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Ramsey numbers of trees

Definition
The Ramsey number of a graph 𝐺, denoted as 𝑅(𝐺), is the smallest integer 𝑛
such that any red/blue colouring of 𝐾𝑛 contains a monochromatic copy of 𝐺.

Theorem
[Gerencsér, Gyárfás, 1967]

𝑅(𝑃𝑘) =
{

3𝑘
2 if 𝑘 is even,

3𝑘+1
2 if 𝑘 is odd.

[Harary, 1972]

𝑅(𝐾1,𝑘) =
{

2𝑘 − 1 if 𝑘 is even,
2𝑘 if 𝑘 is odd.
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Burr and Erdős’ Conjecture

Conjecture (Burr, Erdős, 1976)
Let 𝑇 be a tree on 𝑛 vertices, then

𝑅(𝑇) ≤
{

2𝑛 − 3 if 𝑛 is odd,
2𝑛 − 2 if 𝑛 is even.

Theorem (Zhao, 2016)
Let 𝑇 be a tree on 𝑛 vertices with 𝑛 large, then 𝑅(𝑇) ≤ 2𝑛 − 2.

This confirms the conjecture for large even 𝑛, but the odd case is still open.
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Burr’s conjecture

Lemma
Let 𝑇 be a tree with bipartition classes of sizes 𝑡1 ≥ 𝑡2 ≥ 2, then

𝑅(𝑇) ≥ 𝑅𝐵 (𝑇) := max{2𝑡1, 𝑡1 + 2𝑡2} − 1.

𝑡1 + 𝑡2 − 1

𝑡2 − 1

𝑡1 − 1

𝑡1 − 1

Conjecture (Burr, 1974)
Let 𝑇 be a tree with bipartition classes of sizes 𝑡1 ≥ 𝑡2 ≥ 2, then

𝑅(𝑇) = 𝑅𝐵 (𝑇) = max{2𝑡1, 𝑡1 + 2𝑡2} − 1.
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Counterexamples

Definition
The double star 𝑆𝑚1,𝑚2 is the tree obtained by joining the central vertices of
the two stars 𝐾1,𝑚1 and 𝐾1,𝑚2 with an edge.

Note that if 𝑚1 ≥ 𝑚2, then

𝑅𝐵 (𝑆𝑚1,𝑚2) = max{2𝑚1 + 2, 𝑚1 + 2𝑚2 + 3} − 1.

[Grossman, Harary, Klawe, 1979]

𝑅(𝑆3𝑚,𝑚) = 6𝑚 + 2 = 𝑅𝐵 (𝑆3𝑚,𝑚) + 1.

[Norin, Sun, Zhao, 2016]

𝑅(𝑆2𝑚,𝑚) ≥ (4.2 + 𝑜(1))𝑚 ≥ (1.1 + 𝑜(1))𝑅𝐵 (𝑆2𝑚,𝑚).

Note that double stars have large maximum degrees.
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Approximate version

Conjecture (Burr, 1974)
Let 𝑇 be a tree with bipartition classes of sizes 𝑡1 ≥ 𝑡2 ≥ 2, then

𝑅(𝑇) = 𝑅𝐵 (𝑇) = max{2𝑡1, 𝑡1 + 2𝑡2} − 1.

Theorem (Haxell, Łuczak, Tingley, 2002)
For every 𝜇 > 0, there exists 𝑐 > 0 such that for every large 𝑛 and every
𝑛-vertex tree 𝑇 with Δ(𝑇) ≤ 𝑐𝑛, we have

𝑅(𝑇) ≤ (1 + 𝜇)𝑅𝐵 (𝑇).
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Our Result

Theorem (Montgomery, Pavez-Signé, Y., 2025++)
There exists 𝑐 > 0 such that for every 𝑛-vertex tree 𝑇 with Δ(𝑇) ≤ 𝑐𝑛 and
bipartition classes of sizes 𝑡1 ≥ 𝑡2, we have

𝑅(𝑇) = 𝑅𝐵 (𝑇) = max{2𝑡1, 𝑡1 + 2𝑡2} − 1.

This confirms Burr’s conjecture for all trees maximum degree at most 𝑐𝑛.
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The Haxell, Łuczak, Tingley proof sketch

Theorem (Haxell, Łuczak, Tingley, 2002)
For every 𝜇 > 0, there exists 𝑐 ∈ (0, 1) such that for every large 𝑛 and every
𝑛-vertex tree 𝑇 with Δ(𝑇) ≤ 𝑐𝑛 and bipartition classes of sizes 𝑡1 ≥ 𝑡2, we have

𝑅(𝑇) ≤ (1 + 2𝜇)𝑅𝐵 (𝑇) = (1 + 2𝜇) max{2𝑡1, 𝑡1 + 2𝑡2}.

We may assume 𝑡1 ≤ 2𝑡2 by adding additional leaves.
Step 1: In any red/blue coloured graph 𝐺 on (1 + 2𝜇) (𝑡1 + 2𝑡2) vertices, find a
monochromatic “HŁT structure” in the reduced graph.

...
...

(1 + 𝜇)𝑡2 (1 + 𝜇)𝑡1

Step 2: Show that 𝑇 can be embedded into the HŁT structure using regularity.
9 / 28



Our proof sketch

Definition
A red/blue coloured graph/reduced graph is 𝜇-extremal if we can find one of
the following approximate extremal constructions as a subgraph.

𝑡1 ≤ 2𝑡2 𝑡1 > 2𝑡2

(1 − 𝜇)𝑛

(1 − 𝜇)𝑡2

(1 − 𝜇)𝑡1

(1 − 𝜇)𝑡1

Stability part: starting with a scaled down HŁT structure in the reduced graph
either we can find a structure to embed monochromatic 𝑇 using regularity,
or the reduced graph, and thus 𝐺 must be 𝜇-extremal.

Extremal part: embed a monochromatic 𝑇 into a 𝜇-extremal 𝐺.
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Stability part

Starting with a scaled down HŁT structure in the reduced graph, we move
through three stages.

In each stage,
either we can find a structure to embed monochromatic 𝑇 using regularity,
or we find the structure that represents the beginning of the next stage.

At the end of Stage 3, we conclude that the reduced graph is extremal, and
hence so is the original graph 𝐺.
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Stage 1

scaled down
HŁT structure

a structure
to embed 𝑇 in blue

Stage 1
...

...

(1 − 𝜇)𝑡2 (1 − 𝜇)𝑡1

...
...

(1 − 𝜇)𝑡2 (1 + 𝜇)𝑡1

Stage 2
starting structure

(1 − 𝜇)𝑡2

(1 − 𝜇)𝑡2
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Stage 2

Stage 2

HŁT structure

Stage 3
starting structure

(1 − 𝜇)𝑡2

(1 − 𝜇)𝑡2

≥ (1 − 𝜇)𝑡2

≥ (1 − 𝜇)𝑡2
≥ (1 − 𝜇)𝑛

...
...

(1 + 𝜇)𝑡2 (1 + 𝜇)𝑡1
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Stage 3

Stage 3

𝜇-extremal
reduced graphs

(or opposite colour)

one of three different
structures to embed
a monochromatic 𝑇

≥ (1 − 𝜇)𝑡2

≥ (1 − 𝜇)𝑡2
≥ (1 − 𝜇)𝑛

(1 − 𝜇)𝑛

(1 − 𝜇)𝑡2

(1 − 𝜇)𝑡1

(1 − 𝜇)𝑡1
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Extremal part

It follows from the Stability part that if a graph 𝐺 on 𝑅𝐵 (𝑇) vertices does not
contain a monochromatic 𝑇 , then 𝐺 must be 𝜇-extremal, with each vertex
having at most 𝜇𝑛 neighbours in the wrong colour.

𝑡1 ≤ 2𝑡2 𝑡1 > 2𝑡2

(1 − 𝜇)𝑛

(1 − 𝜇)𝑡2

(1 − 𝜇)𝑡1

(1 − 𝜇)𝑡1

We show that we can find still a monochromatic 𝑇 in any 𝜇-extremal graph.
Absorption type arguments relying on a random embedding technique.
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Dichotomy between leaves and bare paths

Definition
A path 𝑃 in a tree 𝑇 is a bare path if every vertex in 𝑃 has degree exactly 2.

Lemma (Krivelevich, 2010)
Let 𝑇 be a tree on 𝑛 vertices, then

either 𝑇 contains at least ℓ leaves,
or 𝑇 contains at least 𝑛

𝑠+1 − 2ℓ vertex-disjoint bare paths of length 𝑠.

We will assume from now on that 𝑇 has many leaves.
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Generalised Hall’s matching condition

Lemma
Let 𝐺 be a bipartite graph with bipartition 𝐴 ∪ 𝐵 and let ( 𝑓𝑎)𝑎∈𝐴 be a tuple of
non-negative integers indexed by elements of 𝐴.
Suppose that |𝑁 (𝑆) | ≥ ∑

𝑎∈𝑆 𝑓𝑎 for all 𝑆 ⊂ 𝐴. Then, there exists a disjoint
collection of 𝑓𝑎 neighbours in 𝐵 for all 𝑎 ∈ 𝐴.

𝐺

𝜓(𝑇 − 𝐿)

𝜓(𝑃)
𝑊
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Random embedding method: Version 1

Lemma (Montgomery, Pavez-Signé, Y., 2025++, Version 1)
𝐻 = 𝑈1 ∪𝑈2 is a 𝜇𝑛-almost-complete bipartite graph with |𝑈1 | = 𝑡1,
|𝑈2 | = 𝑡2 + 10𝜇𝑛.
𝑇 is a tree with 𝑛 vertices and bipartition class sizes 𝑡1 ≥ 𝑡2.
𝑇 contains a set 𝐿 of 𝜆𝑛 ≫ 𝜇𝑛 leaves in the 𝑡1 side, such that every parent
of leaves in 𝐿 in has at most 𝑑 ≪ 𝑛/log 𝑛 children in 𝐿.

Then 𝐻 contains a copy of 𝑇 .

𝑈1

𝑈2

≤ 𝜇𝑛

𝑇

𝐿

≪ 𝑛/log 𝑛
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Random embedding method: Sketch

𝐻

𝑈1

𝑈2𝑈2𝜓(𝑇 − 𝐿) ∩𝑈2

𝜓(𝑇 − 𝐿) ∩𝑈1

𝜓(𝑃)

𝑊

Embed 𝑇 − 𝐿 between𝑈1 and𝑈2 randomly.
Verify generalised Hall’s condition to embed 𝐿 into𝑊 .

An unused vertex 𝑤 ∈ 𝑊 is bad if all the parents in 𝜓(𝑃) that it is adjacent
to together has few leaves in 𝐿.
Number of bad vertices is 𝑛 exp(−Θ(𝑛/𝑑)) ≪ 1 when 𝑑 ≪ 𝑛/log 𝑛.
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Random embedding method: Version 2

Lemma (Montgomery, Pavez-Signé, Y., 2025++, Version 2)
𝐻 = 𝑈1 ∪𝑈2 is a

√
𝑛-almost-complete bipartite graph with |𝑈1 | ≥ 𝑡1,

|𝑈2 | = 𝑡2 + 10𝜇𝑛.
𝑇 is a tree with 𝑛 vertices and bipartition class sizes 𝑡1 > 2𝑡2.
𝑇 contains a set 𝐿 of 𝜆𝑛 ≫ 𝜇𝑛 leaves in the 𝑡1 side, such that every parent
of leaves in 𝐿 in has at most 𝑑 ≤ 𝑐𝑛 children in 𝐿.

Then 𝐻 contains a copy of 𝑇 .

𝑈1

𝑈2

≤
√
𝑛

𝑇

𝐿

≤ 𝑐𝑛

22 / 28



Extremal part: 𝑡1 > 2𝑡2 cleaning

As 𝑡1 > 2𝑡2, 𝐺 is 𝜇-extremal with 2𝑡1 − 1 vertices.

Cleaning:
Assign every remaining vertex appropriately to either𝑈1 or𝑈2.

Maintain similar degree conditions in the resulting partition 𝑉 (𝐺) = 𝑈′
1 ∪𝑈

′
2.

𝑈1

𝑈2

𝑈′
1

𝑈′
2

(1 − 𝜇)𝑡1

(1 − 𝜇)𝑡1

𝑡1 + 𝑘

𝑡1 − 𝑘 − 1
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Extremal part: 𝑡1 > 2𝑡2 brief sketch

>
√
𝑛 >

√
𝑛· · · · · ·

𝑇
𝑣

The 𝑃𝑖’s, at most
√
𝑛 of these The 𝑄𝑖’s, each has size at most

√
𝑛

𝑈′
1

𝑈′
2

√
𝑛

𝑈′
1

𝑈′
2

𝑡1 + 𝑘

𝑡1 − 𝑘 − 1

𝑇1

𝑇2

|⋃𝑄𝑖 | > 𝑛/2, can embed in red with Version 1 as 𝑑 ≤
√
𝑛 ≪ 𝑛/log 𝑛.

|⋃ 𝑃𝑖 | > 𝑛/2 and
√
𝑛-almost-complete in red, embed with Version 2.

|⋃ 𝑃𝑖 | > 𝑛/2 and there exists 𝑢 ∈ 𝑈1 with
√
𝑛 blue neighbours in𝑈2,

greedily embed in blue by sending appropriate amount over.
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Random embedding method: Version 3

Lemma (Montgomery, Pavez-Signé, Y., 2025++, Version 3)
𝐺 is a graph with |𝐺 | ≥ 𝑛 and 𝛿(𝐺) ≥ |𝐺 | − 𝜇𝑛.
𝑇 is a tree with |𝑇 | = 𝑛.
𝑇 contains a set 𝐿 of 𝜆𝑛 ≫ 𝜇𝑛 leaves, such that every parent of leaves in
𝐿 in has at most 𝑑 ≪ 𝑛/log 𝑛 children in 𝐿.

Then 𝐺 contains a copy of 𝑇 .

Still works with some modifications if a set of at most 10𝜇𝑛 vertices only
have degree 𝛽𝑛 ≫ 𝜆𝑛.
Similarly, there is a variant that allows 𝑑 ≤ 𝑐𝑛 at the cost of stronger
degree conditions.
Very flexible. Can use randomness to guarantee many other conditions
satisfied by the embedding, e.g. certain vertices go into a certain set.
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Extremal part: 𝑡1 ≤ 2𝑡2 cleaning

As 𝑡1 ≤ 2𝑡2, 𝐺 contains 𝑡1 + 2𝑡2 − 1 = 𝑛 + 𝑡2 − 1 vertices.

Cleaning:
For each remaining vertex, add it to𝑈1 if it has at least 𝛽𝑛 blue neighbours in
𝑈1, and add it to𝑈2 otherwise.

𝑈1

𝑈2

𝑈′
1

𝑈′
2

(1 − 𝜇)𝑛

(1 − 𝜇)𝑡2

𝑛 + 𝑘

𝑡2 − 𝑘 − 1
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Extremal part: 𝑡1 ≤ 2𝑡2 and 𝑑 ≪ 𝑛
log 𝑛

If 𝑘 ≥ 0, we can find a blue 𝑇 in𝑈′
1 with Version 3.

𝑈′
1

𝑈′
2

𝑈′
1

𝑈′
2

𝑛 + 𝑘

𝑡2 − 𝑘 − 1

𝑛 + 𝑘

𝑡2 − 𝑘 − 1

If 𝑘 ≤ −1, then
either several vertices in𝑈1 have at least −𝑘 blue neighbours in𝑈′

2:
Embed 𝑇 in blue in𝑈′

1 with Version 3, except that −𝑘 leaves are
embedded into𝑈′

2.
or most vertices in𝑈1 have at least 𝑡2 red neighbours in𝑈′

2:
Embed 𝑇 in red between𝑈1 and𝑈′

2 greedily.
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Extremal part: 𝑡1 ≤ 2𝑡2 and 𝑑 ≫ 𝑛
log 𝑛

More complicated...
Tradeoff between conditions required to embed in blue and red.

𝑈′
1

𝑈′
2

𝑈′
1

𝑈′
2

𝑛 + 𝑘

𝑡2 − 𝑘 − 1

𝑛 + 𝑘

𝑡2 − 𝑘 − 1

If several vertices in𝑈′
1 have higher blue degrees:

Use a variant of the random embedding method to embed 𝑇 in blue.
Otherwise, there are enough red edges in𝑈′

1:
Embed 𝑇 in red mostly greedily, but “flip” enough vertices to create
space in𝑈′

2.
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