + 𝑜(1))𝑚 ≥ (1.1 + 𝑜(1))𝑅𝐵 (𝑆2𝑚,𝑚).

Note that double stars have large maximum degrees.
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Approximate version

Conjecture (Burr, 1974)
Let 𝑇 be a tree with bipartition classes of sizes 𝑡1 ≥ 𝑡2 ≥ 2, then

𝑅(𝑇) = 𝑅𝐵 (𝑇) = max{2𝑡1, 𝑡1 + 2𝑡2} − 1.

Theorem (Haxell, Łuczak, Tingley, 2002)
For every 𝜇 > 0, there exists 𝑐 > 0 such that for every large 𝑛 and every
𝑛-vertex tree 𝑇 with Δ(𝑇) ≤ 𝑐𝑛, we have

𝑅(𝑇) ≤ (1 + 𝜇)𝑅𝐵 (𝑇).
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Our Result

Theorem (Montgomery, Pavez-Signé, Y., 2024++)
There exists 𝑐 > 0 such that for every 𝑛-vertex tree 𝑇 with Δ(𝑇) ≤ 𝑐𝑛 and
bipartition classes of sizes 𝑡1 ≥ 𝑡2, we have

𝑅(𝑇) = 𝑅𝐵 (𝑇) = max{2𝑡1, 𝑡1 + 2𝑡2} − 1.

This confirms Burr’s conjecture for all trees maximum degree at most 𝑐𝑛.
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The Haxell, Łuczak, Tingley proof sketch

Theorem (Haxell, Łuczak, Tingley, 2002)
For every 𝜇 > 0, there exists 𝑐 ∈ (0, 1) such that for every large 𝑛 and every
𝑛-vertex tree 𝑇 with Δ(𝑇) ≤ 𝑐𝑛 and bipartition classes of sizes 𝑡1 ≥ 𝑡2, we have

𝑅(𝑇) ≤ (1 + 2𝜇)𝑅𝐵 (𝑇) = (1 + 2𝜇) max{2𝑡1, 𝑡1 + 2𝑡2}.

We may assume 𝑡1 ≤ 2𝑡2 by adding additional leaves.
Step 1: In any red/blue coloured graph 𝐺 on (1 + 2𝜇) (𝑡1 + 2𝑡2) vertices, find a
monochromatic “HŁT structure” in the reduced graph.

...
...

(1 + 𝜇)𝑡2 (1 + 𝜇)𝑡1

Step 2: Show that 𝑇 can be embedded into the HŁT structure using regularity.
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Our proof sketch

Definition
A red/blue coloured graph/reduced graph is 𝜇-extremal if we can find one of
the following approximate extremal constructions as a subgraph.

𝑡1 ≤ 2𝑡2 𝑡1 > 2𝑡2

(1 − 𝜇)𝑛

(1 − 𝜇)𝑡2

(1 − 𝜇)𝑡1

(1 − 𝜇)𝑡1

Stability part: starting with a scaled down HŁT structure in the reduced graph
either we can find a structure to embed monochromatic 𝑇 using regularity,
or the reduced graph, and thus 𝐺 must be 𝜇-extremal.

Extremal part: embed a monochromatic 𝑇 into a 𝜇-extremal 𝐺.
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Stability part

Starting with a scaled down HŁT structure in the reduced graph, we move
through three stages.

In each stage,
either we can find a structure to embed monochromatic 𝑇 using regularity,
or we find the structure that represents the beginning of the next stage.

At the end of Stage 3, we conclude that the reduced graph is extremal, and
hence so is the original graph 𝐺.
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Stage 1

scaled down
HŁT structure

a structure
to embed 𝑇 in blue

Stage 2
starting structure

Stage 1
...

...

(1 − 𝜇)𝑡2 (1 − 𝜇)𝑡1 (1 − 𝜇)𝑡2

(1 − 𝜇)𝑡2

...
...

(1 − 𝜇)𝑡2 (1 + 𝜇)𝑡1
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Stage 2

Stage 2

HŁT structure

Stage 3
starting structure

(1 − 𝜇)𝑡2

(1 − 𝜇)𝑡2

≥ (1 − 𝜇)𝑡2

≥ (1 − 𝜇)𝑡2
≥ (1 − 𝜇)𝑛

...
...

(1 + 𝜇)𝑡2 (1 + 𝜇)𝑡1
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Stage 3

Stage 3

𝜇-extremal
reduced graphs

(or opposite colour)

one of three different
structures to embed
a monochromatic 𝑇

≥ (1 − 𝜇)𝑡2

≥ (1 − 𝜇)𝑡2
≥ (1 − 𝜇)𝑛

(1 − 𝜇)𝑛

(1 − 𝜇)𝑡2

(1 − 𝜇)𝑡1

(1 − 𝜇)𝑡1
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Extremal part

It follows from the Stability part that if a graph 𝐺 on 𝑅𝐵 (𝑇) vertices does not
contain a monochromatic 𝑇 , then 𝐺 must be 𝜇-extremal, with each vertex
having at most 𝜇𝑛 neighbours in the wrong colour.

𝑡1 ≤ 2𝑡2 𝑡1 > 2𝑡2

(1 − 𝜇)𝑛

(1 − 𝜇)𝑡2

(1 − 𝜇)𝑡1

(1 − 𝜇)𝑡1

We show that we can find still a monochromatic 𝑇 in any 𝜇-extremal graph.
Absorption type arguments relying on a random embedding technique.
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Dichotomy between leaves and bare paths

Definition
A path 𝑃 in a tree 𝑇 is a bare path if all vertices in 𝑃 has degree exactly 2.

Lemma (Krivelevich, 2010)
Let 𝑇 be a tree on 𝑛 vertices, then

either 𝑇 contains at least ℓ leaves,
or 𝑇 contains at least 𝑛

𝑠+1 − 2ℓ bare paths of length 𝑠.
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Generalised Hall’s matching condition

Lemma
Let 𝐺 be a bipartite graph with bipartition 𝐴 ∪ 𝐵 and let ( 𝑓𝑎)𝑎∈𝐴 be a tuple of
non-negative integers indexed by elements of 𝐴.
Suppose that |𝑁 (𝑆) | ≥ ∑

𝑎∈𝑆 𝑓𝑎 for all 𝑆 ⊂ 𝐴. Then, there exists a disjoint
collection of 𝑓𝑎 neighbours for all 𝑎 ∈ 𝐴 in 𝐵.

𝐺

𝜓(𝑇 − 𝐿)

𝜓(𝑃)
𝑊
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Tree splitting

Lemma (Montgomery, 2019)
Let 𝑇 be a tree and let 𝑄 ⊂ 𝑉 (𝑇).
Then, 𝑇 can be decomposed into subtrees 𝑇1 and 𝑇2 with a unique common
vertex such that |𝑄 ∩ 𝑇1 | ≥ 1

3 |𝑄 | and |𝑄 ∩ 𝑇2 | ≥ 1
3 |𝑄 |.

Corollary
Let 𝑇 be a tree with 𝑛 vertices.
Then, 𝑇 can be decomposed into subtrees 𝑇1 and 𝑇2 with a unique common
vertex such that 𝑛

3 ≤ |𝑇1 |, |𝑇2 | ≤ 2𝑛
3 .

Corollary
Let 𝛾 ≪ 𝛼 ≪ 1 be suitably chosen constants. Let 𝑇 be a tree with 𝑛 vertices
containing a set 𝐿 of 𝑛/100 leaves.
Then, there is a subtree 𝑇1 of 𝑇 with |𝑇1 | ≤ 𝛼𝑛 and |𝑇1 ∩ 𝐿 | ≥ 𝛾𝑛.
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Random embedding method: Idea

Lemma (Montgomery, Pavez-Signé, Y., 2024++)
Let 𝐺 be a graph with |𝐺 | = 𝑛 +

⌊
𝑑

100
⌋

and 𝛿(𝐺) ≥ (1 − 𝜇)𝑛.
Suppose 𝑇 is a tree with |𝑇 | = 𝑛, and 𝑇 contains a subtree 𝑇 ′ such that

|𝑇 ′ | ≤ 𝛼𝑛,
𝑇 ′ contains a set 𝐿 of 𝜆𝑛 ≫ 𝜇𝑛 leaves in 𝑇 ,
every parent of leaves in 𝐿 in has at most 𝑑 ≪ 𝜇𝑛 children in 𝐿.

Then 𝐺 contains a copy of 𝑇 .

Embed 𝑇 ′ − 𝐿 randomly.
Embed the rest of 𝑇 − 𝐿 greedily.
Randomness ensures a generalised Hall’s matching condition holds, so
we can attach the leaves to finish a copy of 𝑇 .
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Random embedding method: Sketch

𝐺

𝜓(𝑇 ′ − 𝐿)
𝜓(𝑇 − 𝑇 ′)

𝜓(𝑃)
𝑊

𝑤 ∈ 𝑊 is good if the set of 𝑝 ∈ 𝑃 such that 𝜓(𝑝) is a neighbours of 𝑤
together have at least 1

2 |𝐿 | neighbours in 𝐿.
The set 𝐵 of bad vertices in𝑊 has size at most 𝑑

100 by Azuma.
Generalised Hall’s matching condition holds between 𝜓(𝑃) and𝑊 \ 𝐵, which
allows us to embed 𝐿.
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Random embedding method: Remarks

Lemma (Montgomery, Pavez-Signé, Y., 2024++)
Let 𝐺 be a graph with |𝐺 | = 𝑛 +

⌊
𝑑

100
⌋

and 𝛿(𝐺) ≥ (1 − 𝜇)𝑛.
Suppose 𝑇 is a tree with |𝑇 | = 𝑛, and 𝑇 contains a subtree 𝑇 ′ such that

|𝑇 ′ | ≤ 𝛼𝑛,
𝑇 ′ contains a set 𝐿 of 𝜆𝑛 ≫ 𝜇𝑛 leaves in 𝑇 ,
every parent of leaves in 𝐿 in has at most 𝑑 ≪ 𝜇𝑛 children in 𝐿.

Then 𝐺 contains a copy of 𝑇 .

If 𝑑 ≪ 𝑛
log 𝑛 , just |𝐺 | = 𝑛 is sufficient, so we can embed spanning trees.

Still works if a set of at most 10𝜇𝑛 vertices only have degree 𝛽𝑛 ≫ 𝜆𝑛.
There is an analogous bipartite version.
A variant where there is a set of 𝛼𝑛 vertices with a higher degree 𝑛 − 𝐶,
and

⌊
𝐶

100
⌋

spare vertices.
Very flexible. Can use randomness to guarantee many other conditions
satisfied by the embedding, e.g. certain vertices go into a certain set.
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Extremal part: 𝑡1 ≤ 2𝑡2 cleaning

Assume that 𝑡1 ≤ 2𝑡2, so 𝐺 contains 𝑡1 + 2𝑡2 − 1 = 𝑛 + 𝑡2 − 1 vertices in total.

Cleaning: For each remaining vertex, add it to𝑈1 if it has at least 𝛽𝑛 blue
neighbours in𝑈1, and add it to𝑈2 otherwise.

𝑈1

𝑈2

𝑈′
1

𝑈′
2

(1 − 𝜇)𝑛

(1 − 𝜇)𝑡2

𝑛 + 𝑘

𝑡2 − 𝑘 − 1
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Extremal part: 𝑡1 ≤ 2𝑡2 and 𝑑 ≪ 𝑛
log 𝑛

If 𝑘 ≥ 0, we can find a blue 𝑇 in𝑈′
1 with the random embedding method.

If 𝑘 ≤ −1, then
either several vertices in𝑈1 have at least −𝑘 blue neighbours in𝑈′

2:
Embed 𝑇 in blue in𝑈′

1 with the random embedding method, except that
−𝑘 leaves are embedded into𝑈′

2.
or most vertices in𝑈1 have at least 𝑡2 red neighbours in𝑈′

2:
Embed 𝑇 in red between𝑈1 and𝑈′

2 greedily.

𝑈′
1

𝑈′
2

𝑈′
1

𝑈′
2

𝑛 + 𝑘

𝑡2 − 𝑘 − 1

𝑛 + 𝑘

𝑡2 − 𝑘 − 1
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Extremal part: 𝑡1 ≤ 2𝑡2 and 𝑑 ≫ 𝑛
log 𝑛

𝑡1 ≤ 2𝑡2 and 𝑑 ≫ 𝑛
log 𝑛 : Random embedding method requires spare vertices.

Tradeoff between conditions required to embed in blue and red.
If several vertices in𝑈′

1 have higher blue degree 𝑛 − 𝐶:
Use a variant of the random embedding method to embed 𝑇 in blue.
Otherwise, there are enough red edges in𝑈′

1:
Embed 𝑇 in red mostly greedily, but “flip” enough vertices to create
space in𝑈′

2.

𝑈′
1

𝑈′
2

𝑈′
1

𝑈′
2

𝑛 + 𝑘

𝑡2 − 𝑘 − 1

𝑛 + 𝑘

𝑡2 − 𝑘 − 1
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Extremal part: 𝑡1 > 2𝑡2 cleaning

Assume now that 𝑡1 > 2𝑡2, so 𝐺 contains 2𝑡1 − 1 vertices in total.

We first run a similar cleaning process:

𝑈1

𝑈2

𝑈′
1

𝑈′
2

(1 − 𝜇)𝑡1

(1 − 𝜇)𝑡1

𝑡1 + 𝑘

𝑡1 − 𝑘 − 1
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Extremal part: 𝑡1 > 2𝑡2 brief sketches

If 𝑇 can be decomposed into 𝑇1, 𝑇2 with a unique common vertex 𝑣, such
that 𝑛

3 + 2𝜇𝑛 ≤ |𝑇1 |, |𝑇2 | ≤ 2𝑛
3 − 2𝜇𝑛, and there is a vertex in𝑈′

1 with at
least 𝑐𝑛 blue edges to𝑈′

2, then we can greedily embed in blue.
If 𝑇 has a subtree 𝑇1 with a set 𝐿 of 𝜆𝑛 leaves in the 𝑡1 side, and all of its
parents have at most 𝑑 ≪ 𝑛

log 𝑛 children in 𝐿, then we can use random
embedding method to embed in red.
Otherwise, more involved arguments...

𝑈′
1

𝑈′
2

𝑈′
1

𝑈′
2

𝑡1 + 𝑘

𝑡1 − 𝑘 − 1

𝑇1

𝑇2
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