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Abstract. These are notes on the Graduate Probability course taught at Warwick during 2021-2024.
These are really meant to be notes, in the sense that they are not polished and may often be casually
written. Students should also refer to the suggested textbooks for more details, if needed, and further
examples and exercises. Hopefully, in the course of time these notes will take more shape. In the meanwhile,
read these carefully and pick any typos and mistakes
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1. Measure Theory

1.1. The basics. We start with the very basics...

Definition 1.1. A finitely additive probability is a non-negative set function such that

1. P(A) ≥ 0 for all A ∈ B for some class of set B of a set Ω,

2. P(Ω) = 1 and P(∅) = 0,

3. for A,B ∈ B with A ∩B = ∅, then P(A ∪B) = P(A) + P(B).
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2 N.ZYGOURAS

Note that condition (3) in the above definition implies that for A ∈ B and Ac its complement, then
P(Ac) = 1− P(A).

Definition 1.2 (algebras and σ−algebras). A family of sets B is called a field if:

1. for A,B ∈ B then A ∪B ∈ B,

2. for A ∈ B then the its complement Ac ∈ B,

3. ∅ ∈ B.

A field B is a σ-field if for any sequence (An)n≥1 in B, then ∪n≥1An ∈ B and ∩n≥1An ∈ B .

Note: in some books, eg in [V] the terms “field” and “σ-field” are used instead of the terms “ algebra”
and “σ-algebra”.

Definition 1.3. A set function P: B → R is a countably additive probability if it is a finitely additive
probability that, additionally, satisfies

P
(
∪n≥1 An

)
=

∑
n≥1

P(An) for (An)n≥1 a family of pairwise disjoint sets

Definition 1.4. For an algebra B the σ-algebra generated by B, denoted by σ(B) is the smallest σ-algebra
that contains B.

Definition 1.5. A monotone class is an algebra, which is closed under monotone limits, i.e. if

if B ∋ An ↓, meaning An+1 ⊂ An, then ∩nAn ∈ B,

or

if B ∋ An ↑, meaning An ⊂ An+1, then ∪nAn ∈ B.

We can now state the first (but still basic) proposition:

Proposition 1.6. A finitely additive probability measure P(·) defined on a σ-algebra B is countable additive
if an only if

P(A) = lim
n→∞

P(An),

for any sequence of monotone sets An and A defined as

A := lim
n→∞

An :=


∩n≥1An, if An ↓,

∪n≥1An, if An ↑,

Proof. (1) Assume countable additivity and an increasing sequence of set (An)n≥1 . Then

P
(
∪n An

)
= P

(
∪n {An \An−1}

)
=

∑
n

P
(
An \An−1

)
[by countable additivity],

= lim
N→∞

N∑
n

P
(
An \An−1

)
= lim

N→∞
P(An) [by simple additivity].
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(2) Assume monotonicity, that is, for any An ↑ it holds P
(
∪n An

)
= limN→∞ P(An). Then for a sequence

(An)n≥1 of mutually disjoint sets we have:

P
(
∪n An

)
= P

(
∪N≥1 ∪n≥1An

)
= lim

N→∞
P(∪N

n=1An) [by monotonicity]

= lim
N→∞

N∑
n=1

P(An)

=
∞∑
n=1

P(An).

□

Exercise 1. Show that for P to be a countably additive probability, it suffices to have that P(An) ↓ 0 for
any sequence of sets An ↓ ∅.

Proposition 1.7. Given any family F of subsets of Ω, there is a unique σ-field σ(F), which is the smallest
σ-field containing F .

Proof. Let

A :=
{
Σ: Σ ⊃ F and is a σ-field}

We then have:

• A ̸= ∅. This is because A contains the power set P(Ω).

• define σ(F) :=
⋂

Σ∈AΣ. This is a σ-algebra because if (An)n≥1 ⊂ σ(F), then An ∈ Σ for all n ≥ 1
and Σ ∈ A, which means that ∪n≥1An ∈ Σ for all Σ ∈ A, which then means that ∪n≥1An ∈
∩Σ∈AΣ = σ(F).

• σ(F) is the smallest σ field that contains F since it is obtained as the intersection of all σ-fields
containing F .

□

So far we have discussed about (countably-additive) probability measures but we haven’t proved that
such objects exist. It is now the time to do so and we will construct the Lebesque probability measure.
The difficulty in constructing countably-additive probability measures is to show that they are well defined
on the corresponding σ-algebra. To achieve this task we will be making use of the Caratheodory theorem:

Theorem 1.8. Any countably additive probability measure on a algebra F has a unique extension as a
countably additive probability measure on the σ-algebra σ(F).

A proof of this theorem can be found in all classical books of measure theory or probability, see for
example [V], Theorem 1.1.

Let us now give a recipe for the construction of (countably-additive) probability measures:

Step 1. Consider any non-decreasing, right continuous function F : R → [0, 1], such that F (−∞) = 0 and
F (∞) = 1

Step 2. Define the Borel σ-algebra as the σ-algebra which is generated by all finite unions of intervals
(a, b], with −∞ ≤ a < b ≤ ∞. Check that this is a field.

Step 3. Define P
(
(a, b]

)
:= F (b)− F (a).

The above recipe gives all countable additive probability measures:
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Theorem 1.9. For every non-decreasing, right-continuous, real function F with F (−∞) = 0 and F (∞) = 1
there exists a unique countably-additive probability measure on the Borel σ-algebra B. Conversely, every
countably-additive probability measure on R comes from such a function.

Proof. Let us prove the first direction. It will suffice to show that for any sequence of sets An in the field
of finite unions of left-open, right-closed interval (the algebra that generates the Borel)

if An ↓ ∅ then it holds that P(An) ↓ 0. (1.1)

Then we will be having a countably additive probability measure on an algebra and we can use Caratheordy’s
theorem to extend it as a countably additive probability on the σ-algebra generated by this algebra.

Assume that (1.1) is not valid. Then there will be a sequence An = ∪kn
j=1(aj , bj ] such that P(An) ≥ δ

for all n ≥ 1 and a δ > 0.
We can assume that all An ⊂ [−L,L] for some L large, since for large L the probability outside [−L,L]

can be made smaller than δ/2 (by the right-continuity of F and that F (−∞) = 0 and F (+∞) = 1). So
we could consider the sets A′

n := An ∩ [−L,L], instead.
We can also assume that (An) is a decreasing family of sets (why?). By right-continuity, we can choose

a′j such that (aj , bj ] ⊂ (a′n, bn] and P
(
(aj , bj ]

)
≈ P

(
(a′j , bj ]

)
. You can formalise this, if you want as

P
(
∪kn
j=1 (aj , bj ]

)
− P

(
∪kn
j=1 (a

′
j , bj ]

)
≤ 1

100
δ,

with the factor 1/100 being rather arbitrary. The main thing is that P
(
∪kn
j=1 (a

′
j , bj ]

)
remains uniformly

bounded away from 0, say larger that δ′ > 0..
Now enlarge a bit the set An so that it is closed, to the set A′

n := ∪kn
j=1[a

′
j , bj ]. Then all A′

n are compact
(because they are closed and bounded – this is why we restricted in large intervals [−L,L]). We also have
that P(A′

n) ≥ δ′, which means that all the sets A′
n are nonempty. But then we have a nonempty sequence

of compact sets, which (by assumption) A′
n ⊂ An ↓ ∅. This is a contradiction by basic topological facts.

Let us prove, now, that opposite directions. This is easier, since we can define

F (x) := P
(
(−∞, x]

)
,

and the desired properties of F follow from the properties of the probability measure. For the right-continuity
you would need to use Theorem 1.6. The other properties are more trivial. □

1.2. Dynkin’s π − λ Theorem. We will now present a very interesting theorem. Its interest lies on
the demonstration of how useful abstraction can be in proving statements that might seem to complicated
by checking case-by-case. We start with a definition.

Definition 1.10 (Dynkin system or monotone class.). A Dynkin system or monotone class is a
family of subsets of Ω such that

• Ω ∈ D,

• if A,B ∈ D with A ⊂ B, then B \A ∈ D
• if An ↑ then ∪nAn ∈ D.

Definition 1.11. A π system is any collection D of subsets of Ω, which is closed under finite intersections,
i.e. if A,B ∈ D then A ∩B ∈ D.

Dynkin’s theorem is the following:

Theorem 1.12 (π − λ theorem). If P is a π-system and D is a Dynkin class such that P ⊂ D, then
σ(P) ⊂ D. In particular, a π-system, which is also a Dynkin class is a σ−algebra.

For the proof of this theorem we refer to [D], Theorem (2.1) in the Appendix. We would like to
demonstrate the use of this abstract theorem by proving the following:

Proposition 1.13. The Lebesque measure on the Borels is the unique translation invariant measure,
meaning the only measure such that λ((a, b]) = b− a.
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Proof. For simplicity and to stay within probability we will prove the statement on [0, 1], instead of R.
Let λ be the Lebesque measure and µ some other measure such that µ((a, b]) = b− a. Let

D :
{
A ∈ B : µ(A) = λ(A)

}
.

We want to show that D = B, which would then imply that the now measure are identical as they would
agree on all Borel sets. We will use the π − λ theorem: Let I be the collection of all intervals of the form
(a, b], (a, b), [a, b), [a, b] for −∞ ≤ a < b ≤ ∞. We have that:

• I is closed under finite intersections,

• σ(I) = B,

• I ⊂ D.

The first two bullets are definitions and the last follows from the assumptions of the measures. Also D is a
Dynkin system - this follows from the monotonicity of the measure Theorem 1.6. So we have that I ⊂ D,
I is a π-system, D is a Dynkin class. Therefore, by the π − λ Theorem, it follows that σ(I) ⊂ D. But also
σ(I) is the Borel σ-algebra and so we are done. □

Exercise 2. Show that one cannot construct a Lebesque measure on the rationals Q. That is a measure
such that P([a, b]∩Q) = b− a. Hint: actually this is not an exercise on π− λ theorem, rather on the basic
properties of measures.

1.3. Integration and modes of convergence. In this section we will define the Lebesque
integration, starting from measurable functions and random variables, state the definition of convergence
and expose the fundamental integration limit theorems that we will be freely using. So this is a basic but
very fundamental section. Let us start with the definition:

Definition 1.14 (Measurable functions & random variables). Let (Ω,Σ) be a measurable space,
that is a space (set) Ω with a σ-algebra Σ. A measurable function or random variable on (Ω,Σ) is

f : Ω → R, in measure theory or,
X : Ω → R, in probability,

is a function such that f−1(B) ∈ Σ or X−1(B) ∈ Σ for all B ∈ B(R) Borel sets on R.

Let us look at some basic examples, which will be the building blocks towards building more complicated
ones. Most theorems in measure theory will start by checking their validity on these building blocks and
then derive the statement for general functions via a limiting procedure. The basic measurable functions
are:

• Indicator functions. These are the functions / variables:

1A(ω) =

{
1, if ω ∈ A

0, if ω ∋ A,

for any set A ∈ Σ.

• Simple functions. These are functions / variables of the form

f(ω) =
∑
j

cj1Aj (ω),

where the sum is finite, cj real numbers and Aj ∈ Σ.

Exercise 3. (very important !) Prove that any bounded measurable function is a uniform approximation
of simple functions.

We can now define the Lebesque integral.
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Theorem 1.15 (Lebesque integration). Let (Ω,Σ,P) be a probability space. That is, a measurable
space (Ω,Σ) with a probability measure P. We define:

1)

∫
1A(ω)dP := P(A),

2)

∫ ∑
finite

cj1Aj (ω) dP =
∑
finite

cjP(Aj).

Finally, for general measurable function f (or random variable) we find a sequence of simple functions
(fn)n≥1 such that

sup
ω

|f(ω)− fn(ω)| −−−→
n→∞

0,

and then we define ∫
f(ω) dP := lim

n

∫
fn(ω) dP,

where the righ-hand side limit can be defined as a limit of Cauchy sequence.

1.4. Modes of Convergence.

Definition 1.16 (almost sure convergence). Let (Ω,Σ,P) be a probability space. A sequence of
measurable functions (fn)n≥1 or random variables (Xn)n≥1 is said to convergence almost surely (a.s.) to f
and X, respectively if

P
(
ω : fn(ω) → f(ω)

)
= 1 or P

(
ω : Xn(ω) → X(ω)

)
= 1.

A useful, variant formulation of the above is to say that for any ε > 0:

P
(
ω :

∣∣fn(ω)− f(ω)
∣∣ > ε , i.o.

)
= 0, or P

( ∣∣Xn(ω)−X(ω)
∣∣ > ε , i.o.

)
= 0

where i.o. stands for “infinitely often” . It will be useful to quantify the infinitely often notion in order
to be able to compute. To this end, for a sequence of events (sets) (An)n≥1 we will identify the event

(An)n≥1 happen infinitely often as the set A = ∩n≥1 ∪m≥n An.

We will also denote the event (An)n≥1 happen infinitely often by lim supn→∞An.

There is also the dual event of “eventually always” , which is ∪n≥1 ∩m≥n Am and will be denoted by
lim infnAn.

A very central Lemma that is the standard approach to proving a.s. convergence is the Borel-Cantelli.
We state here the first Borel-Cantelli lemma, which is very elementary. Later we will also state the second
Borel-Cantelli, which requires indepence.

Lemma 1.17 (First Borel-Cantelli lemma). Let (An)n≥1 be a sequence of sets (events) in a probability
space (Ω,Σ,P). We have

if
∑
n≥1

P(An) < ∞ then P
(
An i.o.

)
= 0.

Proof. We have

P
(
An i.o.

)
= P

(
∩n≥1 ∪m≥nAm

)
= lim

n→∞
P
(
∪m≥n Am

)
[by monotonicity]

≤ lim sup
n→∞

∑
m≥n

P(Am)

= 0 [by the convergence of the series].

□
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Remark 1.18. The typical way we will be using it if we want to prove that fn
a.s.−−−→

n→∞
f will be to consider

the events An := {ω : |fn(ω) − f(ω)| > ε} and show that
∑

n≥1 P(An) < ∞. However, most often this
simple approach will not work (the naive series will not be summable) and we will need to devise smart
tricks.

Definition 1.19 (Convergence in probability). Let (Ω,Σ,P) be a probability space. A sequence of
measurable functions (fn)n≥1 or random variables (Xn)n≥1 is said to convergence in probability to f and
X, respectively if for every ε > 0,

P
(
ω :

∣∣ fn(ω)− f(ω)
∣∣ > ε

)
−−−→
n→∞

0. or P
(∣∣Xn −X

∣∣ > ε
)
−−−→
n→∞

0.

a.s. convergence impliesconvergence in probability:

Proposition 1.20. If fn
a.s−−−→

n→∞
f then fn

P−−−→
n→∞

f .

Proof. We will play with the set theoretic formulation of a.s. convergence. For every ε > 0 we have:

P
(
ω : |fn(ω)− f(ω)| > ε

)
≤ P

(
∪m≥n

{
|fn(ω)− f(ω)| > ε

})
−−−→
n→∞

P
(
∩n≥1 ∪m≥n

{
|fn(ω)− f(ω)| > ε

})
[by monotonicity]

= P
(
|fn(ω)− f(ω)| > ε, i.o.

)
[by definition of i.o.]

= 0 [by definition of a.s. convergence].

□

Exercise 4. Find an example of a sequence (fn) which converges in probability but not a.s.

Exercise 5. Let a sequence (fn)n≥1. Show that fn
P−−−→

n→∞
f if and only if every subsequence fnj has a

further subsequence fnjk
which converges a.s..

Exercise 6. If a sequence of random variables (Xn)n≥1 converges to a random variable X in probability
and f is a continuous function, show that f(Xn) converges to f(X) in probability.

1.5. Integral convergence theorems. In this section we expose the fundamental convergence
theorems for integral that we will be freely using.

Theorem 1.21 (Bounded Convergence Theorem). Let (fn)n≥1 be a sequence of measurable functions
on a probability space (Ω,Σ,P) such that for all n, it holds that |fn| ≤ M for some finite M > 0. We then
have:

if fn
P−−−→

n→∞
f then

∫
fn dP −−−→

n→∞

∫
f dP .

Proof. For any ε > 0, have∣∣∣ ∫ fn dP−
∫

f dP
∣∣∣ ≤ ∫ ∣∣ fn dP−

∫
fdP

∣∣∣
=

∫
{| fn dP−

∫
f |≤ε}

∣∣ fn dP−
∫

fdP
∣∣∣+MP

(
| fn dP−

∫
fdP

∣∣ > ε
)

≤ ε+MP
(∣∣∣ fn dP−

∫
f
∣∣∣ > ε

)
,

and the second term converges to 0 as n → ∞ by the assumption of convergence in probability. □



8 N.ZYGOURAS

Theorem 1.22 (Fatou’s lemma). Let fn ≥ 0 be a sequence of nonnegative, measurable functions on a
probability space (Ω,Σ,P), such that fn

P−−−→
n→∞

f . Then∫
fdP ≤ lim inf

n→∞

∫
fn dP.

Proof. We want to use the bounded convergence theorem. To this end, consider a bounded g such that
0 ≤ g ≤ f , for example g := f1f≤M for M > 0. Consider, also, the sequence hn := fn ∧ g. This sequence
is uniformly bounded. By the bounded convergence theorem we have∫

g dP =

∫
f ∧ g dP = lim

n→∞

∫
fn ∧ g dP ≤ lim inf

n→∞

∫
fn dP

Since the above inequality is valid for arbitrary bounded g ≤ f , eg. g = f1{f≤M}, it will also hold that∫
fdP ≤ lim inf

n→∞

∫
fn dP,

(e.g. let M → ∞). □

Theorem 1.23 (Dominated convergence). Let (fn)n≥ be a sequence of measurable functions on a
probability space (Ω,Σ,P) such that fn

P−−−→
n→∞

f . Moreover, assume that for a.e. ω it holds that |fn(ω)| ≤
g(ω) for g ∈ L1(P). Then

lim
n→∞

∫
fn dP =

∫
f dP.

Proof. We will reduce this to Fatou’s lemma. We first note that fn + g ≥ 0 and −fn + g ≥ 0 and then by
Fatou’s we have that ∫

(f + g) dP ≤ lim inf
n→∞

∫
(fn + g) dP,

which implies, since g ∈ L1(P) that ∫
f dP ≤ lim inf

n→∞

∫
fn dP.

In a similar way we have:∫
(−f + g) dP ≤ lim inf

n→∞

∫
(−fn + g) dP =⇒

∫
f ≥ lim sup

n→∞

∫
fn dP,

and the result follows. □

We close with a reminder

Theorem 1.24 (Jensen’s inequality). If ϕ : R → R is a convex function, then

ϕ
(∫

fdP
)
≤

∫
ϕ(f)dP.

Exercise 7. Use the fact (which you should check) that for real x it holds

xp

p
= sup

y

{
xy − yq

q

}
,

to show that for f, g nonnegative functions:∫
fg dP ≤

(∫
fp dP

)1/p(∫
gq dP

)1/q
,

for 1
p + 1

q = 1. Hint: Write fg as (λf)(g/λ) for a real parameter λ and eventually optimise over λ.
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1.6. Product spaces and measures. The notion of product spaces and product measure that
we will define here will axiomatise the notion of independence. We know from basic probability that two
events A,B are independent if P(A ∩B) = P(A)P(B). However, the notation used kind of hides quite a
bit of structure. In fact the symbol P in the LHS and the symbols P in the RHS don’t quite have the
same meaning. The formally correct way is that the LHS is a short (and arguably more intuitive) way to
write P× P

(
(A× R) ∩ (R ×B)) = P× P(A×B). We will define all these in this section.

Definition 1.25 (Product σ-algebras). Let (Ω1,Σ1) and (Ω2,Σ2) be two measurable spaces. We define
the Cartesian product Ω := Ω1 × Ω2. The product σ-algebra Σ1 × Σ2 is defined the σ

(
∪finite rectangles

)
=

σ
(
∪k
n=1 An ×Bn, : An ∈ Σ1 , Bn ∈ Σ2 , k finite

)
.

Given two probability measures P1,P2 on (Ω1,Σ1) and (Ω2,Σ2), respectively, we will next define the
product measure P1 × P2 on (Ω1 × Ω2,Σ1 × Σ2) as follows:

• for rectangles A1 ×A2 we define
(
P1 × P2

)
(A1 ×A2) := P1(A1)P2(A2).

• for E = ∪iAi ×Bi a finite union of disjoint rectangles, we define
(
P1 ×P2

)
(E) :=

∑
i P1(Ai)P2(A2).

Exercise 8. Show that the definition in the second bullet does not depend on the representation of the set
E as a union of disjoint rectangles.

We next need to lift the definition of P1 × P2 to the product σ-algebra. To do this we will use
Caratheodory’s theorem and so need to prove:

Lemma 1.26. The product measure P1 × P2 is a countably additive measure on the collection of all finite
unions of rectangles.

Proof. We need to show that if (En)n≥1 is a decreasing sequence of sets in F with ∩nEn = ∅, then
P1 × P2(En) ↓ 0. To this end, let us define sections: For any ω2 ∈ Ω2 we define

Eω2 :=
{
ω1 ∈ Ω1 : (ω1, ω2) ∈ E

}
.

This set belongs to Σ1. We also have that ω2 → P1(Eω2) is a simple function, measurable with respect to
Σ2. As such, we can define the integral ∫

Ω2

P1(Eω2)P2(dω2), (1.2)

which actually equals P1 × P2(E) (why ?) Similarly we define the sections En,ω2 . The assumption En ↓ ∅
implies that En,ω2 ↓ ∅ for all ω2 ∈ Ω2 and so P1(En,ω2) ↓ 0. By bounded convergence theorem, we then
have that (

P1 × P2

)
(En) =

∫
Ω2

P1(En,ω2) P2(dω2) −−−→
n→∞

0.

□

Equation (1.2) can be extended for all measurable sets in the product σ-algebra, into a formula called
disintegration formula:

Proposition 1.27. (Ω1,Σ1,P1) and (Ω2,Σ2,P2) be two probability spaces and (Ω1×Ω2,Σ1×Σ2,P1×P2)
the product probability space. For any E ∈ Σ1 × Σ2 we define the sections:

Eω1 :=
{
ω2 ∈ Ω2 : (ω1, ω2) ∈ E

}
and Eω2 :=

{
ω1 ∈ Ω1 : (ω1, ω2) ∈ E

}
.

Then the functions P1(Aω2) and P2(Aω1) are measurable and(
P1 × P2

)
(E) =

∫
Ω2

P1(Eω2) P2(dω2) =

∫
Ω1

P2(Eω1) P1(dω1). (1.3)
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Proof. The proof is another nice application of the π − λ theorem. We let D be the collection of all sets
for which (1.3) is true. We note that the field (i.e. closed under finite intersections) F of all finite unions
of rectangles belongs to D by (1.2), i.e. F is a π-system.

Let us check that D is a monotone class:

• Ω := Ω1 × Ω2 ∋ D. This is becauce(
P1 × P1

)
(Ω) = 1 =

∫
Ω2

P1(Ωω2)P2(dω2),

since for every ω2 we have that Ωω2 = Ω1 and P1(Ω1) = 1 as well as
∫
Ω2

1P2(dω2) = 1.

• if A,B ∈ D with A ⊂ B we have that B \A ∈ D (exercise: check this.)

• If An ∈ D increasing, then ∪An ∈ D. Exercise: check this using the monotonicity of measure and
the bounded convergence theorem.

Thus, by the π − λ theorem we have that σ(F) ⊂ D but since σ(F) is the product σ-algebra then (1.3)
holds for all measurable sets E.

We have checked (1.3) before actually checking the measurability of the functions involved in the
integrals. To do so we follow the same steps as in the above paragraph. We need to let D′ be the collection
of all E ∈ Ω1 × Ω2 for which ω1 → P2(Eω1) and ω2 → P1(Eω2) are measurable functions. We know that
this class contains all finite unions of rectangles and we need to check that D is a monotone class. For
the latter, we just need to know that limits of measurable functions (in particular monotone limits) is a
measurable function, which is a basic measure-theoretic principle. □

The above proposition can be extended to the Fubini Theorem, which says the under certain
assumption (integrability or positivity) on a function f(ω1, ω2) the order of integrations does not matter.
In particular, we have that if f(ω1, ω2) is an integrable function with respect to P1×P2 or just nonnegative,
then ∫

Ω1×Ω2

f(ω1,dω2)
(
P1 × P2

)
(dω1, ω2) =

∫
Ω1

(∫
Ω2

f(ω1, ω2) P2(dω2)
)
P1(dω1)

=

∫
Ω2

(∫
Ω1

f(ω1, ω2) P1(dω1)
)
P2(dω2)

The proof would go via the standard procedure: first you would do it for indicator functions, using the
previous proposition, then by linearity for simple functions and then you would use the approximation
scheme of measurable, bounded functions via simple functions to deduce the general case with the help of
the integral convergence theorems. We refer to [V], Theorem 1.12 for the detailed statement and proof.

We close with

Definition 1.28 (Independence). Two random variables variables X1, X2 on probability spaces (Ω1,Σ1,P1)
and (Ω2,Σ2,P2) are independent if their joint law (X1, X2) on (Ω1 × Ω2,Σ1 × Σ2) is the product measure
P1 × P2.

1.7. Distributions and expectation. In this susection we will introduce some basic notation
that we should be comfortable with as we will be using it freely throughout the rest of the notes.

Let (Ω,F ,P) be a probability space and X a random variable on the space (this means a measurable
function but we will not be repeating so from now on). We can induce a probability measure (we will also
be calling it distribution) α on (R,B) where B is the Borel σ-algebra as :

α
((

−∞, x]) := P
(
ω : X(ω) ≤ x

)
= P

(
X ≤ x

)
In this case we may use the notation α = PX−1, the pullback measure in measure theory notation.

Definition 1.29 (Expectation). The expectation of a random variable X is defined as

E
[
X
]
:=

∫
Ω
X(ω)P(ω). (1.4)
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In the above notation we can also write

E
[
X
] ∫

R
xα(dx),

which essentially comes from (1.4) by the change of variables x := X(ω). Generalising (1.4) we have that
for any real function g:

E
[
g
(
X
)]

=

∫
Ω
g
(
X(ω)

)
P(dω) =

∫
R
g(x)α(dx).

In particular, the k-moment of a random variable X is E[Xk].
Finally, for two variables X,Y , we define their covariance as

Cov(X,Y ) := E[XY ]− E[X]E[Y ].

1.8. Characteristic functions. The notion of characteristic functions will be central to the
foundations of weak convergence. For a random variable X on a probability space (Ω,F ,P) we denote by
α = PX−1 its distribution. We then have

Definition 1.30. The characteristic function of X is

ϕ(t) := E
[
eitX

]
=

∫
Ω
eitX(ω)P(dω) =

∫
R
eitxα(dx),

where i :=
√
−1.

The significance of the characteristic function, as we will see, is that it characterises the distribution of
the corresponding random variable. This will be the subject of Theorem 1.33. Before let us record some
general properties of the characteristic function:

Proposition 1.31. The characteristic function of any probability distribution satisfies:

1. |ϕ(t)| ≤ 1 for any t ∈ R with quality if t = 0,

2. ϕ(·) is uniformly continuous,

3. ϕ(·) is a positive functions, i.e. for any ξ1, ..., ξ ∈ C and t1, ..., tn ∈ R it holds that
n∑

i,j=1

ϕ(ti − tj) ξi ξj ≥ 0.

Proof. 1. We have that

|ϕ(t)| =
∣∣ ∫

R
eitxα(dx)

∣∣ ≤ ∫
R

∣∣eitx∣∣α(dx) = ∫
R
α(dx) = 1.

2. We have
|ϕ(t)− ϕ(s)| =

∣∣ ∫
R

(
eitx − eisx

)
α(dx)

∣∣ ≤ ∫
R

∣∣ei(t−s)x − 1
∣∣α(dx).

Since limt−s→0

∣∣ei(t−s)x − 1
∣∣ = 0 we have the claim by the bounded convergence theorem and the

convergence is uniform as
∣∣ei(t−s)x − 1

∣∣ depends only on t− s.

3. We have
n∑

i,j=1

ϕ(ti − tj) ξi ξj =

n∑
i,j=1

∫
R
ei(ti−tj)x ξiξj α(dx) =

n∑
i,j=1

∫
R
eitix ξieitixξj α(dx)

=

∫
R

∣∣ n∑
i,=1

eitixξi
∣∣2 α(dx) ≥ 0.

□

The following theorem provides a characterisation of characteristic functions. It says that the properties
listed in the previous proposition (with the statement about continuity a bit relaxed) characterise
characteristic functions. We refer to [V] for the proof of the Theorem.
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Theorem 1.32 (Bochner). Any positive definite function, which is continuous at 0 with ϕ(0) = 1 is a
characteristic function of a probability distribution on R.

The next proposition states the characteristic functions determine the distribution and provides an
inversion formula. This is closely related to inverting the Fourier transform.

Theorem 1.33. Characteristic functions define uniquely a probability distribution. In particular, if α is a
probability distribution on R with characteristic function ϕ and cumulative distribution function (c.d.f.) F ,
then at every continuity points a, b of the c.d.f. it holds that

F (b)− F (a) = lim
T→∞

1

2π

∫ T

−T

e−itb − e−ita

−it
ϕ(t)dt. (1.5)

Exercise 9. (i) Show that if two c.d.f.’s agree at continuity points, then they are identical.
(ii) Extend formula (1.5) when a or b are not continuity points.

Remark 1.34. Before proving the formula, let us explain how to guess it. First, assume that α(dx) has a
density with respect to Lebesque, that is that it can be written as α(dx) = f(x) dx for a suitable function
f . Then

ϕ(t) =

∫
R
eitxα(dx) =

∫
R
eitxf(x) dx,

and by Fourier inversion we would have that

f(x) =
1

2π

∫
R
e−itxϕ(t) dt.

We also have that f(x) = F ′(x) and so

F (b)− F (b) =

∫ b

a
f(x) dx =

∫ b

a

∫
R
e−itxϕ(t) dt dx =

1

2π

∫
R

∫ b

a
e−itxϕ(t) dx dt

=
1

2π

∫
R

e−itb − e−ita

−it
ϕ(t) dt.

One thing that needs care is the interchange of integrals. Moreover, α may not have a density. However,
knowing what the formula should look like, we can try to prove taking the steps backwards.

Proof of Theorem 1.33. We have

lim
T→∞

1

2π

∫ T

−T

e−itb − e−ita

−it
ϕ(t)dt = lim

T→∞

1

2π

∫ T

−T

e−itb − e−ita

−it

∫
R
eitxα(dx)dt.

At this occasion we can use Fubini to interchange the integral (before taking the limit T → ∞) as on
[−T, T ]×R the function e−itb−e−ita

−it eitx is bounded and integrable with respect dt α(dx). Doing so, we have
that the above is equal to

lim
T→∞

∫
R
α(dx)

1

2π

∫ T

−T

e−it(b−x) − e−it(a−x)

−it
dt = lim

T→∞

∫
R
α(dx)

1

2π

∫ T

−T

sin
(
t(x− a)

)
− sin

(
t(x− b)

)
t

dt,

(1.6)

where we used that eitx = cos(tx) + i sin(tx) and cosine part has integral 0 due to parity. We can now use
dominated convergence to pass the limit limT→∞ inside the integral (check why !) and the fact that

1

π
lim
T→∞

∫ T

0

sin(tz)

t
dt =


1, if z > 0,

−1, if z < 0,

0, if z = 0
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to get that (1.6) equals

1

2

∫
R

[
sgn(x− a)− sgn(x− b)

]
α(dx)

and if a, b are continuity points, it equals∫
R

1(a,b](x)α(dx) =

∫
R

(
1(−∞,b](x)− 1(−∞,a](x)

)
α(dx) = F (b)− F (a).

□

Exercise 10. Show that if α is a probability distribution such that
∫

R |x|α(dx) < ∞, then the characteristic
function ϕ of α is continuously differentiable and ϕ′(0) = i

∫
R xα(dx) = iE

[
X
]
.

Exercise 11. Look at the example of distributions - characteristic functions in Chapter 2 of [V]. Prove the
formulas of the characteristic functions for the: Poisson, geometric, uniform, gamma, two sided exponential
and Cauchy distributions.

2. Weak Convergence

We will now introduce the notion of weak convergence (of probability distributions or equivalently
of distributions or random variables), which will be a central notion and a basis for many of our limit
theorems (in distribution). Let us start with the definition:

Definition 2.1. Let (αn)n≥1 be a sequence of probability distributions on R with cumulative distribution
functions Fn. We say that αn converges weakly to a probability distribution α with cumulative distribution
function F and denote it by αn =⇒ α or Fn =⇒ F if

αn(I) −−−→
n→∞

α(I), for all I = [a, b] with a, b continuity points of F .

Equivalently, αn =⇒ α if Fn(x) −−−→
n→∞

F at all continuity points of F .

Exercise 12. Show that x is a continuity point of a c.d.f. F corresponding to a probability distribution α
if and only if α({x}) = 0.

We can transcribe the above definition into the setting of random variables:

Definition 2.2. Let (Xn)n≥1 be a sequence of random variables with distribution αn and X a random
variable with distribution α. We say that Xn converges in distribution to X and write Xn =⇒ X if
αn =⇒ α.

We will see that
Xn

a.s.−−−→
n→∞

X implies Xn
P−−−→

n→∞
X implies Xn =⇒ X .

Remark 2.3. Since F (x) = P
(
(−∞, x]

)
, convergence in distribution can be translated to

P
(
Xn ≤ x

)
−−−→
n→∞

P
(
X ≤ x

)
, for every x which is a continuity point of the limiting c.d.f. F .

We have already seen the first implication. For the second we will first need to develop some handy
criteria for weak convergence. The opposite implications do not always hold. Can you think of examples ?

However, we have the following interesting theorem, which says that if one a sequence of converging
distributions, one can find random variables with those distributions, which converge a.s.:
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Theorem 2.4 (Skorokhod representation). Let S be a complete, metric space (think of just R – if you
want to see the general statement, refer to [D], Chapter 2, Theorem (2.1)) and a sequence of probability
distributions (αn)n≥1 such that αn =⇒ α. Then we can define a sequence of random variables (Yn)n≥1

on [0, 1] with distributions αn and a random variable Y , again on [0, 1] with distribution α, such that
Yn

a.s.−−−→
n→∞

Y .

Proof. We will prove it for S = R for the general proof see [D], Chapter 2, Theorem (2.1). Consider U a
uniform random variable on [0, 1]. The probability space here ([0, 1],B([0, 1]), dx) where dx is the Lebeque
measure. For any x ∈ [0, 1] we have U(x) = x.

Let Fn the c.d.f.’s corresponding to the distributions αn, i.e. Fn(x) = αn

(
(−∞, x]

)
. Let F−1

n (y) :=

inf{x : Fn(x) ≥ y} and similarly for F . Define the random variables Yn := F−1
n (U) and Y := F−1(U).

These are random variables on [0, 1] and for x ∈ [0, 1] (here x plays the more common role of ω) we have
Yn(x) := F−1

n (U(x)) = F−1
n (x) and similarly for Y .

We have that Yn has distribution αn. Indeed,

P(Yn ≤ a) = P(F−1
n (U) ≤ a) = P(U ≤ Fn(a)) = Fn(a),

where in the second equality we used the monotonicity of Fn and in the last that U is a uniform random
variable.

We have the fact (check) that Fn(x) → F (x) for all continuity points of F if and only if F−1
n (x) →

F−1(x) for all continuity points of F−1. Moreover, F−1 has only countable discontinuity points as it is
monotone. Therefore, a.e. point of [0, 1] is a continuity point of F−1 and on these points we will have
Yn(x) := F−1

n (x) −−−→
n→∞

F−1(x) =: Y (x). □

Let us next provide some more quantitative criteria for weak convergence.

Theorem 2.5 (Lévy-Crámer). Let {(αn)n≥1, α} be a family of probability distributions with characteristic
functions (ϕn)n≥1 and ϕ, respectively. The following are equivalent:

1. αn =⇒ α,

2. for every bounded, continuous f on R, denoted f ∈ Cb(R), we have that
∫

R fdαn −−−→
n→∞

∫
R fdα,

3. for every t ∈ R, we have that ϕn(t) −−−→
n→∞

ϕ(t).

Proof. (1) =⇒ (2). We will do a Riemann approximation. For this we need first to restrict to a compact
interval [a, b]. We can do so since∫

[a,b]c
f dαn ≤ ∥f∥∞

∫
[a,b]c

dαn = ∥f∥∞
(
Fn(a) + 1− Fn(b)

)
and we can take a, b large enough (negative and positive, respectively) so that the RHS is less that ε.

We next partition [a, b] = ∪N
i=1[ai−1, ai] with a0 = a and aN = b with supi |ai − ai−1| small enough so

that supx∈[ai−1,a]
|f(x) − f(ai)| ≤ δ for arbitrarily small δ. This can be done since f is continuous and

[a, b] compact, so restricted to [a, b] it is uniformly continuous. We also choose (ai)i≥0 to be continuity
points of F , so that

N∑
i=1

f(ai−1)αn

(
(ai−1, ai]

)
=

N∑
i=1

f(ai−1)
(
Fn(ai)− Fn(ai−1)

)
−−−→
n→∞

N∑
i=1

f(ai−1)
(
F (ai)− F (ai−1)

)
We then have∣∣∣ ∫

[a,b]
fdαn −

N∑
i=1

f(ai−1)
(
Fn(ai)− Fn(ai−1)

)∣∣∣ = ∣∣∣ ∫
[a,b]

fdαn −
N∑
i=1

f(ai−1)

∫ ai

ai−1

dαn

∣∣∣
≤

n∑
i=1

∫ ai

ai−1

|f(x)− f(ai−1)|dαn

≤ δ.
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We can do the same estimate with Fn replaced by F and αn with αn. Comparing the two we then obtain∣∣∣ ∫
[a,b]

fdαn −
∫
[a,b]

fdα
∣∣∣ ≤ δ,

for arbitrarily small δ. All the above complete the claim.

(2) =⇒ (3). This is easy since we can take f(x) = cos(tx) and f(x) = sin(tx) and then combine them
to f(x) = eitx.

(3) =⇒ (1). This is more complicated and follows from the more general theorem that we state and
prove next. □

Theorem 2.6. Let (ϕn) be characteristic functions corresponding to probability distributions (αn). If ϕn(t)
converges to ϕ(t) for every t ∈ R and ϕ(t) is continuous at t = 0, then ϕ(t) is a characteristic function of
a probability distribution α and αn =⇒ α.

Proof. If ϕ(t) := limn→∞ ϕn(t) is continuous at t = 0, then by Bochner’s theorem ϕ(t) is a characteristic
function; notice that positive definiteness is preserved by pointwise limits. So we just need to check that if
α is the distribution function corresponding to ϕ, then αn =⇒ α. Equivalently, we need to show that
Fn(x) −−−→

n→∞
F (x) for every x which is a continuity point of F , where Fn, F are the cdf’s of αn and α,

respectively. Let us do so.
Step 1. First, let (rj)j≥1 be an enumeration of the rational numbers. For any j, the sequence (Fn(rj))n≥1

is a bounded sequence (since 0 ≤ F ≤ 1) and so there is a subsequence (n̂j
k) such that F

n̂j
k
(rj) converges

as k → ∞ to a number, which we denote by G(rj).
We next want to show that we can pick a subsequence (n′

k) such that Fn′
k(r)

converges to G(r) for all
rationals r. We do so by a diagonal sequence argument:

• for rational r1 consider the subsequence n
(1)
k for which F

n
(1)
k

(r1) → G(r1),

• for rational r2 consider the subsequence n
(2)
k of n(1)

k for which F
n
(2)
k

(r1) → G(r2),

• in general, for rational ri consider the subsequence n
(j)
k of n(j−1)

k for which F
n
(j)
k

(rj) → G(rj).

Consider now the sequence (n
(j)
j )≥1, i.e. the j element of all above subsequences (we consider the j element

so that to guarantee that this sequence actually goes to infinity). Then for every rational r, we have that
F
n
(j)
j

(r) will converge to G(r).

Step 2. We next want to extend G as a function on R. We do this by defining

G(x) := inf
Q∋r>x

G(r), for any x ∈ R.

G has the properties of a cdf:

• Monotonicity: if x1 < x2 (assume they are not rationals) then {r ∈ Q : r > x1} ⊃ {r ∈ Q : r > x2}
and so G(x1) := infr∈Q : r>x1 G(r) ≤ infr∈Q : r>x2 =: G(x2). Exercise: check the case when either x1
or x2 are rationals.

• Right-continuity: Assume xn ↓ x. Pick rationals rn ∈ [xn+1, xn]. We now that

G(rn) ≥ G(xn+1) ≥ G(rn+1)

. By the definition of G(x) := infQ∋r>xG(r), we have that G(rn) → G(x) and so by the above
sandwiching we will also have that G(xn) → G(x).

• G is a probability cdf: that is we need to check that G(+∞) = 1 and G(−∞) = 0. This will introduce
the very important concept of tightness – meaning that there is no “mass” escaping to infinity. We
will formalise this notion after we finish the proof for the purposes of which we will use the following
useful inequality:
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Lemma 2.7. Let F be the cdf of a probability distribution corresponding to a characteristic function ϕ.
For any T > 0 we have:

1− F
( 2

T

)
+ F

(
− 2

T

)
≤ 2

(
1− 1

2T

∫ T

−T
ϕ(t) dt

)
. (2.1)

We will defer the proof of this inequality until after the proof of this Theorem. For the moment let us just
use inequality (2.1) to show that G is a probability cdf as follows:

Employ (2.1) for all Fnk
:

1− Fnk

( 2

T

)
+ Fnk

(
− 2

T

)
≤ 2

(
1− 1

2T

∫ T

−T
ϕnk

(t) dt
)
,

and for T rational. Passing to the limit nk → ∞ (assuming that 2/T and −2/T are continuity points of
G) this will also imply the inequality

1−G
( 2

T

)
+G

(
− 2

T

)
≤ 2

(
1− 1

2T

∫ T

−T
ϕ(t) dt

)
.

Now we pass to the limit T ↓ 0. The left-hand side will converge to 1 − G(∞) − G(−∞), while the
right-hand side will converge to 0 because of the assumption of continuity of ϕ at t = 0 and we are done
with this step.

Step 3. Having constructed the limiting G we now want to show that Fn =⇒ G. Remember that we
have only shown that there is a subsequence nk such that Fnk

(r) → G(r) on rationals.
We start by showing that for every continuity point x of G and for (nk) the aforementioned subsequence,

we have that Fnk
(x) → G(x). To this end, let r be any rational greater than x. We have that Fnk

(x) ≤ Fnk
(r)

and then lim supnk
Fnk

(x) ≤ lim supnk
Fnk

(r) = G(r) and letting r ↓ x, we have that G(r) ↓ G(x) and
so lim supnk

Fnk
(x) ≤ G(x). Similarly, we can obtain that lim infnk

Fnk
(x) ≥ G(x), assuming that x is a

continuity point.
To show that the whole sequence converges to G we follow this argument: Suppose it doesn’t. Then there

will be a subsequence, which doesn’t converge to G. However, we have shown that every (sub)sequence
has a (further) subsequence, say (mk) that converges i.e. Fmk

=⇒ G̃. Then by assumption (in the first
equality of each line below) and by weak convergence (in the second equalities) we have:

ϕ(t) = lim

∫
eitxdαmk

= lim

∫
eitxdα̃, and

ϕ(t) = lim

∫
eitxdαnk

= lim

∫
eitxdα,

but then
∫
eitxdα̃ =

∫
eitxdα and we know that characteristic functions determine the distribution, so

α̃ = α. This completes the proof. □

We now go back to prove (2.1):
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Proof of (2.1). We have:

1

2T

∫ T

−T
ϕ(t) dt =

1

2T

∫ T

−T

(∫
eitxα(dx)

)
dt

=

∫ ( 1

2T

∫ T

−T
eitx dt

)
α(dx) [we can use Fubini]

=

∫
sin(Tx)

Tx
α(dx)

≤
∫ ∣∣∣sin(Tx)

Tx

∣∣∣α(dx)
≤

∫
|x|≤ℓ

∣∣∣sin(Tx)
Tx

∣∣∣α(dx) + ∫
|x|>ℓ

∣∣∣sin(Tx)
Tx

∣∣∣α(dx) [for arbitrary ℓ]

≤ α
(
x : |x| ≤ ℓ

)
+

1

Tℓ
α
(
x : |x| > ℓ

)
where in the last we bounded each integral by using, respectively, that | sinx/x| ≤ 1 and | sinx/x| ≤ 1/|x|.
We can then deduce that

1− 1

2T

∫ T

−T
ϕ(t) dt ≥ 1− α

(
x : |x| ≤ ℓ

)
− 1

Tℓ
α
(
x : |x| > ℓ

)
=

(
1− 1

Tℓ

)
α
(
x : |x| > ℓ

)
=

(
1− 1

Tℓ

)(
1− F (ℓ)− F (−ℓ)

)
=

1

2

(
1− F (ℓ)− F (−ℓ)

)
[choosing ℓ := 2/T ].

□

Let us now formalise the important notion of tightness:

Definition 2.8. A family of probability measure A is called totally bounded or (more commonly) tight
if anysequence (αn) ⊂ A has a subsequence that converges weakly.

We can also state a criterion for tightness:

Proposition 2.9. A family A of probability distributions is tight if and only if either one of the following
two conditions is satisfied:

(1) lim
ℓ→∞

sup
α∈A

α(x : |x| ≥ ℓ) = 0,

(2) lim
h↓0

sup
α∈A

sup
|t|≤h

|1− ϕα(t)| = 0.

Proof. By the proof of Theorem 2.6 we have that every sequence of probability distribution (α) has
always a subsequence which converges weakly. However, the question is whether the limiting distribution
α∗ is actually a probability distribution, i.e. α∗(R) = 1.

Step 1: upwards direction. We know that (2) =⇒ (1). Let us now prove that condition (1) implies
that α∗(R) = 1. Condition (1) translates to:

∀ε > 0, ∃ ℓε such that sup
α∈A

α(|x| ≥ ℓε) < ε,

which will also imply that α∗(|x| ≥ ℓε) < ε since α∗ is a limit of elements in A. But this equivalent to
limℓ→∞ α∗(|x| ≥ ℓ) = 0 or that limℓ→∞ α∗(|x| < ℓ) = 1 ⇔ α∗(R) = 1.

Step 2: downwards direction. Assume that A is tight, which means that every sequence of elements
of A has a convergence subsequence, but (1) is not valid. This would then imply that there exists a



18 N.ZYGOURAS

sequence (αn) ⊂ A such that

lim sup
ℓ→∞

lim sup
n

αn(|x| ≥ ℓ) > ε, for some ε > 0,

We can assume that αn =⇒ α∗ for some probability distribution α∗ and then the above would imply that

lim sup
ℓ→∞

α∗(|x| ≥ ℓ) > ε,

but then this would contradict the fact that α∗ is a probability distribution.

Finally, we will show that (1) =⇒ (2): We have

|1− ϕα(t)| ≤
∫

|1− eitx|α(dx)

=
(∫

|x|>ℓ
+

∫
|x|≤ℓ

)
|1− eitx|α(dx)

≤ 2α(|x| ≥ ℓ) + t

∫
|x|≤ℓ

|x|α(dx)

≤ 2α(|x| ≥ ℓ) + tℓ,

for arbitrary ℓ > 0 and so

lim
h↓0

sup
α∈A

sup
|t|≤h

|1− ϕα(t)| ≤ lim
h↓0

sup
α∈A

(
2α(|x| ≥ ℓ) + hℓ

)
= 2 sup

α∈A
α(|x| ≥ ℓ) −−−→

ℓ→∞
0,

by assumption (1). □

Let us close this section with a reminder of all the three modes of convergence and their relations:

• Almost sure (a.s.) convergence. Random variables (Xn) are said to converge a.s. to X and we
write Xn

a.s.−−−→
n→∞

X, if for every ε > 0,

P(lim sup
n→∞

|Xn −X| > ε) ≡ P({|Xn −X| > ε, i.o.}) = 0

• Convergence in Probability. Random variables (Xn) are said to converge to X in probability
and we write, Xn

P−−−→
n→∞

X, if for every ε > 0,

P(|Xn −X| > ε) −−−→
n→∞

0

• Convergence in Distribution. Random variables (Xn) are said to converge to X in distribution
and we write, Xn

d−−−→
n→∞

X or Xn =⇒ X if the corresponding distritions αn = PX−1
n converge

weakly to α = PX−1. Equivalently if the characteristic functions ϕn(t) := E
[
eitXn

]
converge for

every t ∈ R to the characteristic function ϕ(t) := E
[
eitX

]
.

We have the relations:

a.s. converence =⇒ convergence in probability =⇒ convergence in distribution

The opposite assertions do not in generally .

Exercise 13. 1. Prove the convergence in probability implies convergence in distribution

2. Prove that if (Xn) converge in probability to an a.s. constant random variable X, then (Xn) also
converge to X in probability.

3. Laws of Large Numbers

In this section we will prove the standard Laws of Large Numbers (LLN). There are two kinds: the
Weak LLN, which is stated as convergence in probability and the Strong LLN which is stated as an a.s.
convergence.
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3.1. Weak Law of Large Numbers. We start with the Weak LLN, which we first prove under a
suboptimal condition. We will be using a lot this basic lemma:

Lemma 3.1 (Chebyshev’s inequality). Let X be a nonnegative random variable and f a nonnegative,
nondecreasing function. Then

P(X ≥ a) ≤ 1

f(a)
E[f(X)1X≥a] ≤

1

f(a)
E[f(X)].

Proof. We just need to use the inequality 1X≥a ≤ 1X≥a
f(X)
f(a) and also write P(X ≥ a) = E[1X≥a]. □

Theorem 3.2. Let (Xn)n≥1 be a family of independent, identically distributed random variables (i.i.d.),
such that E[Xi] = µ and E[X2

i ] < ∞. We then have that
X1 + · · ·+Xn

n

P−−−→
n→∞

µ.

Proof. First, we can assume that µ = 0, otherwise we consider, instead, the random variables X ′
i := Xi−µ.

Next, we denote Sn := X1 + · · ·+Xn. Then by Chebyshev we have that

P
(
|Sn| ≥ nε

)
≤ 1

n2ε2
E
[
|Sn|2

]
=

1

n2ε2

{ n∑
i=1

E[X2
i ] + 2

∑
i<j

E[XiXj ]
}

=
1

nε2
E[X2

1 ] −−−→n→∞
0,

where in the last equality we used the independence and the assumption that Xi are mean 0, to drop the
cross term and the identically distributed assumption. □

We will next remove the assumption on second moments and state the standard wLLN, with the more
natural condition of finite first moment. More precisely, we have

Theorem 3.3. Let (Xn)n≥1 be a family of independent, identically distributed random variables (i.i.d.),
such that E[Xi] = µ and E[|Xi|] < ∞. We then have that

X1 + · · ·+Xn

n

P−−−→
n→∞

µ.

Proof. The trick is to reduce this theorem to the previous theorem. We will achieve this via the standard
trick of truncation. First„ we again assume that µ = 0 and then choose a truncation level C and define
the random variables

X≤C
i := Xi1|Xi|≤C and X>C

i := Xi1|Xi|>C .

We clearly have Xi = X≤C
i +X>C

i and we write S≤C
n =

∑n
i=1X

≤C
i and S>C

n =
∑n

i=1X
>C
i These random

variables might not be mean 0 any more but

0 = E[Xi] = E[Xi1|Xi|≤C ] + E[Xi1|Xi|>C ] = E[X≤C
i ] + E[X>C

i ].

So we can write
Sn =

(
S≤C
n − nE[X≤C

i ]
)
+
(
S<C
n − nE[X>C

i ]
)
,

and so

P
(
|Sn| ≥ nε) ≤ P

(
|S≤C

n − nE[X≤C
i ]|+ |S>C

n − nE[X>C
i | ≥ nε

)
≤ P

(
|S≤C

n − nE[X≤C
i ]| ≥ nε

2

)
+ P

(
|S>C

n − nE[X>C
i | ≥ nε

2

)
.

The first term goes to 0 as n → ∞ by the previous theorem as the variables XC
i are bounded by C and,

thus, have second moments. We bound the second term by simple Chebyshev as

P
(
|S>C

n − nE[X>C
i | ≥ nε

2

)
≤ 2

nε
E
[
|S>C

n − nE[X>C
i |

]
≤ 4

nε
nE

[
|X>C

1

]
=

4

ε
4E

[
|X>C

1

]
,
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but the last term goes to 0, uniformly in n, as C → ∞ by the dominated convergence theorem. □

We can also give a quick proof of the wLLN using characteristic functions:

Proof of wLLN via characteristic functions. In this proof there is not much simplification to assume
mean 0. Let

ϕSn(t) := E
[
eitSn/n

]
= E

[ n∏
i=1

eitXi/n
]
=

n∏
i=1

E
[
eitXi/n

]
=

(
E
[
eitXi/n

])n
= ϕX1

( t

n

)n
.

We will next Taylor expand the characteristic function ϕX1

(
t
n

)
around 0 and write the above as

ϕX1

( t

n

)n
=

(
1 + ϕ′(0)

t

n
+ o(

1

n
)
)n

→ eϕ
′(0)t, as n → ∞.

Using the fact that ϕ′(0) = iµ we have that the limit of the characteristic functions is eiµt which is the
characteristic function of δµ, the Dirac distribution at µ or the characteristic function of the constant
random variable µ. We can now use the result of Exercise 13 to conclude the convergence in probability. □

3.2. Strong Law of Large Numbers. The statement of the Strong LLN is that for i.i.d. sequence
(Xn) with mean µ and finite first moment E[|Xi|] < ∞, we have the a.s. convergence of the sample mean
to the statistical mean:

X1 + · · ·+Xn

n

a.s.−−−→
n→∞

µ.

For a warm-up, let us first prove this statement with the extra assumption of finite fourth moment.

Theorem 3.4. Assume (Xn) is an i.i.d. sequence with mean µ and E[X4
i ] < ∞, then

X1 + · · ·+Xn

n

a.s.−−−→
n→∞

µ.

Proof. Assume that µ = 0. With the view of using the first Borel-Cantelli lemma we estimate:

P
(
|Sn| > εn

)
≤ 1

ε4n4
E
[
S4
n

]
=

1

ε4n4
E
[(
X1 + · · ·+Xn)

4
]

=
1

ε4n4

{ n∑
i=1

E[X4
i ] +

∑
i,j,k different

E[X3
i XjXk] +

∑
i ̸=j

E[X2
i X

2
j ]
}
,

and using the independence and the i.i.d. property we have that the above equals
1

ε4n4

{
nE[X4

1 ] + 3n(n− 1)
∑
i ̸=j

E[X2
1 ]

2
}
≤ C

n2
,

So we have that
∑

n≥1 P(|Sn| > ε) < ∞ and the result follows by Borel-Cantelli. □

We will next move to the real stuff ! There are several proofs of the strong LLN under only finite first
moment. We will present Etemadi’s proof as it contains a number of interesting ideas, which can be applied
in various other context. In the proof we will skip a few of the technical details, which can be found in
Durrett’s book [D].

Before we start we need the following very useful representation of the mean of a random variable:

Lemma 3.5. For a nonnegative random variable X we have

E[X] =

∫ ∞

0
P(X ≥ ℓ) dℓ. (3.1)

Proof. We have the trivial (but clever) identity X =
∫∞
0 1X≥ℓ dℓ which implies that

E[X] = E
[ ∫ ∞

0
1X≥ℓ dℓ

]
=

∫ ∞

0
E
[
1X≥ℓ

]
dℓ =

∫ ∞

0
P(X ≥ ℓ) dℓ.

□

We can now prove:
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Theorem 3.6. Assume (Xn) is an i.i.d. sequence with mean µ and E[X4
i ] < ∞, then

X1 + · · ·+Xn

n

a.s.−−−→
n→∞

µ.

Proof. Step 1. (truncation) Let

Yk := Xk1|Xk|≤k.

Note that the truncation used here is not constant but the truncation level employed increases with k. Let
also

Tn = Y1 + · · ·+ Yn and Sn = X1 + · · ·+Xn.

Let us check that it is enough to prove the sLLN for Tn, i.e. that Tn
a.s.−−−→

n→∞
µ. Indeed,

∑
k

P(|Xk| ≥ k) ≤
∫ ∞

0
P(|Xk| ≥ ℓ) dℓ

=

∫ ∞

0
P(|X1| ≥ ℓ) dℓ [by i.i.d.]

= E[|X1|] < ∞ [by (3.1) and assumption].

Therefore, by Borel-Cantelli P(|Xk| ≥ k, i.o.) = 0, which means that a.s. for all large enough n we have
Xn = Yn. We can also unravel this and write that for almost every ω, we have that for all large enough n
Xn(ω) = Yn(ω). This implies that for a.e. ω there exists a random constant R(ω) < ∞ such that

|Sn(ω)− Tn(ω)| < R(ω) =⇒ 1

n
|Sn(ω)− Tn(ω)| <

1

n
R(ω) → 0.

Step 2. (Borel-Cantelli along subsequences) Ideally we would like to prove that
∑

n≥1 P(
∣∣Sn
n − µ| ≥

ε) < ∞ (or the analogous statement for the truncated variable sum Tk) but this cannot be achieved – we
sum too many terms having a poor a priori bound. The trick will be to prove the convergence along a
subesequence and the sandwich all in between terms. To do the sandwiching we will need some positivity
in order to compare. The trick here is

Ertemadi’s idea: We can assume that Xn’s are nonnegative because otherwise we can split into the
positive and negative parts Xn = X+

n −X−
n and since (X+

n ) and (X−
n ) are i.i.d. sequences with finite first

moment we could use the sLLN for each one individually and combine to obtain the sLLN for (Xn).

We next choose the appropriate subsequence:

kn := ⌈an⌉, for arbitrary a>1.

Eventually we will be taking a ↓ 1.
Let us now estimate the Borel-Cantelli terms along this subsequence:∑

n≥1

P
(
|Tkn − E[Tkn ] | ≥ εkn

)
≤

∑
n≥1

1

ε2k2n
E
[
|Tkn − E[Tkn ] |2

]
=

∑
n≥1

1

ε2k2n
Var

(
Tkn

)
=

∑
n≥1

1

ε2k2n

kn∑
m=1

Var
(
Ym

)
,

where in the last we used that the variance of the sum of independent variable is the sum of the variances.
Note that Ym are not i.i.d. (because they have different truncation levels), so more work is needed to
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bound the last sum. To this end, we write it as

∑
n≥1

1

ε2k2n

kn∑
m=1

Var
(
Ym

)
=

1

ε2

∞∑
m=1

Var
(
Ym

)∑
n≥1

1

k2n
1kn≥m

≤ 1

ε2

∞∑
m=1

Var
(
Ym

) 1

m2

C

1− a−2
,

for some constant C, where we estimated the sum over n, using the explicit expression kn = ⌈an⌉ (check ).
So it remains to check that ∑

m≥1

Var(Ym)

m2
< ∞.

Prove (or check in [D]) that
∑

m≥1
Var(Ym)

m2 ≤ CE[|X1|].
So in this step we have proven that

P
(
|Tkn − E[Tkn ] | ≥ εkn, i.o.

)
= 0,

which means that
Tkn − E[Tkn ]

kn

a.s−−−→
n→∞

0.

We note that
E[Tkn ]

kn
−−−→
n→∞

µ.

because by dominated convergence we have E[Yk] = E[Xk1Xk≤k] = E[X11X1≤k] → E[X1] as k → ∞ and
combine this with Césaro mean. So we have proven that

Tkn

kn

a.s−−−→
n→∞

µ.

We are now ready for the final step, which is to show that this limit holds not just for the subsequence but
for all n.

Step 3. (Sandwiching) For every m, find n such that kn ≤ m ≤ kn+1. Using the positivity of the
summands and the monotonicity of kn, we have that

Tkn

kn+1
≤ Tm

m
≤

Tkn+1

kn

and noting that kn+1/kn ≈ a we have that

1

a

Tkn

kn
≤ Tm

m
≤ a

Tkn+1

kn+1
,

and the result follows by first taking the limit n → ∞ and then a ↓ 1. □

Exercise 14. Show that the sLLN does not hold if E[|X1|] = ∞.

Exercise 15 (A taste of renewal theory). Let (Xn)n≥1 a family of positive, i.i.d. random variables
with mean µ, Sn := X1 + · · ·+Xn and Nt := sup{n : Sn ≤ t}. Show that

Nt

t
→ 1

µ
, a.s. for t → ∞.
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3.3. Kolmogorov’s 0-1 Law. The Kolmorogorov’s 0-1 Law gives an explanation why the limit in
the sLLN’s is a constant. Basically it says that if (Xn)n≥1 is an i.i.d. sequence, then any event that does
not depend on any finite number of the random variables can only have probability 0 or 1. To formulate
this we first need the definition a tail σ-field:

Definition 3.7. Let (Xn)n≥1 an i.i.d. family. Define Bn := σ
(
Xj : j ≥ n

)
. The tail σ-field of the sequence

(Xn)n≥1 is defined as B∞ := ∩n≥1Bn.

Some examples of events that belong to the tail σ-field are

•
{
ω : lim sup

n
Xn = 1

}
,

•
{
ω : lim

n
Xn exists

}
,

•
{
ω : sup

n
|Xn| < ∞

}
•

{
ω : lim

n

X1 + · · ·+Xn

n
∈ [a, b]

}
On the other hand the event

{
ω : supn |Xn| = 1

}
, is not a tail event as it depends on all values of the

sequence.
We can now state and prove the theorem

Theorem 3.8. If A ∈ B∞, then P(A) ∈ {0, 1}.

Proof. We will show that any A ∈ B∞ is independent of itself, thus P(A) = P(A ∩A) = P(A)2, which
implies the conclusion.

Let us prove the claim. We have that

A ∈ B∞ ⊂ Bn+1 = σ
(
Xj : j ≥ n+ 1

)
,

but the latter is independent of σ
(
Xj : j ≤ n

)
and since this holds for every n, we have that A is

independent of ∪nσ
(
Xj : j ≥ n

)
. We denote the latter by F . This somehow should imply the conclusion

since A is by default an event in σ
(
Xj : j ≥ 1

)
. We only need to check that being independent from

F := ∪nσ
(
Xj : j ≥ n

)
implies that it is independent of σ

(
Xj : j ≥ 1

)
. To this end, we will use again

Dynkin’s theorem: Define
A :=

{
B : P(A ∩B) = P(a)P(B)

}
.

By the discussion above A contains F . Check that A is a monotone class and that F is a field. Therefore,
by Dynkin’s theorem, A contains σ(F) = σ

(
Xj : j ≥ 1

)
, which means that A ∈ A. □

Corollary 3.9. If (Xn)n≥1 is an i.i.d. sequence, then

lim
n

X1 + · · ·+Xn

n

has to be a.s. a constant.

4. Central Limit Theorem

In this section we will present the central limit theorem (CLT). Informally this should be thought of as
follows: Suppose (Xn)n≥1 is an i.i.d. sequence with mean µ and variance σ2. Then we have the asumptotic

X1 + · · ·+Xn ≈ nµ+
√
n× Gaussian.

We will present three approaches to establish the CLT.

4.1. The method of characteristic functions. Let us first formally state the CLT:

Theorem 4.1. Suppose (Xn)n≥1 is an i.i.d. sequence with mean µ and variance σ2 and Sn = X1+ · · ·+Xn,
Then

Sn − nµ√
n

d−−−→
n→∞

N (0, σ2),
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where N (0, σ2) is a Gaussian (Normal) random variable with mean 0 and variance σ2. The above limit is
to be interpreted as

P
(Sn − nµ√

n
> x

)
−−−→
n→∞

∫ ∞

x

1√
2πσ2

e−
y2

2σ2 dy.

The first proof will be via characteristic functions:

Proof. We start by noting that the characteristic function of the Gaussian is∫
R
eitxe−

x2

2σ2
dx√
2πσ2

= e−
t2σ2

2 .

Assume, as usual that µ = 0 and compute the asymptotics of the characteristic function

ϕn(t) = E
[
e
it Sn√

n

]
=

(
E
[
e
it

X1√
n

])n
= ϕX1

( t√
n

)n
=

{
1 +

t√
n
ϕ′
X1

(0) +
t2

2n
ϕ′′
Xi
(0)2 + o(n−1)

}n

=
{
1− t2

2n
σ2 + o(n−1)

}n

−−−→
n→∞

e−
t2

2
σ2
.

where we used the Taylor expansion up to second order. □

Let us now present the first generalisation of the CLT. The following, called Lindeberg’s condition (not
to be confused with Lindeberg’s method) says that the random variables do not need to be i.i.d. The CLT
would still hold if essentially no random variable contributes significantly to the total variance.

Theorem 4.2 (Lindeberg’s CLT). Assume (Xn)n≥1 are i.i.d., with mean zero and finite variance
(σ2

n)n≥1. Let
s2n := Var

(
X1 = · · ·+Xn

)
=: σ2

1 + · · ·σ2
n.

If
1

s2n

n∑
j=1

E
[
X2

j 1|Xj |≥εsn

]
−−−→
n→∞

0, ∀ε > 0,

then the CLT holds and
X1 + · · ·+Xn

sn

d−−−→
n→∞

N (0, 1).

Proof. We refer to [V], Chapter 3 for the proof. □

Exercise 16. (CLT without 2nd moment.) Let (Xn)n≥1 i.i.d. with P(X1 > x) = P(X1 < −x) and
P(|X1| > x) = x−2 for x ≥ 1. Then

Sn√
n log n

d−−−→
n→∞

N (0, 1).

4.2. Lindeberg Principle. In this subsection we will demonstrate the Lindeberg principle, also
called the Lindeberg method, through proving Lindeberg’s CLT. However, the principle has much wider
applicability. The idea is that the convergence of

X1 + · · ·+Xn

sn
where sn is as in Lindeberg’s CLT, to a normal random variable is trivial if Xi are independent Gaussian
variables with mean zero and variance σ2

i . Denote the latter by Zi. Then one is left with comparing the
distance

E
[
f
(X1 + · · ·+Xn

sn

)]
− E

[
f
(Z1 + · · ·+ Zn

sn

)]
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for any f ∈ Cb(R). If this difference converges to 0 as n → ∞, since E
[
f
(
Z1+···+Zn

sn

)]
= E

[
f(Z)

]
for

Z ∼ N (0, 1), then CLT for (Xi)i≥1 follows. In order to control this difference we will be switching from
Zi’s to Xi’s one variable at a time. In other words we will telescope

n∑
j=1

E
[
f
(Z1 + · · ·+ Zj−1 +Xj + · · ·Xn

sn

)]
− E

[
f
(Z1 + · · ·+ Zj +Xj+1 + · · ·Xn

sn

)]
so that there is only one discrepancy at each summand. The idea is that if changing just one variable to
another has sufficiently negligible effect, then the total difference should be small. In such a situation we
often say that each individual random variable has negligible influence. The notion of influence plays an
important role in studies of CLTs, noise sensitivity etc. We refer to [Z] for further discussion on this as
well as more general Lindeberg principles and application.

We now give the proof of Lindeberg’s CLT via the Lindeberg method. The proof can be summarised by
the points:

• Taylor expansion

• matching first and second moment and control on some higher moment

• each individual variable has small influence. This is quantified by Lindeberg’s condition.

Proof of Lindeberg’s CLT via Lindeberg method. Let f ∈ C3
b (R). Eventually we will need to go

down to Cb(R) but this can be done by standard approximation. Define ωn,i = Xi/sn and denote

fn(ωn,1, . . . , ωn,n) := f
(
ωn,1 + · · ·+ ωn,n

)
. (4.1)

We will also consider the i.i.d. sequence of normal variables ξ1, ξ2, ... and consider ξn,i := n−1/2ξi for
i = 1, 2, .... By the definition of weak convergence, it suffices to show that

E
[
fn(ωn,1, . . . , ωn,n)

]
−−−→
n→∞

1√
2π

∫
R
f(x) e−

x2

2 dx,

and since this limit is trivially valid for E
[
fn(ξn,1, . . . , ξn,n)

]
, it suffices to show that∣∣∣E[fn(ωn,1, . . . , ωn,n)

]
− E

[
fn(ξn,1, . . . , ξn,n)

]∣∣∣ −−−→
n→∞

0. (4.2)

The perturbation argument alluded to in the above remarks will be done through a telescoping argument,
where we will successively change the array (ωn,1, ..., ωn,n) one by one, until we change all the array to
(ξn,1, ..., ξn,n). In this way, we can bound the left hand side of (4.2) by

n∑
i=1

∣∣∣E[fn( ξn,1 , . . . , ξn,i−1 , ξn,i , ωn,i+1 , ..., ωn,n )
]
−

− E
[
fn( ξn,1 , . . . , ξn,i−1 , ωn,i , ωn,i+1 , ..., ωn,n )

]∣∣∣, (4.3)

where we notice that in the above difference there is only a discrepancy at the ith coordinate. We will
Taylor expand in that coordinate. For this, let us introduce, for a sequence x = (x1, ..., xn), the function

hxn,i(y) := fn(x1, ..., xi−1, y, xi+1, ..., xn).

The Taylor expansion is as follows:

hxn,i(y) = hxn,i(0) +
(
∂yh

x
n,i(0)

)
y +

1

2

(
∂2
yh

x
n,i

)
(0) y2 +Rx

n,i(y), (4.4)

where the remainder term has the expression

Rx
n,i(y) =

1

2

∫ y

0

(
∂3
yh

x
n,i(t)

)
(y − t)2dt, (4.5)

and the following two bounds hold:∣∣Rx
n,i(y)

∣∣ ≤ 1

6
∥ ∂3

yh
x
n,i ∥∞ |y|3 = 1

6
∥f ′′′∥∞|y|3 (4.6)∣∣Rx

n,i(y)
∣∣ ≤ ∥ ∂2

yh
x
n,i ∥∞ y2 = ∥f ′′∥∞y2. (4.7)
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The first bound follows by bounding ∂3
yh

x
n,i in (4.5) by its supremum norm, while for the second bound we

first perform an integration by parts and write the remainder as

Rx
n,i(y) = −1

2
∂2
yh

x
n,i(0)y

2 +

∫ y

0
∂2
yh

x
n,i(t)(y − t) dt,

and then bound the ∂2
yh

x
n,i by its supremum norm. Let us introduce the notation

[ξ, ω]i := (ξn,1, ..., ξn,i−1, ωn,i+1, ..., ωn,n),

then each difference (4.3) writes as

h
[ξ,ω]i
n,i (ξi)− h

[ξ,ω]i
n,i (ωi) =

{
h
[ξ,ω]i
n,i (0) +

(
∂yh

[ξ,ω]i
n,i (0)

)
ξn,i +

1

2

(
∂2
yh

[ξ,ω]i
n,i

)
(0) ξ2n,i +Rx

n,i(ξn,i)

}

−

{
h
[ξ,ω]i
n,i (0) +

(
∂yh

[ξ,ω]i
n,i (0)

)
ωn,i +

1

2

(
∂2
yh

[ξ,ω]i
n,i

)
(0)ω2

n,i +Rx
n,i(ωn,i)

}
(4.8)

Taking expectation and using the independence between the variables we express

E
[(
∂yh

[ξ,ω]i
n,i (0)

)
ξn,i

]
= E

[(
∂yh

[ξ,ω]i
n,i (0)

)]
E
[
ξn,i

]
,

and similarly for the rest of the terms in (4.8). Using the assumption that ξn,i’s and ωn,i’s have matching
first and second moments, we have

E
[
h
[ξ,ω]i
n,i (ξi)

]
− E

[
h
[ξ,ω]i
n,i (ωi)

]
= E

[
R

[ξ,ω]i
n,i (ωn,i)

]
− E

[
R

[ξ,ω]i
n,i (ξn,i)

]
So (4.3) is bounded by

n∑
i=1

E
[∣∣∣R[ξ,ω]i

n,i (ωn,i)
∣∣∣ ]+ n∑

i=1

E
[∣∣∣R[ξ,ω]i

n,i (ξn,i)
∣∣∣ ].

We will estimate the first term, the second one being identical. For this, we denote by Cf := max{∥f ′′∥∞, ∥f ′′′∥∞}
and we have by estimates (4.6), (4.7) that

n∑
i=1

E
[∣∣∣R[ξ,ω]i

n,i (ωn,i)
∣∣∣ ] ≤ Cf

n∑
i=1

E
[
min{ω2

n,i,
1
6 |ωn,i|3}

]
= Cf

n∑
i=1

E
[
min{ω2

n,i,
1
6 |ωn,i|3} ; |ωn,i| ≥ ε

]
+ Cf

n∑
i=1

E
[
min{ω2

n,i,
1
6 |ωn,i|3} ; |ωn,i| < ε

]
≤ Cf

n∑
i=1

E
[
ω2
n,i; |ωn,i| ≥ ε

]
+ ε

6Cf

n∑
i=1

E
[
ωn,i|2

]
,

and the first term converges to zero by the Lindeberg assumption, while the second can be made arbitrarily
small by choosing ε small enough. □

4.3. Stein’s Method. Stein’s method is another powerful method to prove CLTs (there is also a
generalisation of it for Poisson convergence). Here I will follow the lecture notes of Chatterjee [C].

The key idea. Stein’s method is based on the following elementary observation:

Lemma 4.3 (Stein’s Lemma). Let Z ∼ N (0, 1) and f : R → R an absolutely continuous functions such
that E[|f ′(Z)|] < ∞. Then

E
[
Zf(Z)

]
= E

[
f ′(Z)

]
.

Proof. The proof is integration by parts. We refer to [C], Section 3. □
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Let us now describe the idea behind Stein’s method. Let W be a generic random variable and Z ∼ N (0, 1).
We want to now “how far” is the distribution of W from the normal. Motivated by weak convergence, we
would like to control:

sup
g∈D

∣∣E[g(W )
]
− E

[
g(Z)

]∣∣,
for D a certain class of functions.Weak convergence would require that D is the family of bounded
continuous functions. However, this might be more difficult to control and we might need to resort to
subclasses. We will discuss these and the metrics they are associated with later on. For the moment let us
continue with Stein’s approach: Given g, suppose we can find f ∈ D′, with D′ another class of functions,
such that

g(x)− E[g(Z)] = f ′(x)− xf(x), for all x.
Then we would also have, by setting x = W and taking expectation with respect to W :

Eg(W )− Eg(Z) = E
[
f ′(W )−Wf(W )

]
=⇒ sup

g∈D

∣∣E[g(W )
]
− E

[
g(Z)

]∣∣ ≤ sup
f∈D′

∣∣E[f ′(W )−Wf(W )
]∣∣.

If, now, W was normal, then the RHS would be 0 (in fact, both sides would be 0 but the emphasis is on
the RHS). If, now, we had a sequence (Wn)n≥1 such that such that supf∈D′

∣∣E[f ′(Wn)−Wf(Wn)
]∣∣ → 0,

then the above inequality would also imply that supg∈D
∣∣E[g(Wn)

]
− E

[
g(Z)

]∣∣ → 0, which means that
Wn would converge (in a suitable sense dictated by the family D to a normal.

Let us formalise this idea. We first need to determine distributional distances, which would be more
suitable for Stein’s method.

Distributional distances. Let µ, ν be probability distributions on R. We have the following distances:

• Kolmogorov distance. This is very much associated to weak convergence. It is defined as

dKolm.(µ, ν) := sup
{∫

fdµ−
∫

fdν : f ∈ Cb(R)
}
.

• Total Variation distance. This is defined as

TV(µ, ν) := sup
{
µ(A)− ν(A) : A ∈ B(R)

}
.

The total variation distance admits also a very useful “coupling” formula:

TV(µ, ν) := sup
{

P(X ̸= Y ) : P ∼ (X,Y ), X ∼ µ, Y ∼ ν
}
,

where the supremum is over all possible joint distribution of variables (X,Y ) on R × R such that the
marginal distribution of X is µ and the marginal distribution of Y is ν.

• Wasserstein distance. This is defined as

Wass(µ, ν) := sup
{∫

fdµ−
∫

fdν : f is 1-Lipschitz
}

= sup
{

E|X − Y | : X ∼ µ, Y ∼ ν
}
.

Exercise 17. Show that the above distances are stronger than the weak convergence. That is, if µn
D−−−→

n→∞
ν

in one of the above distances D, then µn =⇒ ν.

Exercise 18. Show that the total variation distance is too strong through the following example: Let
Xi = ±1 i.i.d. random variables and Z ∼ N (0, 1). Then TV

(
Sn√
n
, Z

)
= 1, while Sn√

n
=⇒ Z.

Stein’s method via an example. We will demonstrate Stein’s method via the following example:

Proposition 4.4. Let (Xn)n≥1 be i.i.d. variable with mean 0 and variance 1 and E[|Xi|3] < ∞. Then

Wass
( Sn√

n
,Z

)
≤ 3

n3/2

n∑
i=1

E[|Xi|3] =
3√
n
E[|X1|3].
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The above theorem is obviously not optimal in terms of condition for a CLT. However, the third moment
assumption is needed to obtain an estimate on the rate of convergence. Obtaining control on the rate
of convergence on the CLT is the content of the Berry-Esseen Theorem. The above proposition is a bit
weaker than the Berry-Esseen theorem as it expresses the rate in terms of the Wasserstein distance instead
of the Kolmogorov distance. One can also obtain the optimal rate of convergence via Stein’s method but
we will not show it here; see the discussion in [C], Section 5.

To prove Proposition 4.4 we need some lemmas:

Lemma 4.5. For any g : R → R bounded, there exists an absolutely continuous f such that

f ′(x)− xf(x) = g(x)− E
[
g(Z)

]
with

∥f∥∞ ≤ π

2
∥g − E

[
g(Z)∥∞ and ∥f ′∥∞ ≤ 2∥g − E

[
g(Z)∥∞. (4.9)

If g is Lipschitz (but not necessarily bounded), then it also holds that

∥f∥∞ ≤ ∥g′∥∞, ∥f ′∥∞ ≤
√

2

π
∥g′∥∞, ∥f ′′∥∞ ≤ 2∥g′∥∞, (4.10)

Proof. We will refer to [C], Lecture 4 for the details. Here we will just record two expression for the
solution f . The first one is by simply solving the ODE and reads as

f(x) = e
x2

2

∫ x

−∞
(g(y)− E[g(Z)]) dy.

The second is more unusual and interesting. It bears the important idea of Gaussian interpolation. The
solution reads as

f(x) = −
∫ 1

0

1

2
√
t(1− t)

E
[
Z g

(√
tx+

√
1− tZ

)]
dt.

Having these two expressions at hand the estimates of the proposition follow via standard calculus. We
refer to [C] for details. □

Let us now prove Proposition 4.4.

Proof of Proposition 4.4. Recall the Wasserstein distance. We then have

Wass
(

Sn√
n
, Z

)
= sup

{
E
[
g
(
Sn√
n

)]
− E[g(Z)] : g is 1-Lipschitz

}
By Lemma 4.5 we have that there exists an absolutely continuous f satisfying condition (4.10). Let’s
denote the class of functions which satisfy (4.10) by D′. We then have that

g
(
Sn√
n

)
− E[g(Z)] = f ′( Sn√

n

)
− Sn√

n
f
(
Sn√
n

)
and so

Wass
(

Sn√
n
, Z

)
≤ sup

{
E
[
f ′( Sn√

n

)
− Sn√

n
f
(
Sn√
n

)]
: f ∈ D′

}
. (4.11)

We will now estimate
E
[
f ′( Sn√

n

)
− Sn√

n
f
(
Sn√
n

)]
.

First we denote by
Si
n :=

∑
1≤j≤n, j ̸=i

Xj ,

and write

E
[
Sn√
n
f
(
Sn√
n

)]
=

1√
n

n∑
i=1

E
[
Xif

(
Sn√
n

)]
=

1√
n

n∑
i=1

E
[
Xi

(
f
(
Sn√
n

)
− f

( Si
n√
n

))]
,
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where in the second equality we used the independence between Xi and Si
n and the fact that E[Xi] = 0.

We will next Taylor expand ! To keep notation short we introduce

Wn :=
Sn√
n

and W i
n :=

Si
n√
n
.

We now proceed:

1√
n

n∑
i=1

E
[
Xi

(
f(Wn)− f(W i

n)
)]

=
1√
n

n∑
i=1

E
[
Xi

(
f(Wn)− f(W i

n)− (Wn −W i
n)f

′(W i
n)
)]

+
1√
n

n∑
i=1

E
[
(Wn −W i

n)f
′(W i

n)
)]

(4.12)

Let us control the first term:

1√
n

n∑
i=1

E
[
|Xi|

∣∣f(Wn)− f(W i
n)− (Wn −W i

n)f
′(W i

n)
∣∣] ≤ 1

2
√
n

n∑
i=1

E
[
|Xi| (W i

n −Wn)
2
]
∥f ′′∥∞

=
1

2n3/2

n∑
i=1

E
[
|Xi|3

]
∥f ′′∥∞

=
1

2n1/2
E
[
|X1|3

]
∥f ′′∥∞ (4.13)

The second term is:

1√
n

n∑
i=1

E
[
Xi (Wn −W i

n) f
′(W i

n)
]
=

1

n

n∑
i=1

E
[
X2

i f
′(W i

n)
]

=
1

n

n∑
i=1

E
[
X2

i

]
E
[
f ′(W i

n)
]

=
1

n

n∑
i=1

E
[
X2

i

]
E
[
f ′(W i

n)− f ′(Wn)
]
+

1

n

n∑
i=1

E
[
f ′(Wn)

]
=

1

n

n∑
i=1

E
[
X2

i

]
E
[
f ′(W i

n)− f ′(Wn)
]
+ E

[
f ′(Wn)

]
, (4.14)

where in the last we used that E
[
X2

i

]
= 1. The first in (4.14) is control by Taylor expansion as:

1

n

n∑
i=1

E
[
|f ′(W i

n)− f ′(Wn)|
]
≤ ∥f ′′∥∞

n

n∑
i=1

E
[
|W i

n −Wn|
]
=

∥f ′′∥∞
n3/2

n∑
i=1

E
[
|Xi|

]
=

∥f ′′∥∞
n1/2

(4.15)

Using (4.12), (4.14), (4.15) as well as bounds (4.10), we have that∣∣∣E[f ′( Sn√
n

)
− Sn√

n
f
(
Sn√
n

)]∣∣∣ ≤ 3

n1/2
E
[
|Xi|3

]
□

Exercise 19. (*) Consider a graph G with n vertices, where each edge is added with probability p and
omitted with probability 1− p independently of all other edges. Let Tn be the number of triangles in the
graph. Use Stein’s method to show a CLT for Tn.
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5. The Local Limit Theorem

6. Stable and infinitely divisible laws

6.1. Poisson Convergence. We will introduce the Poisson convergence. We will start by drawing a
contrast with the CLT. In short,

the CLT regime is when all random variables are small while
Poisson convergence holds holds when occasionally a random variable takes a large value.

To make this contrast more clear, let us start with the following computation:

Proposition 6.1. Let (Xn)n≥1 be i.i.d. variable with mean 0 and variance 1 and Xn,i :=
1√
N
Xi. Then

Mn := max
i≤n

|Xn,i|
P−−−→

n→∞
0.

Proof. Compute

P
(
Mn < ε

)
= P

(
|Xn,i| < ε, i = 1, ..., n

)
= P

(
|Xn,1| < ε

)n
=

(
1− P

(
|X1| ≥ ε

√
n
))n

≥
(
1− 1

nε2
E
(
X2

1 1|X1|≥ε
√
n

))n

≈ exp
( 1

ε2
E
(
X2

1 1|X1|≥ε
√
n

))
→ 1,

by dominated convergence and existence of second moments. □

In the above proposition we where in the CLT regime. On the other hand, we have:

Proposition 6.2. Let (Xn,i)1≤i≤n) independent with P(Xn,i = 0) = pn and P(Xn,i = 1) = 1− pn with
pn → 0 and npn → λ > 0 when n → ∞. Denote Mn := maxi≤nXn,i. Then P

(
Mn = 0

)
→ e−λ, as n → ∞.

Proof.

P
(
Mn = 0

)
= P

(
Xn,i = 0, i = 1, ..., n

)
= P

(
Xn,1 = 0

)n
= (1− pn)

n ≈ e−npn → e−λ

□

This raises the question what is the limiting distribution of Sn = Xn,1 + · · · +Xn,n when Xn,i take
values 0 or 1 with probabilities pn and 1− pn respectively. We have:

Proposition 6.3. Let (Xn,i)1≤i≤n) independent with P(Xn,i = 0) = pn and P(Xn,i = 1) = 1− pn with
pn → 0 and npn → λ > 0 when n → ∞. Then Sn converges weakly to a Poisson distribution with parameter
λ. That is, to a random variable X with P(X = k) = e−λ λk

k! , for k = 0, 1, ...

Proof. Compute the characteristic function:

E
[
eitSn

]
= E

[
eitXn,1

]n
=

(
1− pn + eitpn

)n
=

(
1 +

(
eit − 1

)
pn

)n ≈ enpn(e
it−1) → eλ(e

it−1),

since npn → λ as n → ∞. Taylor expanding eitλ we get that

enpn(e
it−1) = e−λ

∑
k≥0

eikt
λk

k!
=

∑
k≥0

eikt Poissλ(X = k),

that is equal to the characteristic function of a Poisson variable with parameter λ. □
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Let us now start generalising the Poisson convergence. The first step is to consider jump distribution
which can take values different that 1. In particular consider

P(Xn,1 = xj) = pn,j , with xj ̸= 0 for j = 1, ..., k,

and P(Xn,1 = 0) = 1−
k∑

j=1

pn,j . (6.1)

Then a similar computation as above shows that

E
[
eitSn

]
−−−→
n→∞

exp
(
−

k∑
j=1

(eitxj − 1)λj

)
= exp

(
−
∫
(eitx − 1)µ(dx)

)
, (6.2)

where µ(dx) =
∑k

j=1 λjδxj (dx). This will be the jump measure of the process. We also note that

exp
(
−

k∑
j=1

(eitxj − 1)λj

)
=

k∏
j=1

exp
(
− (eitxj − 1)λj

)
,

that is, the limiting distribution is a sum of independent Poisson variables with intensity λj and jump
variable xj .

6.2. Infinitely divisible laws. In this section we will classify the possible limits of sums of
independent random variables Sn = Xn,1 + · · ·+Xn,n and we will see that this are mixtures of a Gaussian
distribution and a jump process. The latter can be thought of as a Poisson jump process only that jumps
can be infinitesimally small. We will eventually show that the limiting characteristic function of Sn takes
the form

exp
(
− iµt− σ2t2

2
+

∫
R

(
e−itx − 1− itx

1 + x2
)
µ(dx)

)
. (6.3)

The first two terms correspond to the characteristic function of a Gaussian distribution. The integral part
generalises (6.2) and it corresponds to the jump process. The measure µ(dx) will be the jump measure. In
the case of (6.2) this was a pure jump measure, that is the jumps were having positive size. In the general
case the jumps could be infinitesimally small.

Law that arise as limits of sums of independent random variables have a particular structure, which
goes under the name infinitely divisible laws. Let us give the formal definition

Definition 6.4. A distribution α is called infinitely divisible if any random variable X with distribution α
can be written as a sum of n i.i.d. variables, for any n. That is, for any n, we can write X = Xn,1+· · ·+Xn,n

with (Xn,i)i=1,...,n i.i.d.

We have

Proposition 6.5. Let (Xn,i)1 ≤ i ≤ n be i.i.d. random variables for any n. Then any possible limit of
Sn = Xn,1 + ·+Xn,n is infinitely divisible. Conversely, any infinitely divisible law arises as such a limit.

Proof. Assume that X is infinitely divisible. Then for any n we can find i.i.d. random variables (Xn,i)i≤n

such that
X = Xn,1 + · · ·+Xn,n =: Sn.

So it trivially follows that Sn =⇒ X.
Conversely, assume that Sn =⇒ X. Let us show that X is infinitely divisible. Let us start by writing

S2n =
(
X2n,1 + · · ·+X2n,n

)
+
(
X2n,n+1 + · · ·+X2n,2n

)
=: Yn + Y ′

n.

Obviously Yn and Y ′
n are independent and have the same distribution. If S2n converges, we would like to

conclude that Yn and Y ′
n also converge. Let us show this.

First, let us show that Yn and Y ′
n are tight. We have, for any y > 0:

P
(
Yn > y

)2
= P

(
Yn > y, Y ′

n > y
)
≤ P

(
S2n > y

)
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Then

lim sup
n→∞

P
(
Yn > y

)2 ≤ lim sup
n→∞

P
(
S2n > y

)
= P

(
X > y

)
,

and so

lim
y→∞

lim sup
n→∞

P
(
Yn > y

)2
= lim

y→∞
P
(
X > y

)
= 0.

Similarly, we have that

lim
y→∞

lim sup
n→∞

P
(
Yn < −y

)2
= lim

y→∞
P
(
X < −y

)
= 0.

This shows that, indeed, the sequence Yn and Y ′
n is tight, which then implies that there exist subsequece

n′ such that Yn′ =⇒ Y and Y ′
n′ =⇒ Y ′. In turn this implies that X = Y + Y ′ for Y, Y ′ independent and

identically distributed.
We can next do the same procedure with Snk for any k ∈ N and conclude that for any k we can write

X = Y1 + · · ·+ Yk with Y1, ..., Yk i.i.d. That is, X is infinitely divisible. □

We will gradually move towards establishing expression (6.3) as the general form of any characteristic
function. A preparatory step is the following proposition

Proposition 6.6. If Sn := Xn,1 + · · ·+Xn,n is a sum of i.i.d. random variables and Sn =⇒ X for some
random variable X, then Xn,1 =⇒ 0.

Exercise 20. Show that this proposition is not in contradiction with Proposition 6.3.

Proof. Let ϕSn be the characteristic function of Sn, ϕX the characteristic function of X and ϕn the
characteristic function of Xn,1. Since Sn =⇒ X, we have that ϕSn(t) → ϕX(t) for all t. It turns out that
this convergence is uniform on compact sets. This needs some justification but let us accept it for the
moment. This would then imply that there exists a neighbourhood N of 0, such that

Re
(
ϕSn(t)

)
≥ δ > 0, ∀t ∈ N and n ≥ 1. (6.4)

Moreover, we have
ϕSn(t) = ϕn(t)

n,

which implies that

|ϕn(t)| = |ϕSn(t)|1/n −−−→
n→∞

1 and Arg
(
ϕn(t)

)
=

1

n
Arg

(
ϕSn(t)

)
−−−→
n→∞

0

where the limits follow from (6.4). This means that ϕn(t) −−−→
n→∞

1 for any t ∈ N , from which we conclude
that ϕn(t) −−−→

n→∞
1 for any t (by the following exercise), which implies that Xn,1 =⇒ 0. □

Exercise 21. If ϕ is a characteristic function, show that

1− Re
(
ϕ(2t)

)
≤ 4

(
1− Re

(
ϕ(t)

))
.

We will next move towards proving that the characteristic function of any infinitely divisible distribution
has the form (6.3). Let us start with the heuristics:

Heuristics: Let X be an infinitely divisible random variable. Then for any n we can find i.i.d. random
variables such that X = Xn,1 + · · ·+Xn,n. Let ϕX and ϕn be the characteristic functions of X and Xn,1,
respectively. The

log ϕX(t) = n log ϕn(t) = n log
(
1 + ϕn(t)− 1

)
= n(ϕn(t)− 1) (1 + εn(t)),
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where we use the previous proposition that ϕn(t) converges to 1 uniformly on compact sets and so εn(t) → 0
uniformly on compact sets. Continuing, we can write

log ϕX(t) =

∫
R
(eitx − 1)nαn(dx) · (1 + εn(t)) =

k∑
i=1

∫
Bi

(eitx − 1)nαn(dx) · (1 + εn(t)),

where we have chosen (Bi)
k
i=1 to be a disjoint partition of R. Suppose we can restrict to compact subset of

R and then take Bi = [xi, xi + δ) for small enough δ. Then

log ϕX(t) ≈
∑
i

(eitxi − 1)nαn(Bi) or ϕX(t) ≈ exp
(∑

i

(eitxi − 1)nαn(Bi)
)

which has the form of a superposition of independent Poisson jumps with rate λi := nαn(Bi).
But there are a few issues to address:

• nαn(R) → ∞ as n → ∞. So what is actually the meaning of the limiting distribution of nαn ?

• We said that the general infinitely divisible law can have a Gaussian component. But we don’t see
this in the above heuristics.

Spoiler with regards to the second bullet : the Gaussian component will arise as a point mass at zero (i.e.
“no jump component”) nαn =⇒ δ0.

Let us also note the following

nαn(B) = nE
[
1Xn,1∈B

]
= E

[ n∑
i=1

1Xn,i∈B
]
= E

[
♯i : Xn,i ∈ B

]
,

that is the expected number of jumps whose size is in the range of B.

To make the above heuristics rigorous we will need the following two lemmas:

Lemma 6.7. Let µn := nαn. Then for any a > 0:

lim sup
n

µn

(
[−a, a]c

)
≤ Ca

∫ 1/a

0

∣∣Re log ϕX(t)
∣∣ dt.

Lemma 6.8. Let µn := nαn. Then for any a > 0:

lim sup
n

∫ 1

−1
x2µn

(
dx

)
< ∞.

Let us assume these two Lemmas and redo the above computation rigorously. We use the notation
µn = nαn.

log ϕX(t) = lim
n→∞

∫
R
(eitx − 1)nαn(dx) · (1 + εn(t))

= lim
n→∞

∫
R
(eitx − 1− itx

1 + x2
)µn(dx) + it lim

n→∞

∫
R

x

1 + x2
µn(dx)

= lim
n→∞

∫
R
(eitx − 1− itx

1 + x2
)
1 + x2

x2
x2

1 + x2
µn(dx) + it lim

n→∞

∫
R

x

1 + x2
µn(dx)

=: lim
n→∞

an

∫
R
(eitx − 1− itx

1 + x2
)
1 + x2

x2
Gn(dx) + it lim

n→∞

∫
R

x

1 + x2
µn(dx),

where we have defined

Gn(dx) :=
1

an

x2

1 + x2
µn(dx), and an =

∫
R

x2

1 + x2
µn(dx).

By Lemmas 6.7 and 6.8 we have that supn an < ∞ and so that Gn is a well defined probability measure.
Lemma 6.7 also shows that the family (Gn)n≥ is tight and so along a subsequence n′ we have that
Gn′ =⇒ G for some probability distribution G. Moreover since (an) is a bounded real sequence, we can
assume that it converges to some a along the same subsequence (n′).
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Since (eitx − 1− itx
1+x2 )

1+x2

x2 is a bounded sequence, tightness will imply that along (n′), we have that

an

∫
R
(eitx − 1− itx

1 + x2
)
1 + x2

x2
Gn(dx) −−−→

n→∞
a

∫
R
(eitx − 1− itx

1 + x2
)
1 + x2

x2
G(dx)

Therefore,

log ϕX(t) = a

∫
R
(eitx − 1− itx

1 + x2
)
1 + x2

x2
G(dx) + it lim

n′→∞

∫
R

x

1 + x2
µn(dx)

which implies that the last term above must also have a limit, which we call itβ. This shows the
representation

log ϕX(t) = a

∫
R
(eitx − 1− itx

1 + x2
)
1 + x2

x2
G(dx) + itβ

for the characteristic function of an infinitely divisible distribution. To recover the Gaussian component, we
note that the limiting distribution G(dx) might have an atom G({0}) at 0 (this would be the continuous,
i.e. “no-jump” part of the distribution). Since the value of (eitx − 1− itx

1+x2 )
1+x2

x2 at 0 is − t2

2 we have

log ϕX(t) = iβt− aG({0})t2

2
+ a

∫
R\{0}

(eitx − 1− itx

1 + x2
)
1 + x2

x2
G(dx).

7. Large Deviations

8. Martingales

References
[B] L. Breiman, Probability, Classics in Applied Mathematics, vol. 7, Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 1992.
[C] S. Chatterjee, Stein’s methods and applications, https://souravchatterjee.su.domains/AllLectures.pdf
[D] R. Durrett, Probability: theory and examples Cambridge university press. Vol. 49, (2019).
[V] S.R.S. Varadhan, Probability theory, American Mathematical Soc., No. 7, 2001
[Z] N. Zygouras, Discrete Stochastic Analysis, https://warwick.ac.uk/fac/sci/maths/people/staff/zygouras/

research_work/discrete_stochastc_analysis2.pdf

Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
Email address: N.Zygouras@warwick.ac.uk

https://souravchatterjee.su.domains/AllLectures.pdf
https://warwick.ac.uk/fac/sci/maths/people/staff/zygouras/research_work/discrete_stochastc_analysis2.pdf
https://warwick.ac.uk/fac/sci/maths/people/staff/zygouras/research_work/discrete_stochastc_analysis2.pdf

	1. Measure Theory
	1.1. The basics.
	1.2. Dynkin's - Theorem
	1.3. Integration and modes of convergence
	1.4. Modes of Convergence.
	1.5. Integral convergence theorems
	1.6. Product spaces and measures
	1.7. Distributions and expectation
	1.8. Characteristic functions.

	2. Weak Convergence
	3. Laws of Large Numbers
	3.1. Weak Law of Large Numbers
	3.2. Strong Law of Large Numbers
	3.3. Kolmogorov's 0-1 Law

	4. Central Limit Theorem
	4.1. The method of characteristic functions
	4.2. Lindeberg Principle
	4.3. Stein's Method

	5. The Local Limit Theorem
	6. Stable and infinitely divisible laws
	6.1. Poisson Convergence
	6.2. Infinitely divisible laws

	7. Large Deviations
	8. Martingales
	References

