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Abstract. We will present the basics of symmetric functions theory, starting from the representation
theory of the symmetric group, then moving to related combinatorial structures eg Young tableaux and
Robinson-Schensted-Knuth correspondences, their relations to Schur functions and characters of the
symmetric group. Then we will move to probabilistic aspects and see how the algebraic and probabilistic
structured interplay. We will also look at fundamental generalisations of Schur functions, called Macdonald
functions. If time permits we will discuss how symmetric functions emerge as partition functions of vertex
models and the relations to Yang-Baxter idead and R-matrices.
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1. Introduction

For the moment, look at the introductions of [BG16, BP14, BP16a, Z22]. What we roughly plan to
cover in this course is:

A. Basics of representation theory

• Basics of permutations

• Definitions of representations

• Modules

• Reducibility and Mascke’s theorem

• G-hommomorphisms

• Characters and inner products

B. Combinatorial structures.

• Young tableaux and its relations to the representations of Sn.

• Gelfand-Tsetlin patterns

• Robinson-Schensted-Knuth correspondence

C. First symmetric functions

Basic symmetric functions: complete, elementary and power symmetric functions

Schur functions: combinatorial and representation formulations

D. Introduction to integrable probability

Schur measure

Integrable last passage percolation

Determinatal processes and Fredholm determinants

Role of algebraic structures in integrable probability: Cauchy identity, Pieri rule, Branching
rule

Related Markovian dynamics

E. Macdonald functions and various specialisations

F. (?) Vertex models and Yang-Baxter relations

2. Review of representation theory

2.1. Introductory setting of permutations. Here we review some basics of representation
theory with emphasis on the representation theory of the symmetric group. The main reference is the
book [S13].

The group Sn of permutations of n elements {1, 2, ..., n} is a mapping π : {1, 2, ..., n} → {1, 2, ..., n}. We
can represent a permutation π is a few ways. The first one is the two-row array(

1 2 · · · n
π(1) π(2) · · · π(n)

)
,

for example the permuation (
1 2 3 4 5 6 7 8 9 10
1 10 2 4 7 5 6 9 3 8

)
,

sends 1→ 1, 2→ 10, 3→ 2 etc. We also have the cycle representation of a permutation, say

π = (i1, ..., ik1)(ik1+1, ..., ik2) · · · (ikℓ−1
· · · ikℓ),

which means that

i2 = π(i1), i3 = π(i2), . . . , i1 = π(ik1),
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or that under π we have the sequence of mappings i1 → i2 → · · · → ik → i1 and so on for the rest of the
cycles.

Remark 2.1. Understanding the cycle structure of a (random) permutation is a very interesting problem
with a large number of very interesting results, which have relations to probability, algebraic structures,
number theory, quantum mechanics and beyond.

An important related notion, that we will meet often, is that of a partition. A partition, denoted
by λ = (λ1, λ2, ...) of an integer n is a non-increasing sequence of integers λ1 ≥ λ2 ≥ · · · such that
λ1 + λ2 + · · · = n. If λ is a partition of n, we write λ ⊢ n. Numbers λ1, λ2, ... are called the parts of the
partition.

Another related notion is that of the type of a partition of a permutation or of a partition. In particular,
for a permutation π we write

type(π) := (1m12m2 · · ·nmn),

to mean that π has mi cycles of length i, for i = 1, ..., n. Similarly, for a partition λ, type(λ) denotes that
λ has mi parts equal to i.

Related to partitions is the notions of Young diagrams, which will also play an important role in our
study. For a partition λ, a Young diagram is a left-aligned array of boxes, the first row of which has λ1
boxes, the second row λ2 boxes etc. For example:

λ = (4, 3, 1) ←→

Let us now expose some group theoretic terms.

Definition 2.2. Let G be a group. We say that elements g, h ∈ G are conjugates if g = khk−1 for
some element k ∈ G. For g ∈ G, we define the conjugacy class of g to be Kg := {h ∈ G : h =
kgk−1 for some k ∈ G}.

Remark 2.3. Understanding the number of conjugacy classes is important as it will turn out that this is
also the number of irreducible representations.

Definition 2.4. The centraliser of an element g ∈ G is the set

Zg : {h ∈ G : g = hgh−1},

or, in other words, it is the set of elements of G that commute with g.

The following proposition determines the size of the centraliser of an element π ∈ Sn. This number will
actually appear in all symmetric functions that we will expose, though via a different route...

Proposition 2.5. Let λ = (1m12m2 · · · ) be a partition with the given type and let π ∈ Sn with type λ. The
size of the centraliser of π is

zλ := |Zπ| = 1m1m1!2
m2m2! · · ·nmnmn! (2.1)

Proof. We first need to determine a feature of the cycle structure of two permutations π, σ, which are
conjugate to each other, ie π = σπσ−1. Let π have the cycle structure π = (i1 · · · ik) · · · (im · · · in). Then
for every σ ∈ Sn it holds that

σπσ−1 =
(
σ(i1) · · ·σ(ik)

)
· · ·

(
σ(im) · · ·σ(in)

)
.

This is because

σπσ−1
(
σ(i1)

)
= σπ(i1) = σ(i2),

since π(i1) = i2, and similarly for the rest of the elements in the cycle representation. In other words,
conjugation preserves the cycle structure.
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Let us, now, suppose that π = σπσ−1. In cycle representation this translates as

(i1 · · · ik) · · · (im · · · in) =
(
σ(i1) · · ·σ(ik)

)
· · ·

(
σ(im) · · ·σ(in)

)
,

and this can hold if and only if σ results to a permutation of the cycle of same length (since there are mi

cycles of length i the number of such is mi!) but also makes a cyclic permutation of elements within a
cycle. In a cycle of length i this can happen if any element of the cycle mapped k positions clockwise with
possible values for k = 1, ..., i. Since there are mi such cycles the total number of such mappings in imi .
Combining the two possible scenaria we obtain that the total number is 1m1m1! · · ·nmnmn!. □

It is known that there is a bijection between conjugacy classes of an element g ∈ G and left cosets of
the centraliser of g, which is denoted by G/Zg. Thus,

|Kg| = |G/Zg| =
|G|
|Zg|

(2.2)

and in the case of Sn this translates to

|Kπ| =
n!

1m1m1!2m2m2! · · ·nmnmn!
.

if permutation π has type (1m1 · · ·nmn).

2.2. Matrix representations.

Definition 2.6. Let G be a group. A matrix representation of G is a group homomorphism

X : G→ GLd,

i.e. from G to the set of invertible d×d matrices (in which case, we say that the degree of the representation
is d), if

• X(ε) = Id, i.e. the unit element of ε of G is mapped to the d× d identity matrix Id,

• X(gh) = X(g)X(h), for any g, h ∈ G.

Let us present some examples.

Example 1. The first example is the trivial representation, which maps

G ∋ g 1G−−→ 1 ∈ R.

Example 2. Degree 1 representations of the cyclic group. Let Cn by the cyclic group Cn := {g, g2, ..., gn =
ε}. Assume that X(g) = c ∈ C. Then by the homomorphism property, we will have that

cn = X(gn) = X(ε) = 1,

which forces c to be a root of unity. This leads to the fact that there are n representations of degree 1 of
the cyclic group.

We can, readily, also produce degree 2 representations in the form of diagonal matrices X = diag(c1, c2)

with c1, c2 two roots of unity. This can also be written in a direct product form X = X(1) ⊕X(2) where
X(1), X(2) are degree 1 representations, which will be called later on irreducible components.

It also turns out that every representation of Cn can be constructed using representations of degree 1 in
a similar fashion.

Example 3. (Sign representations of Sn). A transposition is a cycle of length two which permutes two
neighbouring elemensts, e.g. (i, i+1). Every permutation π can be written as a composition of traspositions,
e.g. π = τ1τ2 · · · τk. The sign of a permutation π = τ1τ2 · · · τk is defined as sgn(π) := (−1)k. The sign of a
permutation plays an important role in determinantal considerations that we will see later on.

The mapping X(π) := sgn(π), defines a degree 1 representation of Sn.

Exercise 1. Show that the sign of a permutation defines a representation of Sn.
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Example 4. The defining representation of Sn is a degree n representation, which is given by the
matrices X(π) = (xi,j)1≤i,j≤n with

xi,j =

{
1, if π(j) = i,

0, otherwise.

For example,

X(ε) =

 1 0 0
0 1 0
0 0 1

 , X
(
(1, 2)

)
=

 0 1 0
1 0 0
0 0 1

 , X
(
(3, 2, 1)

)
=

 0 0 1
0 1 0
1 0 0

 ,

and so on.

The matrices involved in the above matrix representation will play an important role in probabilstic
models later on.

Exercise 2. Show that the defining representation of Sn is a representation.

In a sense, representation theory tries to understand the invariant actions of a group. Towards this, it is
helpful to recast the notion of representations in the framework of G-modules, i.e. the action of a group
G on vector spaces.

Definition 2.7. (G-modules). Let V be a vector space and G a group. We say that V is a G-module if
there is a group homomorphism

ϱ : G→ GL(V ),

where GL(V ) is the space of invertible, linear forms on V (eg you can think of matrices). More precisely,
there is a notion of multiplication gv of elements of V by elements of G which we can actually better think
of as gv ≡ ϱ(g)v and which, additionally, has the properties that for any d, c ∈ C, g, h ∈ G and v ∈ V :

1. gv ∈ V ,

2. g(cv + dw) = c(gv) + d(gw),

3. (gh)v = g(hv),

4. εv = v.

Exercise 3. Show that the notions of G-modules and matrix representations are equivalent. More precisely,
if X is a matrix representation and v ∈ V , define gv := X(g)v and check that the defining properties of
the G-module coincide with the defining properties of the matrix representation X(g). In the other direction,
i.e. given a G-module on a vector space V , you can pick a basis B of V and let X(g) be the matrix of
linear transformation of g on V . Check the equivalence of the conditions.

Let us now discuss group actions. Given a finite set S = {s1, ..., sn} we can think of S as a vector
space CS = span{s1, ..., sn}, viewing elements s1, ..., sn as linearly independent objects s1, ..., sn, thus,
forming a vector space with the properties

• (addition)
∑

i cisi +
∑

i disi =
∑

i(ci + di)si,

• (scalar multiplication) c
∑

i cisi =
∑
ccisi,

• (group action) g
∑

i cisi =
∑
ci(gsi).

The above turn S and hence CS to a G-module of dimension |S|.
In the case of permutations the group action on a set S := {1, 2, ..., n} is as follows. We think of

1, 2, ..., n as linearly independent vectors 1,2, ...,n and then CS := span{1,2, ...,n} with {1,2, ...,n}
being considered as the “standard” basis and with the group action

π(c11+ c22+ · · ·+ cnn) = c1π(1) + c2π(2) = · · · cnπ(n),
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with π(i) being thought of as π(i). In the basis {1,2, ...,n} we can determine the matrices X(π) of the
action of π. For example, let π = (1, 2), then

(1, 2)1 = 2, (1, 2)2 = 1, (1, 2)3 = 3,

and, thus, in this basis the matrix representation of (1, 2) is

X
(
(1, 2)

)
=

 0 1 0
1 0 0
0 0 1

 ,

and this agrees with the standard matrix representation.

Definition 2.8. (Left regular representation). This is related to the group acting on itself. If G
is a group with elements g1, ..., gn, then we consider the vector space (actually the algebra) C[G] =
span{g1, ..., gn} generated by elements g1, ..., gn viewed as linearly independent vectors g1, ..., gn. Then the
action of G on the group algebra C[G] is expressed as

g(c1g1 + · · · cngn) = c1(gg1) + · · ·+ cn(ggn).

Example 5. (Regular representation of the cyclic group). In the case of C4, we have t C[C4] =
span{ε, g, g2, g3}. The matrix representation of g2 in the (standard) basis ε, g, g2, g3 can be computed via

g2ε = g2, g2g = g3, g2g2 = ε, g2g3 = g,

thus

X(g2) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

Example 6. (Coset representation). Let H be a subgroup of G, which we will write as H ≤ G. Let
g1, ..., gk be transversal for H, i.e. the set H := {g1H, ..., gkH} is a complete set of disjoint cosets of H
in G. We consider the module

CH := {c1g1H + · · · ckgkH : ci ∈ C}
with the group action

g(c1g1H + · · · ckgkH) = c1(gg1)H + · · · ck(βgk)H.

If H = {ε}, then all g ∈ G are transversal and so H = G and the coset representation coincides with the
left regular representation. If H = G, then H = {ε} and this gives rise to the trivial representation.

A less trivial coset representation is the following: Let G = S3 and H := {ε, (2, 3)}. Then H =
{H, (1, 2)H, (1, 3)H} (why ?). Proceeding, we have that CH = {c1H + c2(1,2)H + c3(1,3)H} and
computing the matrix of (1, 2) on the basis H, (1,2)H, (1,3)H, we obtain that

(1, 2)H = (1,2)H, (1, 2)(1,2)H = H, (1, 2)(1,3)H = (1,2,3)H = (1,3)H

(Exercise: check the last equality). So the matrix X((1, 2)) is

X((1, 2)) =

 0 1 0
1 0 0
0 0 1

 ,

which is the corresponding matrix in the defining representation.

2.3. Reducibility and Maschke’s theorem. One of the purposes of representation is to
understand the decomposition to invariant spaces under the group action. This is related to the notion of
irreducible representations. To formulate this, we start with the definition

Definition 2.9. (invariant subspaces). Let V be a G-module. A submodule W of V is a subspace
that is closed under the action of G, that is, if w ∈W then for all g ∈ G it holds that gw ∈W . W is then
called a G-invariant subspace.
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Example 7. Let G = Sn and V = C{1,2, ...,n} and w = C{1+ 2+ · · ·+ n}. W is Sn invariant as for
any π ∈ Sn:

π(1+ 2+ · · ·+ n) = π(1) + π(2) + · · ·+ π(n) = 1+ 2+ · · ·+ n.

So W if invariant. Moreover, we can ask what is the representation of the restriction of Sn on W and since
for any w ∈W we have seen that π(w) = w, it follows that X(π) = 1 ∈ R, thus, the trivial representation.
In this case (and in general in similar situations) we say that G(= Sn) acts trivially on W .

Exercise 4. Show that the sign representation of Sn can be recovered by using the submodule

W = C
[ ∑
π∈Sn

sgn(π)π
]
.

Definition 2.10. A nonzero G-module V is called reducible if it contains a non-trivial submodule W .
Otherwise, it is called irreducible.

Proposition 2.11. V is reducible iff it has a basis B in which every g ∈ G has a block matrix representation
of the form

X(g) =

(
A(g) B(g)
O C(g)

)
where A(g), C(g) are square matrices, of the same size for all g, and O is a zero matrix.

Proof. Assume that V has a nontrivial submodule W and let d > f > 0 be the dimensions of V,W , respec-
tively. Let {w1, ...,wf be a basis of W and complement this to a basis of V as {w1, ...,wf ,vf+1, ...,vd}. In
this basis, compute the matrix representation X(g) for arbitrary g ∈ G. Since W is an invariant submodule,
it follows that gwi ∈W for any i = 1, ..., f . So gwi will be written as a linear combination of {w1, ...,wf},
as identified but the square matrix A(g), and will not involve the rest of the basis vectors, in other words,
the coordinates of gwi from f + 1 to d will all be zero, hence the presence of the 0 matrix O.

In the opposite direction, assume that X(g) has the above block form. Then it suffices to consider the
subpace spanned by vectors of the standard basis {e1, ..., ef}, i.e. ei has a single 1 entry at position i.
Then this is an invariant sub-module of V , which is nontrivial if O is also nontrivial. □

2.3.1. Maschke’s theorem. We will next move towards stating Maschke’s theorem, which is, in a
sense, is a global version of the Jordan canonical decomposition from linear algebra. It says that any
representation matrix X(g) is a conjugate of a block-diagonal form A1(g)

A2(g)
. . .


where the empty spaces correspond to zero matrices and A1, A2, ... are square matrices. Equivalently, it
says that

Theorem 2.12. (Maschke’s theorem) Let G be a finite group and V a nonzero G-module. Then

V =W (1) ⊕ · · · ⊕W (m),

with W (i) irreducible G-submodules.

The equivalent matrix formulation is the following:

Theorem 2.13. Let G be a finite group and let X be a matrix representation G of dimension d > 0. Then
there is a matrix T such that for every g ∈ G, X(g) satisfies

TX(g)T−1 =


X(1)(g) 0 · · · 0

0 X(2)(g) · · · 0
...

...
. . .

...

0 0 · · · X(m)(g)


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where X(i)(g), i = 1, ...,m are irreducible representations of G.

Proof. Let V = Cd and consider the action

gv = X(g)v, for all g ∈ G and v ∈ V .

By Maschke’s theorem V decomposes into irreducibles as V =W (1) ⊕ · · · ⊕W (m). Consider, now, a basis
for V which consists of the basis vectors of each W (i), i = 1, ...,m. The matrix T which has as columns the
above vectors transforms the standard basis of Cd to the above basis and by standard linear algebra the
result follows. Because the submodule are G-invariant the representation is the same for any g ∈ G. □

We now want to ask the question: when two representations are the same ?
For this we first need to notion of G-homomorphisms.

Definition 2.14. Let V,W be G-modules. ϑ : V →W is a G-homomorphism if it is a linear transformation
such that

ϑ(gv) = gϑ(v), for all g ∈ G,v ∈ V .

In other words ϑ preserves the action of g. In the language of matrices, if T is the transfer matrix
between the basis of V and W , then the G-homomorphism property translates to

TX(g) = Y (g)T, for all g ∈ G. (2.3)

Two representations will be equivalent if, moreover, ϑ is a bijection or equivalently T is invertible, in which
case

Y (g) = TX(g)T−1, for all g ∈ G.

Remark 2.15. Relation (2.3) is often called intertwining and we will see version of this in the integrable
probability and integrable Markovian dynamics parts of the course.

Associated to ϑ are two invariant sup-modules: the kernes

ker(ϑ) := {v ∈ V : ϑ(v) = 0},

and the image

im(ϑ) := {w ∈W : w = ϑ(v), for some v ∈ V }.

The fact that ker(ϑ) is a sub-module follows easily, since by the homomorphism property of ϑ we have
that

ϑ(gv) = gϑ(v) = g0 = 0,

and so also ϑ(v) ∈ ker(ϑ). As an exercise check that im(ϑ) is also a sub-module. The invariance of the
above spaces is used in the proof of Schur’s lemma

Lemma 2.16. (Schur) Let V,W be two irreducible G-modules. If ϑ : V → W is a G-homomorphism,
then either

• ϑ is a G-isomorphism or

• ϑ ≡ 0.

Proof. Since V is irreducble and kerϑ is a submodule it must be that either ker(ϑ) = {0} or ker(ϑ) = V .
Similarly, for im(ϑ) = {0} or im(ϑ) =W . If ker(ϑ) = V or im(ϑ) = {0}, then ϑ ≡ 0 and if ker(ϑ) = {0}
and im(ϑ) =W then ϑ is a bijection. □

Translated to matrices, Schur lemma says that if X,Y are two irreducible matrix representations, which
are equivalent, that is, there exists a matrix T such that X(g)T = TY (g) for every g ∈ G, then either
T = 0 or T is invertible. In the latter case the two representations are related as X(g) = TY (g)T−1.

The following corollary of Schur’s lemma will be useful in the orthogonality property of characters that
will follow.
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Corollary 2.17. Let X be an irreducible matrix representation of a group G such that TX(g) = X(g)T
for every g ∈ G. Then T = cI for some c ∈ C and I the identity matrix.

Proof. The commutation relations can be easily extended to (T − cI)X(g) = X(g)(T − cI) for any c ∈ C.
Schur’s lemma imply that either T − cI = 0 or that T − cI is invertible, since X is irreducible. But we can
take c to be an eigenvalue of T and then it must be that T − cI = 0. □

2.4. Group characters. In this section we will define the notion of group characters, an object
that contains a lot of information about the representation of the group. Characters are just traces of the
corresponding matrix representations. More precisely,

Definition 2.18. Let X(g), g ∈ G be a matrix representation of of G. Then the character of the
representation is defined as

χ(g) := TrX(g)

where Tr stands for the trace of matrix X.

The notion of a character is well defined in the sense that if two representations X,Y are equivalent,
then they must have the same trace. This is because in such a case X(g) = TY (g)T−1 and then
χX(g) := Tr(TY (g)T−1) = Tr(Y (g)) = χY (g) by the cyclic property of the trace. We will later prove that
the converse also holds, i.e. if two representations have the same character, then they much be equivalent.

Exercise 5. Let χdef be the character corresponding to the defining representation of Sn given in Example
4. Show that for every π ∈ Sn it holds that χdef (π) equals the number of fixed points of permutation π.

The following proposition gives some more reason why characters contain a lot of information. The
proof, which is omitted is, again, a consequence of the traces.

Proposition 2.19. Let X be a matrix representation of a group G of degree d with character χ. Then
χ(ε) = d. Moreover, if K is a conjugacy class of G, then χ(g) = χ(h) for every g, h ∈ K.

We now define an inner product:

Definition 2.20. Let χ, ψ be two functions on a group G. We define the inner product ⟨·, ·⟩

⟨χ, ψ⟩ := 1

|G|
∑
g∈G

χ(g)ψ(g).

It turns out (explain) that when χ, ψ are characters, then there is an equivalent formulation of the
above inner product, taking the form

⟨χ, ψ⟩ := 1

|G|
∑
g∈G

χ(g)ψ(g−1).

The main theorem is that irreducible characters are orthogonal with respect to this inner product. This
orthogonality is closely related to certain fundamental identities that symmetric functions satisfy (called
Cauchy identities) and which is one of the pillars of Integrable Probability.

Theorem 2.21. Let χ, ψ irreducible characters of a group G. Then

⟨χ, ψ⟩ = δχ,ψ.

Proof. The proof makes use of Schur’s lemma.
Consider an abritrary d × f matrix X = (xi,j)d,f , where xi,j are viewed as arbitrary variables (in-

determinates). If A,B are matrix representations corresponding to characters χ, ψ, then consider the
matrix

Y =
1

|G|
∑
g∈G

A(g)XB(g−1).
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We will check that for every h ∈ G it holds that A(h)Y = Y B(h). Indeed,

A(h)Y B(h)−1 =
1

|G|
∑
g∈G

A(h)A(g)XB(g−1)B(h−1)

=
1

|G|
∑
g∈G

A(hg)XB(g−1h(−1))

=
1

|G|
∑

g̃=hg∈G
A(g̃)XB(g̃−1)

= Y.

Therefore, by Corrollary 2.17 we have the triviality of Y , i.e.

Y =

{
0, if A,B are inequivalent,
cId, if A,B are equivalent.

(2.4)

Let us now translate what this means. First, consider the case where A,B are inequivalent, i.e. χ ̸= ψ.
Then we can rewrite the first branch of the above equality as

Yi,j =
1

|G|
∑
k,ℓ

∑
g∈G

ai,k(g)xk,ℓ bℓ,j(g
−1) = 0,

and since (xk,ℓ) are arbitrary and the above equality holds for all indeterminates xk,ℓ, it means that all
their coeffocients must be 0, which translates to

1

|G|
∑
g∈G

ai,k(g)bℓ,j(g
−1) = 0.

Viewing ai,k(·), bℓ,j(·) as functions on G the above is the expression of the inner product, thus,

⟨ai,k, bℓ,j⟩ = 0, for all i, k, ℓ, j.

In particular,

0 =
∑
i

∑
j

⟨ai,i, bj,j⟩ = ⟨
∑
i

ai,i,
∑
j

bj,j⟩ = ⟨TrA,TrB⟩ = ⟨χ, ψ⟩,

which shows the orthogonality of inequivalent characters.
It remains to show that ⟨χ, χ⟩ = 1. This follows by similar considerations: In the above formulation, let

χ = ψ, i.e. the corresponding matrix representations A,B are equivalent. Without loss of generality we
can take A = B. By (2.4) we have that

Y :=
1

|G|
∑
g∈G

A(g)XA(g−1) = cId,

and taking traces it follows that

cd =
1

|G|
∑
g∈G

Tr
(
A(g)XA(g−1)

)
=

1

|G|
∑
g∈G

TrX = TrX

since X does not depend on G. The two above relations give that yi,i = 1
dTr(X) or that

1

|G|
∑
k,ℓ

∑
g∈G

ai,k(g)xk,ℓaℓ,i(g
−1) =

1

d
(x1,1 + · · ·+ xd,d),

which, after equating the coefficient of the indeterminates xi,j , gives

⟨ai,k, aℓ,i⟩ :=
1

|G|
∑
g∈G

ai,k(g) aℓ,i(g
−1) =

1

d
δk,ℓ,
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and translating to a character relation:

⟨χ, χ⟩ = ⟨TrA,TrA⟩ =
∑

1≤i,j≤d
⟨aii, ajj⟩ =

d∑
i=1

⟨aii, aii⟩ =
d∑
i=1

1

d
= 1.

This completes the proof. □

2.4.1. Prelude to symmetric functions. This is now a good point to stop the general theory of
representations and move to symmetric functions. The link is that the characters of the symmetric group,
which have a nice expression in terms of Young tableaux. One thing that would have been nice to do but,
unfortunately, won’t have time is to show that Young diagrams classify the irreducible representations of
the symmetric group. Young diagrams are left justified array of boxes, indexed by a partition λ and filled
with numbers, eg

λ = (4, 3, 1) ←→
1 1 2 2 3
2 2 3
3

The number of times αi that the integer i appears in the Young diagram is called the type of the Young
diagram and it is related to the type of the associated permutation.

We will (probably) see that the character of a permutation λ with type α can be expressed in terms of
a variation of the Young diagram, called border-strip tabaleaux defined by

• every row and column has integer numbers that are weakly increasing

• integer i appears αi times

• the set of boxes filled with i forms a border strip, ie there is no 2× 2 block of boxed occupied by
the same number. For example:

1 1 1 1 5 5 5
1 2 2 4 5
3 3 4 4 5
3 4 4

Then the characters of the symmetric group admit the representation:

χλ(α) =
∑
T

(−1)height(T ) (2.5)

where the sum is over all border-strip tableaux and the height height(T ) of such is defined as

height(T ) :=
∑
i

height(Bi), Bi is a border strip of numbers i,

height(Bi) := {the vertical length of strip Bi} − 1.

The characters of the symmetric group are also related to Schur functions, eg they are linked via the
relation

sµ pα =
∑
λ

χλ/µ(α)sµ

where pα are the power symmetric polynomials, the sum is over partitions λ and λ/µ are skew partitions.
But now it is time to move on to symmetric functions and explain all these terms...

3. Symmetric functions

Symmetric functions have many incarnations: they are related to characters, they can represent solutions
to PDE problems, can arise as generating functions of combinatorial problems and many more. An
important point is to be able to describe bases in the space of symmetric functions and how you can you
change in between bases.
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3.1. Preparation. Let us start by reminding some things about partitions and also introduce some
related quantities. λ = (λ1, λ2, ...) is a sequence of nonnegative integers (called “parts”), ordered in
decreasing order. We say that λ ⊢ is a partition of n is n = λ1 + λ2 + · · · . Partitions can be represented
by Young diagrams as

λ = (4, 3, 1) ≡ .

Given a partition λ we also define the conjugate partition, denoted by λ′ as the partition we get by the
transpose Young diagram. For example if λ = (4, 3, 1) then λ′ = (3, 2, 2, 1)

if λ = (4, 3, 1)←→ then λ′ = (3, 2, 2, 1)←→

Recall that we can also represent a partition in terms of its type λ = (1m12m2 · · · ), where mi it number of
parts of λ which are equal to i. Finally, we denote the number of nonzero parts of a partition λ by ℓ(λ)
and we call it the length of the partition. The length of a partition coincides with the number of rows
in a Young diagram.

Exercise 6. Given a partition λ with type (m1,m2, ...), express the type of the partition λ′ in terms λ.

We can put two partial orderings on partitions, which are useful when running induction arguments.
The first one is called the containment ordering: If µ, λ partitions, then we define the ordering µ ⊂ λ,

if µi ≤ λi for all i. In terms of Young diagrams, this is that the µ Young diagram is contained in the λ
diagram.

The second ordering is the dominance ordering: We say that µ ≤ λ in dominance order if

µ1 + · · ·+ µi ≤ λ1 + · · ·+ λi, for every i (3.1)

3.2. Basic symmetric functions - definitions. Let us start by introducing four families of
basic symmetric functions: the monomial, elementary, homogeneous and power sums. All these form a
basis of the ring of symmetric functions. We will discuss this fact as well as how to transfer between these
basis and a number of fundamental identities involving these. The type of identities will be a preparation
for the more fundamental identities (eg Cauchy identity) that will follow.

The most basic symmetric functions are the monomial symmetric functions. They are defined as
follows: For a partition λ = (λ1, λ2, ...), introduce the monomial xλ = xλ11 x

λ2
2 · · · . Then the monomial

symmetric function mλ, indexed by λ, is defined as the sum of all distinct monomials obtained from xλ by
permuting the indeterminates x1, x2, .... More precisely, when we restrict to n indeterminates, x1, x2, ..., xn,
we have

mλ(x1, ..., xn) :=
∑
σ∈Sn

σ(xλ11 x
λ2
2 · · ·x

λn
n ) =

∑
σ∈Sn

xλ1σ(1)x
λ2
σ(2) · · ·x

λn
σ(n)

For example m(2,1,1)(x1, x2, ...) =
∑

i ̸=j ̸=k x
2
ixjxk. The definition can be extended to an infinite number of

indeterminates as

mλ(x1, x2..., ) :=
∑
σ∈S∞

σ(xλ11 x
λ2
2 · · · =

∑
σ∈S∞

xλ1σ(1)x
λ2
σ(2) · · ·

When λ = (n), that is, the partition has only one part of length r, then m(n) becomes the power
symmetric function

pn(x1, x2, ...) =
∑
i

xni . (3.2)

The definition can be extended to partitions λ as

pλ(x1, x2, ...) =
∏
i≥1

pλi(x1, x2, ...).
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The elementary symmetric functions can be deduced from the monomial ones, if λ = (1n), i.e. the
partition has n parts of size 1. The corresponding elementary symmetric function is

en(x1, x2, ...) =
∑

i1<i2<···<in

xi1xi2 · · ·xir . (3.3)

Path representations of symmetric functions will be very important. So let us start by giving the path
representation of the elementary function of n variables en. This looks as

∑
π

x1

x2

xm

where m ≥ n and the sum is over all down and diagonally-right paths π from the upper left corner to the
down right. Paths are given weights 1 at each diagonal step and xi at each vertical step at level i (from the
top). The total weight of a path is the product of the individual steps. We remark that we drew the paths
going downwards but we could equivalently have drawn the picture flipped, in which case paths would
be going upwards. Paths of the above type are often called “strict-weak” paths. Elementary symmetric
functions indexed by more general partition λ = (λ1, λ2, ...) is defined as

eλ = eλ1eλ2 · · · =
∏
i≥1

eλi . (3.4)

The complete homogeneous symmetric functions of degree n are the sum of all monomials of
degree r, that is

hn(x1, x2, ...) =
∑
λ⊢n

mλ(x1, x2, ...) =
∑

i1≤i2≤···≤in

xi1xi2 · · ·xin , (3.5)

The graph representation is as follows:

hn(x1, x2, ...) =
∑
π

x1
x2

... (3.6)

where the sum is over all paths that go up and right and make n horizontal steps. Every vertical step is
given weight 1 and every horizontal step at level i is given weight xi. As before, for a parition λ = (λ1, λ2, ...)
we define

hλ(x1, x2, ...) =
∏
i≥1

hλi(x1, x2, ...).

3.3. Basic symmetric functions - first properties and identities.

Proposition 3.1. If λ is a partition of n, then

eλ =
∑
µ⊢n

Mλµmµ, (3.7)

where Mλµ is the number of infinite matrices (ai,j)i,j≥1 with 0, 1 entries, such that
∑

j≥1 ai,j = λi and∑
i≥1 ai,j = µj
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Proof. If λ = λ1 ≥ λ2 ≥ · · · , we have that

eλ =
∏
i≥1

eλi =
∏
i≥1

∑
Si⊂{1,2,..},|Si|=λi

∏
j≥1

x
1j∈Si
j

=
∑

Si⊂{1,2,..},
|Si|=λi , i≥1

∏
i≥1

∏
j≥1

x
1j∈Si
j

=
∑

Si⊂{1,2,..},
|Si|=λi , i≥1

∏
j≥1

x
∑

i≥1 1j∈Si

j

The result follows by setting ai,j := 1j∈Si and the change of variables αj :=
∑

i≥1 1j∈Si and noting that∑
i

ai,j =
∑
j

1j∈Si = |Si| = λi,

therefore

eλ =
∑

α1,α2,...∈N

∑
A=(ai,j)i,j≥1

1{row(A)=λ,col(A)=α}
∏
i≥1

xαi
i

where for a matrix A we define row(A)i :=
∑

j ai,j and col(A)j :=
∑

i ai,j . Finally, rewrite the above sum
in terms of partitions µ by rearranging the α1, α2, ... in decreasing order and this will yield (3.7). □

Remark 3.2. Relation (3.7) gives the way to change between the basis (mλ) and the basis (eλ) (it will
turn out that the latter is also a basis for symmetric functions) and the matrix Mλµ is called the transition
matrix between the bases.

Exercise 7. Show that the transition matrix (Mλµ)λ,µ is symmetric.

Exercise 8. The transfer matrix (Mλµ) has the following combinatorial interpretation: Entry Mλµ is the
number of ways to place n balls with λi of them labeled i, for i ≥ 1, into boxes 1, 2, 3, ... such that no box
contains two balls with the same label and box i contains exactly µi balls.

The next proposition is a baby Cauchy identity.

Proposition 3.3. Let (xi)i≥1 and (yi)i≥1 be indeterminates. Then∏
i,j

(1 + xiyj) =
∑
λ

mλ(x)eλ(y) (3.8)

=
∑
λ,µ

Mλµmλ(x)mµ(y). (3.9)

where the sum is over all partitions λ, µ.

Proof. Here we can take a first glimpse of the power of probabilistic thinking. Let us define the independent
“random variables”

ai,j =

{
1, with weight 1,

0, with weight 1,

note that to really talk about probabilities we should be normalising the weights to 1
2 ,

1
2 but because the

product in the left-hand side of (3.8) is infinite we want to avoid normalisations of the sort 2∞, so we just
talk about weights instead of probabilities. In this formulation, in any way, we can define the “expectation”
(total weight) of E[(xiyi)ai,j ] := 1 + xiyj and then we can rewrite the left-hand side of (3.8) as∏

i,j

(1 + xiyj) =
∏
i,j

E[(xiyj)
ai,j ] = E

[ ∏
i,j

(xiyj)
ai,j

]
,
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where in the second equality we used the independence (or in other words Fubini). We can proceed by
writing

∏
i,j

(1 + xiyj) = E
[ ∏

i

x
∑

j ai,j
i

∏
j

y
∑

i ai,j
j

]
= E

[ ∏
i

x
row(A)i
i

∏
j

y
col(A)j
j

]
□

where, again, for a matrix A we define row(A)i :=
∑

j ai,j and col(A)j :=
∑

i ai,j . Now, writing out the
“expectation” in terms of sums we have∏

i,j

(1 + xiyj) =
∑

λ1,λ2,...
µ1,µ2,...

∑
A : {0, 1} matrices

row(A)i=λi , col(A)j :=µj

∏
i

xλii
∏
j

y
µj
j .

=
∑

λ1,λ2,...
µ1,µ2,...

Mλµmλ(x)mµ(y)

=
∑
λ

mλ(x)eλ(y),

where in the penultimate equality we used the definition of Mλµ and in the last we used Proposition 3.1.

Proposition 3.4. Let λ, µ ⊢ n. Then Mλ,µ = 0 unless µ ≤ λ′, where λ′ is the conjugate partition of λ
and ≤ is the dominance order as in (3.1). Recall the definition of Mλ,µ from Proposition 3.1. In particular,
this implies that the family of elementary symmetric functions is a basis.

Proof. Recall from Proposition 3.1 that Mλ,µ is the number of {0, 1} matrices with row sums row(A) = λ
and column sums col(A) = µ. Assume that Mλ,µ ̸= 0. Then for every {0, 1} matrix A with row sums
row(A) = λ and column sums col(A) = µ, consider the matrix A′, which has all 1′s in every row aligned
to the left and row i has λi entries equal to 1 for example

A =


0 1 1 0 1 0 1 0
1 0 1 1 0 0 0 0
1 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0

 then A′ =


1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


For every i the numbers of 1′s in the first i columns of A′ is larger or equal to the number of 1′s in the
first i columns of A. This implies that

i∑
j=1

col(A′)j ≥
i∑

j=1

col(A)j . (3.10)

Now, col(A)j = µj and col(A′)j = λ′j , The latter is because the 1′s in A′ form a Young diagram of shape
λ1, λ2, ... and conjugating this Young diagram we get the Young diagram with shape λ′1, λ′2, ... formed by
the 1′s in the columns of A′. Relations (3.10) imply that µ ≤ λ′ in the dominance order and so Mλ,µ = 0
unless µ ≤ λ′. This means that the matrix (Mλ,µ)λ,µ is triangular. Moreover, Mλ,λ′ = 1 since A′ is the
only matrix A with row(A) = λ and col(A′) = λ′. These two facts imply that (eλ)λ form a basis since
(mλ)λ is a basis and the transfer matrix Mλ,µ is invertible. □
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The triangularity of the transfer matrix Mλµ can be seen the following table:

e1 = m1,

e11 = m2 + 2m11

e2 = m11

e111 = m3 + 3m21 + 6m111

e21 = m21 + 3m111

e3 = m111

The complete homogeneous functions satisfy the analogous to Propositions 3.1 and 3.3 properties:

Proposition 3.5. Let λ ⊢ n. Then

hλ =
∑
µ⊢n

Nλµmµ

where Nλµ is the number of {0, 1, 2, ...} matrices with row(A) = λ and col(A) = µ. The transfer matrix
Nλµ is symmetric. Moreover, the following identity holds∏

i,j

(1− xiyj)−1 =
∑
λ,µ

Nλµmλ(x)mµ(y)

=
∑
λ

mλ(x)hλ(y).

Exercise 9. Prove proposition 3.5.

Proving that (hλ) is a basis is a bit more tricky as the transfer matrix Nλµ is not triangular. For example,
we have

h1 = m1,

h11 = 2m11 +m2

h2 = m11 +m2

h111 = 6m111 + 3m21 +m3

h21 = 3m111 + 2m21 +m3

h3 = m111 +m21 +m3.

To prove the fact that (hλ) form also a basis, we introduce a useful involution, which we denote by ω.

Definition 3.6. Define the homomorphism ω : Λ→ Λ ( with Λ the ring of symmetric functions, so in this
case a homomorphism is also an endomorphism), so that for every n we have the mapping ω(en) = hn.

By the fact that ω is a homomorphism, we have that ω(eλ) = hλ. We will show that ω is also an
involution, i.e. ω2 = 1, so that it is invertible and also ω(hλ) = eλ.

Proposition 3.7. The endomorphism ω is an involution.

Proof. Consider the generating functions

H(t) :=
∑
n

hn(x)t
n, and E(t) :=

∑
n

en(x)t
n, (3.11)

where remember that x = (x1, x2, ...). It turns out that

H(t) =
∏
n

(1− xnt)−1, and E(t) =
∏
n

(1 + xnt), (3.12)
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from which it follows that H(t)E(−t) = 1. From this and looking at the coefficients of tn, we derive that

0 =
n∑
i=0

(−1)ieihn−i, for n ≥ 1.

Apply ω on this equation to obtain

0 =

n∑
i=0

(−1)iω(ei hn−i) =
n∑
i=0

(−1)iω(ei)ω(hn−i) =
n∑
i=0

(−1)ihi ω(hn−i) = (−1)n
n∑
i=0

(−1)iω(hi)hn−i

where the last equality is a simple change of variables in the summation.
An easy argument (explain why !) is that ui is a sequence of symmetric functions such that

∑n
i=0(−1)iuihn−i =

0 for all n ≥ 1 and with u0 = 1, then it must be that ui = ei. From this and the last sequence of equalities, it
follows that ω(hi) = ei. Therefore ω2(ei) = ω(hi) = ei and the involution follows from the homomorphism
property and the fact that eλ form a basis. □

We can now show

Proposition 3.8. (hλ) forms a basis of symmetric functions.

Proof. This follows from the fact that (eλ) is a basis and also that ω(eλ) = hλ and that ω is invertible. □

We will close this section with a few identities of the power symmetric functions. The first one, whose
proof we omit is

Proposition 3.9. The following identity between mλ and pλ holds:

pλ =
∑
µ⊢n

Rλµmµ,

where Rλµ is equal to the number of ordered partitions π = (B1, ..., Bℓ(µ)) of the set {1, ..., ℓ(µ)}, where
ℓ(µ) is the number of (nonzero) parts of partition µ† with

µj =
∑
i∈Bj

λi, for 1 ≤ j ≤ k.

The next proposition describes Cauchy-type identities for the power symmetric polynomials. The number

zλ =
∏
i

imimi!, for a partition λ = (1m12m2 · · ·nmn),

which we met at the beginning of the notes in the decomposition of a permutation cycle, will appear. We
remind that mi is the number of parts of λ of length i. The parameter

ελ := (−1)m2+m4+···, (3.13)

will also appear.

Proposition 3.10. The following identities hold:∏
i,j

(1− xiyj)−1 = exp
{∑
n≥1

1
npn(x)pn(y)

}
=

∑
λ

z−1
λ pλ(x)pλ(y), (3.14)

and ∏
i,j

(1 + xiyj) = exp
{∑
n≥1

(−1)n−1

n pn(x)pn(y)
}
=

∑
λ

z−1
λ ελ pλ(x)pλ(y), (3.15)

†note that π is a partition of a set and its “parts” are subsets of the set and not to be confused with the notion of partition
λ, µ
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Proof. We prove (3.14). The proof of the second equality will be an exercise. Let us first prove the first
equality in (3.14). This is essentially Taylor expansion:

log
∏
i,j

(1− xiyj)−1 =
∑
i,j

log(1− xiyj)−1

=
∑
i,j

∑
n≥1

1

n
xni y

n
j

=
∑
n≥1

1

n

(∑
i

xni

)(∑
j

ynj

)
=

∑
n≥1

1

n
pn(x)pn(y).

The proof of the second identity in (3.14) will take us on a detour on generating functions calculus, which
we present in the following sequence of propositions. The proof of (3.14) will finally be presented after
Proposition 3.14. □

Exercise 10. Prove (3.15). Prove also that ελ = (−1)n−ℓ(λ), where ℓ(λ) is the number of nonzero parts
of partition λ.

The following discussion summarises the discussion of exponential generating function in Chapter
5 of [S23]. First, we need the definition of exponential generating function:

Definition 3.11. For f : N→ R, we define

Ef (z) =
∑
n≥0

f(n)
zn

n!
.

Proposition 3.12. Let f1, f2, ... : N→ R and define the function hk : N→ R by

hk(n) :=
∑

(T1,...Tk)∈Πord(n)

f1(|T1|) · · · fk(|Tk|),

where the sum is over all ordered partitions Πord(n) of {1, ..., n} into k ordered k-tuples of sets (T1, ..., Tk)
with T1 ∪ · · · ∪ Tk = {1, ..., n} and Ti ∩ Tj = ∅. Then

Ehk(z) =
k∏
i=1

Efi(z).

Proof. The number of parititions T1, ...Tk of {1, ..., n} with |Tj | = tj , for j = 1, ..., k, with t1+ · · ·+ tk = n

is n!
t1!···tk! , thus

hk(n) =
∑
t1,...,tk

t1+·+tk=n

n!

t1! · · · tk!
f1(t1) · · · fk(tk),



SYMMETRIC FUNCTIONS AND INTEGRABLE PROBABILITY 19

and

Ehk(z) =
∑
n

hk(n)
zn

n!

=
∑
n

zn

n!

∑
t1,...,tk

t1+·+tk=n

n!

t1! · · · tk!
f1(t1) · · · fk(tk)

=
∑
n

∑
t1,...,tk

t1+·+tk=n

1

t1! · · · tk!

k∏
i=1

ztifi(ti)

=
∑
t1,...,tk

∑
n

1{t1+·+tk=n}

k∏
i=1

zti

ti!
fi(ti)

=
∑
t1,...,tk

k∏
i=1

zti

ti!
fi(ti)

=
k∏
i=1

(∑
ti

fi(ti)
zti

ti!

)

=

k∏
i=1

Efi(z).

□

Proposition 3.13. If f, g : N→ R and g(0) = 1, define the function

h(n) :=
∑
k

∑
{B1,...,Bk}∈Π(n)

f(|B1|) · · · f(|Bk|) g(k), if n > 0 and h(0) := 1,

where the sum is over all partitions Π(n) of {1, ..., n}, in k disjoints sets B1, ..., Bk with B1 ∪ · · · ∪Bk = n
and Bi ∩Bj = ∅. Then

Eh(z) = Eg(Ef (z)).

Proof. The difference between the statement of this proposition and that of proposition 3.12 is that in
this case we considered unordered k-tuples of partitions {B1, ..., Bk}, while in (3.12) all k! permutations of
B1, ..., Bk are considered different. So∑

{B1,...,Bk}

f(|B1|) · · · f(|Bk|) =
1

k!

∑
(B1,...,Bk)

f(|B1|) · · · f(|Bk|),

and hence

h(n) =
∑
k

g(k)
∑

{B1,...,Bk}

f(|B1|) · · · f(|Bk|) =
∑
k

g(k)

k!

∑
(B1,...,Bk)

f(|B1|) · · · f(|Bk|),

Then

Eh(z) =
∑
n

h(n)
zn

n!

=
∑
n

h(n)
zn

n!

∑
k

g(k)

k!

∑
(B1,...,Bk)∈Πord(n)

f(|B1|) · · · f(|Bk|)

=
∑
k

g(k)

k!

∑
n

h(n)
zn

n!

∑
(B1,...,Bk)∈Πord(n)

f(|B1|) · · · f(|Bk|),
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but by Proposition 3.12 the inner sum is just Ex(x)k and so

Eh(z) =
∑
k

g(k)

k!

(
Ef (z)

)k
= Eg

(
Ef (z)

)
,

which completes the proof. □

Proposition 3.14. Let f : N→ R and define the function

h(n) :=
∑
k

∑
π∈Sn : π=(c1,...,ck)

f(|c1|) · · · f(|ck|) g(k), for n ≥ 1 and h(0) = 1,

where c1, ..., ck are the cycles in permutation π and |c| denotes the length of cycle c. Then

Eh(z) = Eg

(∑
n≥1

f(n)
zn

n

)
.

If g = 1, then the above takes the form exp
(∑

n≥1 f(n)
zn

n

)
.

Proof. A set {ci1 , ..., cik} gives rise to (k − 1)! cycles (because there are k! permutations but each one of
the k numbers can be the starting point). For a cycle ci, let us denote by {ci} the unordered set of the
elements of the cycle. Then we have

h(n) =
∑
k

∑
{c1},...,{ck}

(
|c1| − 1

)
! f(|c1|) · · · (|ck| − 1)! f(|ck|) g(k),

and setting f̃(r) := (r − 1)!f(r), the above formula is in the setting of Proposition 3.13 and, thus,

Eh(z) = Eg

(∑
n≥1

(n− 1)!f(n)
zn

n!

)
= Eg

(∑
n≥1

f(n)
zn

n

)
□

We are now ready to complete the proof of the second identity in (3.14):

Proof of (3.14). Consider

h(n) :=
∑
k

∑
π∈Sn : π=(c1,...,ck)

f(|c1|) · · · f(|ck|) for n ≥ 1 and h(0) = 1,

for a function f to be chosen. We can change variables in the sum on the right-hand side and instead of
summing over permutations π ∈ Sn and then over all possible cycles in this π, sum over all partitions
λ ⊢ n and then over permutations π ∈ Sn with cycle type λ. In other words,∑

k

∑
π∈Sn : π=(c1,...,ck)

f(|c1|) · · · f(|ck|) =
∑
λ⊢n

∑
π∈Sn

π has cycle type λ = (λ1, λ2, ...)

∏
i

f(λi)

but by Proposition 2.5 and equation (2.2) we have that the number of permutations π ∈ Sn with a given
cycle type λ is the number of conjugacy classes of Sn, thus∑

π∈Sn
π has cycle type λ = (λ1, λ2, ...)

1 = |Kλ| =
n!

zλ
,

with zλ defined in (2.1) and so∑
λ⊢n

∑
π∈Sn

π has cycle type λ = (λ1, λ2, ...)

∏
i

f(λi) =
∑
λ⊢n

n!

zλ

∏
i≥1

f(λi).
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Given this, we can proceed by ∑
n≥1

h(n)

n!
=

∑
n≥1

1

n!

∑
λ⊢n

n!

zλ

∏
i≥1

f(λi)

=
∑
n≥1

∑
λ1+λ2+···=n

1

zλ

∏
i≥1

f(λi)

=
∑
λ

1

zλ

∏
i≥1

f(λi).

If we now set f(n) := pn(x)pn(y), then the above writes as∑
λ

1

zλ

∏
i≥1

pλi(x)pλi(y) =
∑
λ

1

zλ
pλ(x)pλ(y),

where the last equality comes from the definition of pλ(x) :=
∏
i≥1 pλi(x). This completes the proof of

(3.14). □

Exercise 11. Complete the following alternative proof of the second relation of (3.14): First, write

exp
(∑
n≥1

1

n
pn(x)pn(y)

)
=

∏
n≥1

exp
( 1

n
pn(x)pn(y)

)
,

and then use the Taylor expansion of the exponential: ex =
∑

n≥0
xn

n! .

3.4. Scalar products and dualities to Cauchy type identities. The goal of this section
is to show that Cauchy-type identities like that in (3.14) are dual to orthogonality of the symmetric
functions involved in the Cauchy identity. This fact has been at the heart of the introduction of a
fundamental class of symmetric functions, which are called Macdonald functions and which interpolate
between several other important symmetric functions.

Let us start by defining an inner product on symmetric functions. An inner product is a bilinear form
⟨·, ·⟩ and so to define an inner product it suffices to define it on the basis elements. So we define

Definition 3.15. Define the inner product ⟨·, ·⟩ : Λ× Λ→ R by the requirement that

⟨mλ, hµ⟩ = δλµ, for all partitions λ, µ,

where δ is the Kronecker delta.
If (ui) and (vj) are two sets of bases for the ring of symmetric functions, we say that they are dual if

⟨ui, vj⟩ = δij.

Exercise 12. Show that if f, g are homogenous symmetric functions then ⟨f, g⟩ = 0 unless f, g have the
same degree.

Proposition 3.16. The inner product defined above is symmetric, i.e. ⟨f, g⟩ = ⟨g, f⟩ .

Proof. It suffices to check the symmetry when f = hλ and g = hµ for λ, µ partitions (why ?). Towards
this we will use Proposition 3.5:

⟨hλ, hµ⟩ =
〈∑

ν

Nλνmν , hµ
〉
=

∑
ν

Nλν

〈
mν , hµ

〉
= Nλµ,

by the definition of the inner product. The same computation shows that ⟨hµ, hλ⟩ = Nµλ and the result
follows from the symmetry of Nλµ from Proposition 3.5. □

The main result of this section is the following:
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Proposition 3.17. Let {uλ} and {vλ} be bases of Λ such that for λ ⊢ n , we have that uλ, vλ ∈ Λn, the
space of symmetric functions in n variables. {uλ}, {vλ} are dual bases, i.e. ⟨uλ, vµ⟩ = δλµ if and only if∑

λ

uλ(x)vλ(y) =
∏
i,j

(1− xiyj)−1 (3.16)

Proof. {uλ} and {vλ} being bases means that we can decompose mλ =
∑

ϱ ζλϱuϱ and hµ =
∑

ν ηµνvν .
Recalling the definition of the inner product we have

δλµ = ⟨mλ, hµ⟩ =
∑
ϱ,ν

ζλϱ ⟨uϱ, vν⟩ ηµν .

Considering the matrices ζ := (ζλϱ) and η := (ηµν) and A :=
(
⟨uϱ, vν⟩

)
ϱν

we can write the above as

Id = ζAηT.

{uλ} and {vλ} being dual bases means is equivalent to A = Id, which combined with the identity Id = ζAηT

implies that

Id = ζηT ⇐⇒ Id = ζTη ⇐⇒ Id =
∑
λ

ζλϱηλν . (3.17)

Let’s keep this in mind for the moment and make now use of the identity∏
i,j

(1− xiyj)−1 =
∑
λ

mλ(x)hµ(y)

=
∑
λ

(∑
ϱ

ζλϱuϱ(x)
)(∑

ν

ηλνvµ(y)
)

=
∑
ϱ,ν

(∑
λ

ζλϱηλν

)
uϱ(x)vν(y)

=
∑
ϱ,ν

δϱν uϱ(x)vν(y)

=
∑
ϱ

uϱ(x)vϱ(y).

On the other hand, assume that ∏
i,j

(1− xiyj)−1 =
∑
ϱ

uϱ(x)vϱ(y),

and compare it with ∏
i,j

(1− xiyj)−1 =
∑
λ

mλ(x)hµ(y)

=
∑
λ

(∑
ϱ

ζλϱuϱ(x)
)(∑

ν

ηλνvµ(y)
)

=
∑
ϱ,ν

(∑
λ

ζλϱηλν

)
uϱ(x)vν(y)

which imply by the fact that that {uλ} and {vλ} are bases that∑
λ

ζλϱηλν = δϱν ⇐⇒ ζTη = Id⇐⇒ ζηT = Id

but since also Id = ζAηT and ζ, η are change of bases matrices, i.e. invertible, we have that A = Id⇐⇒
⟨uϱ, vν⟩ = δϱν . □
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3.5. Schur functions. We will mostly restrict attention when Schur functions involve only a finite
number of indeterminates, in which case we talk about Schur polynomials. We present three different
ways to define Schur polynomials, each one of which has its own benefits and uses in this text.

The first one, which was the original definition given by Schur, is via a determinant. In particular, for a
partition λ = (λ1, ..., λn), with n parts,

sλ(x1, ..., xn) :=
det

(
x
λj+n−j
i

)
1≤i,j≤n

det
(
xn−ji

)
1≤i,j≤n

. (3.18)

This determinantal expression is crucial in expressing the law of observables of integrable models in terms
of determinants and enabling the asymptotic analysis.

The second definition is combinatorial. In this fashion, Schur functions appear as generating functions
of seminstandard Young tableaux. Let us first define the notion of a seminstandard Young tableaux.
These are Young diagrams filled with integer numbers {1, 2, 3, ...} so the numbers in each row are weakly
increasing along the rows and strictly increasing along columns. For example:

1 1 2 2 3
2 2 3
3

A Young tableau is called standard if it is filled with numbers {1, 2, 3, ...} so that the entries in both
rows and columns are strictly increasing. For example:

1 2 5 6 7
3 4 6
4 5 7
6
7

The partition λ that corresponds to the Young tableau (either standard or seminstandard) will be called
the shape of the tableau. For example the shape of the semistandard Young tableau above is λ = (5, 3, 1)
and the shape of the above standard Young tableau is λ = (5, 3, 3, 1, 1).

We are now ready to give the combinatorial definition of the Schur functions as:

sλ(x1, ..., xn) :=
∑

T : sh(T)=λ

x♯1
′s

1 x♯2
′s

2 · · ·x♯n′s
n , (3.19)

where the sum is over all semistandard Young tableaux with shape λ and ♯1′s denotes the number of boxes
in the tableau filled in with 1, ♯2′s denotes the number of boxes in the tableau filled in with 2 and so on.

The third definition is via an orthogonalisation procedure, which is of Gram-Schmidt type. This approach
was generalised by Macdonald in [M88], in his definition of the Macdonald polynomials and it does not
restrict to polynomials. To define the Schur polynomials in this way, uses the inner product we introduced
in (3.15) Given this inner product, it can be shown, see [M98], that Schur functions are uniquely determined
by their expansion in terms of the monomial symmetric functions:

(A) sλ = mλ +
∑
µ<λ

Kλµmµ,

and their orthogonality with respect to the inner product as

(B) ⟨sλ, sµ⟩ = 0, if λ ̸= µ.

In (A) the sum is over all partitions µ such that µ < λ, where the dominance ordering < on partitions
according to which µ < λ, if µ1 + · · ·+ µi < λ1 + · · ·+ λi for all i ≥ 1.

The Cauchy identity for Schur polynomials (actually also true for Schur funcrions) reads as∑
λ

sλ(x1, x2, ...) sλ(y1, y2, ...) =
∏
i,j

1

1− xiyj
.
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This identity, as well as identities of this type for other special functions, will play a very important role
is the basis of defining probability measures on partitions and have played a central role in integrable
probability. Unlike the previous Cauchy identities, this one is deeper and we will prove it via the Robinson-
Schensted-Knuth correspondence.

Before going into the RSK correspondence let us make some remarks on Schur functions.

Remark 3.18. For a partition λ, we have that sλ(1, 1, ..., 1) =: fλ is the number of all standard (i.e. all
entries are strictly increasing over rows and colums) Young tableaux of shape λ, i.e. the first row has length
λ1, the second row length λ2 etc.

Exercise 13. Let λ be a partition with length ℓ := ℓ(λ), i.e. there are ℓ nonzero parts. Provide an
expression for the number of n-step lattice paths from 0 ∈ Zℓ to (λ1, λ2, ..., λn) ∈ Zℓ such that

• every step has unit length (and stays on the lattice)

• the walks stays in the domain x1 ≥ x2 ≥ · · · ≥ xℓ ≥ 0.

Exercise 14. Show that

sλ(1
m) := sλ(1, 1, ..., 1︸ ︷︷ ︸

m times

) =
∏

1≤i<j≤m

λi − λj + j − i
j − i

.

Exercise 15. Show the identity ∑
λ

qλ1+λ2+··· =
∏
n≥1

1

1− qn
.

3.6. The Robinson-Schensted-Knuth (RSK) correspondence. The Robinson-Schensted
(RS) correspondence is a bijection between matrices with nonnegative entries and a pair of semi-standard
Young tableaux with the same shape. RSK is an extension of the Robinson-Schensted (RS) correspondence
which is a bijection between permutations (or permutation matrices) and a pair of standard Young tableaux
of the same shape.

Let us describe the algorithm, first in the permutation case.

σ =

(
1 2 · · · N
x1 x2 · · · xN

)
,

where we denote xi := σ(i). Then,

• Starting from a pair of empty tableaux (P0, Q0) = (∅, ∅), assume that we have inserted the first i
biletters

(
j
xj

)
, for 1 ≤ j ≤ i ≤ N , of the permutation σ ∈ SN and we have obtained a pair of Young

tableaux (Pi, Qi).

• Next, we (row) insert the biletter
(
i+1
xi+1

)
as follows: If the number xi+1 is larger or equal † than all

the numbers of the first row of Pi, then a box is appended at the end of the first row of Pi and its
content is set to be xi+1. This is then the tableau Pi+1. Also a box is appended at the end of the
first row of Qi and its content is set to be i+ 1, giving the tableau Qi+1. If, on the other hand, there
is a box in the first row of Pi with content strictly larger than xi+1, then the content of the first
such box becomes xi+1 and the replaced content, call it b, drops down and is row inserted in the
second row of Pi following the same rules and creating (possibly) a cascade of dropdowns (called
bumps). Eventually a box will be appended at the end of a row in Pi or below its last row, in which
case it creates a new row, and the content of this box will be the last bumped letter. At the same,
corresponding, location a box will be added at Qi and its content will be set to be i+ 1.

• We repeat the above steps until all biletters have been row inserted.

†in the case of a permutation the “or equal” condition is void but it becomes relevant in the Robsinson-Schensted-Knuth
generalisation.
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Let us see how this algorithm works via an example. Consider the permutation(
1 2 3 4 5 6 7
3 5 1 6 2 4 7

)
The sequence is as follows:

(∅, ∅) 3−→ 3 1
5−→ 3 5 1 2

1−→ 1 5
3

1 2
3

6−→ 1 5 6
3

1 2 4
3

2−→

2−→ 1 2 6
3 5

1 2 4
3 5

4−→ 1 2 4
3 5 6

1 2 4
3 5 6

7−→ 1 2 4 7
3 5 6

1 2 4 7
3 5 6

.

In words, we have that we start by row inserting ‘3’ and creating a box with content ‘3’, identified with
tableau P1, and a box with content ‘1’ constructing tableau Q1. Then ‘5’ is row inserted in P1 and since it
is larger than ‘3’ it bypasses the box with content ‘3’ and sits in a new box in the right of ‘3’, creating P2.
A box with content ‘2’ is also created in the right of the box with content ‘1’ in Q1 creating tableau Q2.
Then ‘1’ is row inserted to P2 and being smaller than ‘3’ it bumps ‘3’ and sits in the first box of P2. ‘3’ is
then row inserted in the second row and since this is empty, it creates a new box whose content becomes
‘3’. At the same time a new box in the second row of Q2 is created whose content is ‘3’, giving Q3. The
procedure continues in this way.

There are a few observations to be made from this example.

• Tableaux P and Q have the same shape, i.e. the lengths of the successive rows in each tableau are
equal.

This is a general fact. The tableaux that RS produces have the same shape. This can be easily seen as at
any stage of the algorithm a box is created at the same location in both the P and Q tableau.

• Tableaux P and Q are actually equal.

This is not a general fact but a consequence of the fact that the permutation matrix associated to the
above permutation, is symmetric, or that σ = σ−1. In general, as we will state below, if (P,Q) is the
output of a permutation σ, then the output of permutation σ−1 is (Q,P ). Thus, if σ = σ−1, then P = Q.

• A third observation that we make is that the length of the first row of either output tableau P and Q
(which in this case is 4) equals the length of the longest increasing subsequence in the permutation
(3, 5, 1, 6, 2, 4, 7), which, for example (as there are more than one such), is the sequence (3, 5, 6, 7).
Moreover, the length of the second longest increasing subsequence (1, 2, 4) equals the length of the
second row of the output tableaux.

This is also not a coincidence and goes by the name of Greene’s theorem (see Theorem 3.20 below), an
extension of Schensted’s theorem (see Theorem 3.19 below):

Theorem 3.19 (Schensted). The RS correspondence is a bijection between permutations and pairs of
standard Young tableaux (P,Q) of the same shape. If σ ∈ SN and (P,Q) = RS(σ) is the image of σ under
RS-correspondence, then (Q,P ) = RS(σ−1), where σ−1 is the inverse of permutation σ. In particular, if
σ = σ−1, then P = Q.

Theorem 3.20 (Greene). Let σ ∈ SN and (P,Q) = RS(σ). Then, the length λ1 of the first row of the
output tableaux P or Q equals the length of the longest increasing subsequence in σ. Moreover, the sum
λ1 + λ2 + · · ·+ λr of the lengths of the first r rows equals the maximum possible length of dijoint unions of
r increasing subsequences in σ.

RSK correspondence. Bearing in mind that permutations are identified with matrices whose entries
are either 0 or 1 and no two 1’s are in the same row or column (permutation matrices), one can see the
RS correspondence as a bijection between permutation matrices and pairs of standard Young tableaux.
Knuth’s generalisation constituted in extending RS as a bijection between matrices with nonnegative
integer entries and pairs of seminstandard Young tableaux. We can think of a matrix W = (wij) 1≤i≤n

1≤j≤N
,
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where i indicates rows and j columns, as a sequence of n words

wi := 1w
i
1 · · ·Nwi

N := 1 · · · 1︸ ︷︷ ︸
wi

1

2 · · · 2︸ ︷︷ ︸
wi

2

· · · N · · ·N︸ ︷︷ ︸
wi

N

(3.20)

with letters 1, 2, ..., N , such that wij symbolises the number of letters j in word i. Knuth’s extension of RS
correspondence, named Robinson-Schensted-Knuth (RSK), consists of inserting, via the RS row-insertion,
the letters of words w1, w2, ..., wn (in this order) with the letters of each word wi as in (3.20) being read
from left to right.

For a matrix W we will denote by RSK(W ) = (P,Q) the output of the RSK correspondence. Later
on we will transcribe the RSK correspondence in a matrix formulation inspired by studies in integrable
systems and cluster algebras [NY04].

But let us finally move on to probabilistic aspects...

3.7. Gelfand-Tsetlin parametrisation. Gelfand-Tsetlin (GT) patterns are triangular arrays of
numbers (zij)1≤j≤i≤N which interlace, meaning that

zi+1
j+1 ≤ z

i
j ≤ zi+1

j , (3.21)

and for this reason they are depicted as

z11
z22 z21

z33 z32 z31

. .
.

. .
. . . .

. . .

zNN zNN−1 . . . zN2 zN1 .

(3.22)

They provide a particularly useful parametrisation of Young tableaux: given a Young tableau consisting
of letters 1, 2, ..., N (not all of which have to appear in the tableau) the Gelfand-Tsetlin variables zij are
defined as

zij :=

i∑
k=j

♯{ k’s in the jth row} (3.23)

Given this definition, the right inequality in (6.4) is immediate, while the left one is a consequence of the
fact that entries along columns in a Young tableau are strictly increasing.

The bottom row of a GT pattern is called the shape, since zNi equals the length of the i-th row of the
corresponding tableau and thus the collection of zN1 , zN2 , ... determines the shape of the tableau. We will
denote the shape of a GT pattern Z by sh(Z) and similarly the shape of a tableau P by sh(P ). We will
also often identify a GT pattern Z with the corresponding Young tableau P .

We will see they provide a structure, which couples models in the KPZ class, e.g. longest increasing
subsequence or last passage percolation, with Random Matrices. To give a preliminary idea of how this
comes about, we point out that, as a consequence of Schensted’s Theorem 3.19, entry zN1 of a Gelfand-
Tsetlin pattern is equal to the length of the first row of a Young Tableau. On the other hand, it turns out
that in certain situations random Gelfand-Tsetlin patterns have a bottom row with law identical to the
law of the eigenvalues of certain random matrices. Therefore, the element zN1 has a dual nature: it is an
observable of models within the KPZ class and at the same time its distribution is identical (or closely
related) to the distribution of the largest eigenvalue of certain random matrices. This coupling has played
a central role in formulating the integrable structure of models in the KPZ universality and we will explore
this in the coming sections.

An important invariant of RSK is the type of a tableau P , denoted by type(P ). In GT parametrisation,
this is defined to be the vector(

|zi| − |zi−1| : i = 1, ..., N
)
, with |zi| :=

i∑
j=1

zij ,
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and the convention that |z0| = 0. Considering a pair of Gelfand-Tsetlin patterns (Z,Z′) as the output of
RSK with input matrix W = (wij : 1 ≤ i ≤ n, 1 ≤ j ≤ N), that is (Z,Z′) = RSK(W ), with Z corresponding
to the P tableau and Z′ to the Q tableau in the RSK correspondence, then it holds that

|zk| − |zk−1| =
n∑
i=1

wik. (3.24)

This is due to the fact that both sides represent the number of letters k inserted from W via RSK. This is
clear for the right-hand side, since (by definition) wij is considered as the number of letters j in word i,
while for the left-hand side this follows from

|zk| − |zk−1| =
k∑
j=1

zkj −
k−1∑
j=1

zk−1
j = zkk +

k−1∑
j=1

(zkj − zk−1
j )

= ♯{k’s in word k}+
k−1∑
j=1

♯{k’s in word j}.

4. A solvable Last Passage Percolation model

Let us skip to the study of a solvable probability model. This is the last passage percolation with
geometric variables In this section we will show how RSK allows to write explicitly the distribution of
the last passage percolation time in terms of Schur functions. The determinantal expression of the Schur
functions will then set the stage for asymptotic analysis, which we will present in following sections.

To set things up, we consider a matrix W = (w i
j )1≤i≤m,

1≤j≤n
, where we assume that the entries are

independent random variables with geometric distribution

P(wi
j = wij) = (1− piqj)(piqj)w

i
j 1wi

j∈{0,1,2,...}
, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (4.1)

where pi, qj are parameters in (0, 1). The first question we want to ask is whether we can compute the law
of

τm,n := max
π∈Πm,n

∑
(i,j)∈π

w i
j , (4.2)

where Πm,n is the set of down-right paths going from site (1, 1) to site (m,n) ∈ N2 (using the matrix
rather than the cartesian index notation). For simplicity, let us assume that m = n = N , although the
general case can also be treated following similar reasoning. For conciseness we will also denote τN,N by
τN . The answer to this question is affirmative and the reason is that the geometric distribution fits the
framework and the properties of RSK. In particular, we can answer the posed question by carrying out the
following steps:

Step 1. Push forward law. The law of the random weight matrix W from (4.1) can be written
explicitly in terms of GT variables as

P(W = {wij}) =
∏
i,j

(1− piqj)
∏
i

p
∑

j w
i
j

i

∏
j

q
∑

i w
i
j

j

=
∏
i,j

(1− piqj)
∏
i

p
|(zi)′|−|(zi−1)′|
i

∏
j

q
|zj |−|zj−1|
j . (4.3)

Here we related
∑

iw
i
j to the type of the P -tableau,

(
|zj | − |zj−1|

)
j=1,...,N

as
∑

iw
i
j = |zj | − |zj−1| and

the sum
∑

j w
i
j to the type of the Q-tableau |(zi)′| − |(zi−1)′| as

∑
j w

i
j = |(zi)′| − |(zi−1)′|. The former is

just (3.24), while the latter follows from the fact that

if RSK(W) = (P,Q) = (Z,Z′), then RSK(Wt) = (Q,P ) = (Z′,Z).
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Step 2. Marginalisation and determinantal measures. We are now ready to compute P(τN ≤ u).
Using the previous two steps we have that

P(τN ≤ u) =
∑

λ : λ1≤u

∑
(Z,Z′) pair of GT patterns

with shape λ

P
(
RSK(W) = (Z,Z ′)

)
and by (4.3) this equals∏

i,j

(1− piqj)
∑

λ : λ1≤u

∑
(Z,Z′) pair of GT patterns

with shape λ

∏
i

p
|(zi)′|−|(zi−1)′|
i

∏
j

q
|zj |−|zj−1|
j

=
∏
i,j

(1− piqj)
∑

λ : λ1≤u

∑
Z : GT pattern
with shape λ

∏
j

q
|zj |−|zj−1|
j

∑
Z′ : GT pattern
with shape λ

∏
i

p
|(zi)′|−|(zi−1)′|
i ,

and now each of the two rightmost summands are recognised to be the Schur functions, whose expression
as generating series of Young tableaux (3.19) may be rewritten in the Gelfand-Tsetlin notation as

sλ(q) :=
∑

Z : GT pattern
with shape λ

∏
j

q
|zj |−|zj−1|
j . (4.4)

Thus, the above induces that (this step is really a change of notation)

P(τN ≤ u) =
∏
i,j

(1− piqj)
∑

λ : λ1≤u
sλ(q) sλ(p). (4.5)

We have, thus, computed the law of last passage percolation in terms of special functions, which furthermore
possess many nice properties. In particular, they can be written in terms of determinants and in fact
there are more than one such formulae. For example, if λ = (λ1, λ2, ...) is a partition and p1, p2, ..., pN are
nonnegative parameters (or variables), then

sλ(p) =
det

(
p
λj+N−j
i

)
1≤i,j≤N

det
(
pN−j
i

)
1≤i,j≤N

, (4.6)

where in the denominator one recognises the Vandermonde determinant, which can be computed as
∆N (p) :=

∏
1≤i<j≤N (pi − pj).

The next question we want to ask is whether we can perform asymptotic analysis. For this, we have

Step 3. Fredholm determinants. Relation (4.6) allows to express (4.5) as a Fredholm determinant,
in a form that is suitable to take the asymptotic limit and prove convergence to Tracy-Widom GUE
distribution. We will introduce the notion of a Fredholm determinant and some of its properties in the next
section. The significance of expressing (4.5) and other such probabilities in terms of Fredholm determinants
is that doing so facilitates taking the limit of N tending to infinity. In (4.5), N is the number of varables
λ1, ..., λN , over which the sum in (4.5) is taken. Thus, taking the limit N →∞ corresponds to the number
of summations to infinity and the meaning of such limit is not clear at all at this stage. The key to resolving
this difficulty is the notion of Fredholm determinants, which re-expresses such sums and integrals in a way
that the limit in N becomes unambiguous and tractable. We will see how this is done in the next section.

We are now going to introduce the notion of determinantal measures and Fredholm determinants. We
will demonstrate how two basic tools from determinantal calculus, the Cauchy-Binet or Andreief’s identity
and the Sylvester’s identity, can be used to turn a determinantal measure into a Fredholm determinant.

In many statistical models we encounter probability measures of the form

µN (f) :=
ZN (f)

ZN
, (4.7)

where µN (f) denotes expectation of a functional f ∈ L2(X , µ) on a measure space (X , µ) and

ZN (f) :=

∫
XN

det
(
ϕi(xj)

)
1≤i,j≤N det

(
ψi(xj)

)
1≤i,j≤N f(x1) · · · f(xN ) µ(dx1) · · ·µ(dxN ) (4.8)
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the quantity ZN = ZN (1) is typically known as the partition function. Measures with determinants in this
form in the right-hand side are known as determinantal measures. We note that the functions ϕi, ψi can
be either non-negative, in which case, we have a genuine probability measure, or they may also be allowed
to take negative values, in which case we deal with signed measures. For more regarding determinantal
measures and processes we refer to [B11, J05].

Due to (4.6) we see that the Schur measure

P(λ) :=
∏
i,j

(1− piqj) sλ(q) sλ(p). (4.9)

(see (4.5)) on partitions λ is a determinantal measure with ϕi(λj) := p
λj+N−j
i and ψi(λj) := q

λj+N−j
i This

measure was introduced by Okounkov [O01].

Determinantal probabilites such as (4.5) can be written in terms of objects called Fredholm determinants
and this is crucial in obtaining asymptotics. We will exhibit this in the example of the Schur measure and
last passage percolation with geometric weights.

Let us first define the notion of Fredholm determinant. Given an integral operator K acting on
L2(X , µ) of a general measure space (X , µ) by

Kf(x) =

∫
X
K(x, y)f(y)µ(dy),

we define the Fredholm determinant associated to K by

det(I +K)L2(X ,µ) := 1 +
∞∑
n=1

1

n!

∫
Xn

det
(
K(xi, xj)

)
n×n µ(dx1) · · ·µ(dxn). (4.10)

Here I is the identity map. Of course, one has to make sure that this infinite series is convergent. This is
usually guaranteed by requiring that K is a trace class operator. We refer to [S79] for more details, but let
us go through a quick sketch: For a compact operator K on a Hilbert space, say L2(X , µ), we define its
trace class norm as ∥K∥1 := Tr

√
K∗K, where K∗ is the adjoint of K and the square root can be defined

via operator calculus, since K∗K is self-adjoint. In the case of a trace class norm operator one can obtain
that (4.10) is well defined and the Fredholm determinant is bounded by

|det(I +K)L2(X ,µ) | ≤ e∥K∥1 . (4.11)

Exercise 16. Prove inequality (4.11).

Moreover, one has the following continuity result

Exercise 17.

|det(I +K1)L2(X ,µ) − det(I +K2)L2(X ,µ) | ≤ ∥K1 −K2∥1 e∥K∥1+∥K∥2+1. (4.12)

A consequence of this inequality is that if we would like to establish convergence of certain Fredholm
determinants, it is enough to establish the convergence of the corresponding operators in the trace class
norm.

A way to get a feeling about definition (4.10) is to consider the case where K is an N ×N matrix and
let λ1, ..., λN denote its eigenvalues. Then

det(I +K) =
N∏
i=1

(1 + λi) = 1 +
N∑
m=1

∑
1≤i1<···<im≤N

λi1 · · ·λim . (4.13)

From the standard property of trace,
∑N

i=1 λi = TrK =
∑

xK(x, x), one sees immediately the identification
of the first non-trivial terms in (4.10) and (4.13). The rest of the terms have similar interpretation as traces
of tensor products of K, see [S79] for details. Without getting into details, we mention that Fredholm
determinants formalise in some sense the inclusion-exclusion principle.
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We will now state two important tools that will allow to relate determinantal measures to Fredholm
determinants.

Proposition 4.1 (Cauchy-Binet or Andreief identity). Consider a collection of functions
(
ϕi(·)

)
1≤i≤N

and
(
ψi(·)

)
1≤i≤N , which belong to L2(X , µ) of a measure space (X , µ). Then

1

N !

∫
XN

det
(
ϕi(xj)

)
1≤i,j≤N det

(
ψi(xj)

)
1≤i,j≤N µ(dx1) · · ·µ(dxN )

= det
(∫

X
ϕi(x)ψj(x)µ(dx)

)
1≤i,j≤N

.

Proof. Expand the determinants and swap integration and sums to get:

1

N !

∫
XN

det
(
ϕi(xj)

)
1≤i,j≤N det

(
ψi(xj)

)
1≤i,j≤N µ(dx1) · · ·µ(dxN )

=
1

N !

∫
XN

( ∑
σ∈Sn

sgn(σ)
N∏
i=1

ϕi(xσ(i))
)( ∑

τ∈Sn

sgn(τ)
N∏
j=1

ψj(xτ(j))
) N∏
i=1

µ(dxi)

=
1

N !

∑
σ,τ∈Sn

sgn(σ)sgn(τ)

∫
XN

N∏
i=1

ϕi(xσ(i))

N∏
j=1

ψj(xτ(j))

N∏
i=1

µ(dxi).

We now want to group the terms correspoding to the same spatial variable xi. For this, we order the terms
in the second product as

N∏
i=1

ψτ−1σ(i)(xσ(i)),

by the change of variables j := τ−1σ(i). Inserting this into the integral and grouping the dxσ(i) integration
we have that the above integral is

1

N !

∑
σ,τ∈Sn

sgn(σ)sgn(τ)
N∏
i=1

∫
X
ϕi(x)ψτ−1σ(i)(x)µ(dx)

=
1

N !

∑
σ,τ∈Sn

sgn(τ−1σ)
N∏
i=1

∫
X
ϕi(x)ψτ−1σ(i)(x)µ(dx)

where in the second equality we used the character property of the sign of a permutation. We now change
summation variables: (τ, τ−1σ) = (τ, η) and write the above as

1

N !

∑
η,τ∈Sn

sgn(η)
N∏
i=1

∫
X
ϕi(x)ψη(i)(x)µ(dx)

=
1

N !

∑
τ∈Sn

(∑
η

sgn(η)

N∏
i=1

∫
X
ϕi(x)ψη(i)(x)µ(dx)

)
= det

(∫
X
ϕi(x)ψj(x)µ(dx)

)
1≤i,j≤N

□

Proposition 4.2. Consider general measure spaces (X , µ), (Y, ν) and trace class operators A : L2(Y, ν)→
L2(X , µ) and B : L2(X , µ)→ L2(Y, ν). Then

det
(
I +AB

)
L2(X ,µ) = det

(
I +BA

)
L2(Y,ν).
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Proof. Use the definition of the Fredholm determinant we have

det
(
I +AB

)
L2(X ,µ) = 1 +

∞∑
n=1

1

n!

∫
Xn

det
(
AB(xi, xj)

)
n×n µ(dx1) · · ·µ(dxn)

= 1 +
∞∑
n=1

1

n!

∫
Xn

∑
σ∈Sn

sgn(σ)
n∏
i=1

AB(xi, xσ(i))
n∏
i=1

µ(dxi)

= 1 +
∞∑
n=1

1

n!

∫
Xn

∑
σ∈Sn

sgn(σ)
n∏
i=1

(∫
Y
A(xi, y)B(y, xσ(i))ν(dy)

) n∏
i=1

µ(dxi)

= 1 +

∞∑
n=1

1

n!

∫
Xn

∑
σ∈Sn

sgn(σ)

∫
Yn

n∏
i=1

A(xi, yi)B(yi, xσ(i))

n∏
i=1

ν(dyi)

n∏
i=1

µ(dxi)

= 1 +
∞∑
n=1

1

n!

∫
Xn

∑
σ∈Sn

sgn(σ)

∫
Yn

n∏
i=1

A(xi, yi)
n∏
i=1

B(yi, xσ(i))
n∏
i=1

ν(dyi)
n∏
i=1

µ(dxi)

= 1 +
∞∑
n=1

1

n!

∫
Xn

∑
σ∈Sn

sgn(σ)

∫
Yn

n∏
i=1

A(xi, yi)
n∏
i=1

B(yσ−1(i), xi)
n∏
i=1

ν(dyi)
n∏
i=1

µ(dxi)

where in the last equality we just rearranged the product
∏n
i=1B(yi, xσ(i)) to

∏n
i=1B(yσ−1(i), xi). Grouping

now the terms with xi together and interchanging the ν and µ integrations, we have that the above is
equal to

1 +
∞∑
n=1

1

n!

∫
Xn

∑
σ∈Sn

sgn(σ)

∫
Yn

n∏
i=1

B(yσ−1(i), xi)A(xi, yi)
n∏
i=1

ν(dyi)
n∏
i=1

µ(dxi)

= 1 +
∞∑
n=1

1

n!

∫
Yn

∑
σ∈Sn

sgn(σ)
n∏
i=1

(∫
X
B(yσ−1(i), x)A(x, yi)

n∏
i=1

µ(dx)
) n∏
i=1

ν(dyi)

= 1 +

∞∑
n=1

1

n!

∫
Yn

∑
σ−1∈Sn

sgn(σ−1)

n∏
i=1

(∫
X
B(yσ−1(i), x)A(x, yi)

n∏
i=1

µ(dx)
) n∏
i=1

ν(dyi)

= 1 +

∞∑
n=1

1

n!

∫
Yn

det
(
BA(yi, yj)

)
1≤i,j≤n

n∏
i=1

ν(dyi)

= det
(
I +BA

)
L2(Y,ν)

□

The next proposition shows how to express marginals of a determinantal measure to a Fredholm
determinant. This tranformation is crucial in order to do large N asymptotics by transforming them into
asymtotics of integral operators rather than computing asymptotics of determinants whose size grows to
infinity.

Proposition 4.3. Consider a collection of functions
(
ϕi(·)

)
1≤i≤N and

(
ψi(·)

)
1≤i≤N , which belong to

L2(X , µ) of a measure space (X , µ). Define the matrix

Gij :=

∫
X
ϕi(x)ψj(x)µ(dx) (4.14)

and assume that it is invertible. Define also the operator K with kernel

K(x, y) :=
∑
i,j

ψi(x)
(
G−1

)
ij
ϕj(y). (4.15)

Then, following notation (4.8), it holds that, for a general bounded function g on X ,

ZN (1 + g)

ZN
= det

(
I + gK

)
L2(X ,µ).
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Proof. The proof is a consequence of Propositions 4.1 and 4.2. Let f = 1 + g. By the Cauchy-Binet
identity we have that

ZN (f) = det
(∫

X
ϕi(x)ψj(x) f(x) dµ

)
1≤i,j≤N

= det
(∫

X
ϕi(x)ψj(x) +

∫
X
ϕi(x)ψj(x)g(x) dµ

)
1≤i,j≤N

= det
(
Gij +

∫
X
ϕi(x)ψj(x)g(x) dµ

)
1≤i,j≤N

,

where by setting g = 0 or equivalently f = 1 we see that ZN = detG. Using the multiplicativity of
determinants, ie det(AB) = det(A) det(B) and denoting by (G−1)ij the (i, j) entry of matrix G−1, we see
that

ZN (1 + g)

ZN
= det

(
δij +

∑
k

(G−1)ik

∫
X
ϕk(x)ψj(x)g(x) dµ

)
1≤i,j≤N

= det
(
δij +

∫
X
g(x)

∑
k

(G−1)ik ϕk(x)ψj(x) dµ
)
1≤i,j≤N

. (4.16)

Now, we will use Proposition 4.2 with

A : L2(X , µ)→ ℓ2({1, ..., N}) with A(i;x) :=
∑
k

(G−1)ik ϕk(x)

acting on functions in f ∈ L2(X , µ) as (Af)(i) :=
∫
X A(i;x)f(x)µ(dx), with the result being an element

of ℓ2({1, ..., N}, and

B : ℓ2({1, ..., N})→ L2(X , µ) with B(x; i) := g(x)ψi(x),

acting on elements h ∈ ℓ2({1, ..., N} as (Bh)(x) := g(x)
∑N

i=1 ψi(x)h(i), with the result being an element
of L2(X , µ). Then, by Proposition 4.2, (4.16) may be written as

ZN (1 + g)

ZN
= det

(
I +AB

)
ℓ2({1,...,N})

= det
(
I +BA

)
L2(X ,µ)

where the kernel of operator BA may be written explicitly as

BA(x, y) =

N∑
ℓ=1

B(x; ℓ)A(ℓ, y) = g(x)
∑

1≤ℓ,k≤N
ψℓ(x) (G

−1)ℓ,k ϕk(y)

for x, y ∈ X , completing the proof in view of (4.15). □

The difficulty that arises when one would like to apply concretely Proposition 4.3 is to actually invert
the matrix G. In some situations this can be done, as we will now see by applying this to last passage
percolation with geometric weights. We have

Proposition 4.4. Consider a matrix W = (wi
j)1≤i,j≤N with distribution P as in (4.1) and

τN = maxπ∈ΠN,N

∑
(i,j)∈πw

i
j. Then

P
(
τN ≤ x

)
= det

(
I + gNK

LPP
N

)
ℓ2(N)

, (4.17)

with gN = 1[x+N,∞) and for t, s ∈ N the kernel of operator KLPP
N is given by

KLPP
N (t, s) =

1

(2πι)2

∫
γ1

dζ

∫
γ2

dη
ηsζt

1− ζη

N∏
j=1

(1− ηqj
η − pj

) N∏
i=1

(1− piζ
ζ − qi

)
(4.18)

where γ2 is the circle in the complex plane with counter-clockwise orientation, centred at zero and radius
one and γ1 is the circle with counter-clockwise orientation, centred at zero of radius r < 1. Without loss of
generality, we assume that all pi, qi, 1 ≤ i ≤ N are small enough so that they are contained within contour
γ1. We also note that ι =

√
−1.
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Proof. Using (4.5) and (4.6) we can write

P
(
τN ≤ x

)
=

∏
1≤i,j≤N (1− piqj)
∆N (p)∆N (q)

∑
x≥λ1≥λ2≥···≥λN≥0

det
(
p
λj+N−j
i

)
1≤i,j≤N det

(
q
λj+N−j
i

)
1≤i,j≤N , (4.19)

where ∆N (p) and ∆N (q) are Vandermonde determinants. To bring the sum in (4.19) into form (4.7), (4.8),
we make the change of variables tj := λj +N − j and write it as∑

x+N−1≥t1>t2>···>tN≥0

det
(
p
tj
i

)
1≤i,j≤N det

(
q
tj
i

)
1≤i,j≤N

Noticing that this sum is symmetric in variables t1, ..., tN and that the summand vanishes if two of
these are equal to each other (because the determinants do so in this case), we can extend the sum via
symmetrization and write it as

1

N !

∑
t1,...,tN∈N

det
(
p
tj
i

)
1≤i,j≤N det

(
q
tj
i

)
1≤i,j≤N 1[0,x+N−1](t1) · · · 1[0,x+N−1](tN ).

Thus, we can write (4.19) in the form (4.7) and (4.8) with ϕi(t) = pti, ψj(t) = qtj , t ∈ {0, 1, ...} and µ being
the counting measure. We will now use Proposition 4.3 and in this setting we compute

Gij =
∑
t≥0

(piqj)
t =

1

1− piqj
. (4.20)

To invert this matrix we will use Cramer’s formula, which states that(
G−1

)
ij
=

(−1)i+j detG ji

detG
, (4.21)

where G ji denotes the minor matrix derived from G by deleting row j and column i. One of the computable
determinants goes under the name of Cauchy determinant and is

det
( 1

ai − bj

)
1≤i,j≤N

= (−1)
n(n−1)

2
∆N (a)∆N (b)∏
1≤i,j≤N (ai − bj)

and so

detG =

∏
1≤k<ℓ≤N (pk − pℓ)

∏
1≤k<ℓ≤N (qk − qℓ)∏N

k,ℓ=1(1− pkqℓ)
(4.22)

one can also compute detG ji observing that this is also a Cauchy determinant of the same type and so
the same formula as in (4.22) will be valid, just without terms which contain variables pi and qj . Thus, we
obtain that (

G−1
)
ji
=

∏
1≤ℓ≤N (1− pjqℓ)

∏
1≤k≤N (1− pkqi)

(1− pjqi)
∏
ℓ ̸=j(pj − pℓ)

∏
k ̸=i(qi − qk)

.

Inserting this into (4.15) with the choice ψi(t) = qti and ϕj(s) = psj , we obtain that (4.19) can be written
as a Fredholm determinant

P
(
τN ≤ x

)
= det

(
I + gNK

LPP
N

)
L2(N)

with

KLPP
N (t, s) =

∑
1≤i,j≤N

qtip
s
j

∏
1≤ℓ≤N (1− pjqℓ)

∏
1≤k≤N (1− pkqi)

(1− pjqi)
∏
ℓ̸=j(pj − pℓ)

∏
k ̸=i(qi − qk)

.

Using the Residue Theorem we can write this kernel in an integral form

KLPP
N (t, s) =

1

(2πι)2

∫
γ1

dζ

∫
γ2

dη
ηs ζt

1− ζη

N∏
j=1

(1− ηqj
η − pj

) N∏
i=1

(1− piζ
ζ − qi

)
finishing the proof. With regards to the application of the residue theorem we note that the function∏N
j=1(

1−ηqj
η−pj ) has poles (pi) included in the contout γ2 and the function

∏N
i=1(

1−piζ
ζ−qi ) has poles (qi) included

inside γ1, while the choice of the contours excludes a pole from the case ζη = 1. □
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Let us finish off this section by the central theorem:

Theorem 4.5. Let the parameters of the geometric random variables to be all equal i.e. pi = qi =
√
α.

Then there are explicit constants f = f(α) and σ = σ(α) (σ here is not to be confused with a permutation
!) such that

lim
N→∞

P
(
τN ≤ fN + σN1/3x

)
= det

(
I +KAiry2

)
L2(x,∞)

.

where KAiry2 is the Tracy-Widom GUE (or Airy-two) kernel given explicitly by

KAiry2(t, s) =

∫ ∞

0
Ai(λ+ t)Ai(λ+ s) dλ, t, s ∈ R,

and Ai(t) is this Airy function, which is the solution of the second order ODE u′′ = xu subject to the
condition that u(x)→ 0 when x→∞ and admits the contour integral representation

Ai(t) =
1

2πι

∫
γ1

ez
3/3−t z dz, (4.23)

with the contour γ1 given by

γ1 = {re−ιπ/3 : r ∈ (−∞, 0)} ∪ {reιπ/3 : r ∈ (0,∞)}, traced upwards

The proof of this theorem amounts to computing the asymptotics of the Fredholm determinant (4.17)
and (4.18) where now gN will be 1[fN+σN1/3+N and

KLPP
N (t, s) =

1

(2πι)2

∫
γ1

dζ

∫
γ2

dη
ηs ζt

1− ζη

(1− ηα
η − α

)N(1− αζ
ζ − α

)N
The asymptotics of this integral can be computed with the method of steepest descent. We refer to [Z22],
Section 7.3 for details.

5. Non-intersecting paths

In this section we will study how determinantal formulas arise via weights of ensembles of non-intersecting
paths. Before going back to RSK and proving some of its properties, we will revisit Schur functions and we
will prove some determinantal formulas known by the name Jacobi-Trudi identities. Besides the interest
of these identities on their own, the will show us how to compute the total weight (or probabilities) of
non-intersecting paths in a determinantal form.

5.1. Jacobi-Trudi identities and the Lindström-Gessel-Viennot theorem. The
Jacobi-Trudi identity reads as

Theorem 5.1. For a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λn) and indeterminates x = (x1, x2, ..., xn) we have
that

sλ(x) = det
(
hλi−i+j(x)

)
1≤i,j≤n, (5.1)

where hn(x) =
∑

1≤i1≤···≤in≤n xi1 · · ·xin are the complete homogeneous symmetric functions.

The proof of this theorem has two components. The first is to express the Schur function as a total
weight of an ensemble of non-intersecting paths. The second is the Lindström-Gessel-Viennot Theorem,
which expresses the total weight of an ensemble of non-intersecting paths in a determinantal form.

Let us start with the first component, which requires to represent a Young tableau as a path ensemble.
The mapping goes as follows:

1. each row of a Young tableau is represented by a lattice. In particular the ith row will be represented
by a path on Z× N starting from (−i, 0) and moving up-right to (λi − i)

2. the horizontal steps of the path are encoded by the numbers in the boxes of row i. In particular, if
a1, a2, ... are the numbers in the ith row, read from left to right, then the first horizontal step of the
ith path is at level a1, the second at level a2 etc.
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For example, we have the mapping:

1 1 2 4 4 4
2 3 4
3
4

←→

0−1· · ·

λ1 − 1λ2 − 2· · ·

(5.2)

Exercise 18. Show that this mapping maps a Young tableau to an ensemble of non-intersecting paths.

We will now give a weight to each path in a similar way we did in the representation (3.6). In other
words, vertical steps will have weight 1 and a horizontal step at level i will have weight xi. The weight of
a single path π will be

wt(π) :=
n∏
i=1

x
♯ {horizontal steps of π at level i}
i ,

and the total weight of a collection of paths π1, π2, ... will be

wt(π1 ⊔ π2 ⊔ · · · ) =
∏
j≥1

wt(πj).

Given now the definition of Schur functions as

sλ(x) =
∑

T∈SSYT(λ)

n∏
i=1

x
♯ {i′s in T}
i

and the above mapping, we easily get that

sλ(x) = wt
(
Π

(λi−i) : i=1,...,n
(−i,0) : i=1,...,n

)
,

where for a collection of paths Π, the total weight wt(Π) =
∑

π∈Π wt(π) and Π
(λi−i,n) : i=1,...,n
(−i,0) : i=1,...,n is the collec-

tion of non-intersecting up-right paths from (−1, 0), (−2, 0), ..., (−n, 0) to (λ1−1, n), (λ2−2, n), ..., (λn−n, n)
as in (5.2).

We also note by (3.5) and (3.6) that

wt
(
Π

(k−1,n)
(−1,0)

)
= hk(x1, ..., xn).

Given the above consideration, the proof of the Jacobi-Trudi identity (5.1) will follow from the following
theorem:

Theorem 5.2 (Lindström-Gessel-Viennot). Let G = (V,E) be a directed, acyclic graph with no
multiple edges, with each edge e being assigned a weigth wt(e). A path π on G is assigned a weight
wt(π) =

∏
e∈π wt(e). We say that two paths on G are non-intersecting if they do not share any vertex.

Consider, now, (u1, ..., ur) and (v1, ..., vr) two disjoint subsets of V and denote by Πu1,...,ur
v1,...,vr the set of all

r-tuples of non-intersecting paths π1, ..., πr that start from u1, ..., ur and end at v1, ..., vr, respectively. We
assume that {u1, ..., ur} and {v1, ..., vr} have the property that for i < j and i′ > j′, any two paths π ∈ Πuivj
and π′ ∈ Π

ui′
vj′ , which start at ui, ui′ and end at vj , vj′, necessarily intersect. Then

det
(
wt

(
Πui
vj )

))
= det

( ∑
π∈Πui

vj

wt(π)
)
1≤i,j≤r

=
∑

π1,...,πr ∈Π
u1,...,ur
v1,...,vr

wt(π1) · · ·wt(πr).
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Proof. We start by expanding the determinant in the left-hand side:

det
(
wt

(
Πui
vj )

))
=

∑
σ∈Sn

sgn(σ)

n∏
i=1

wt
(
Π
vσ(i)
ui

)
=

∑
σ∈Sn

sgn(σ)
n∏
i=1

∑
πi∈Π

vσ(i)
ui

wt
(
πi
)

=
∑
σ∈Sn

sgn(σ)
∑

πi∈Π
vσ(i)
ui

: i=1,...,n

n∏
i=1

wt
(
πi
)

=
∑

πi∈Π
vi
ui

: i=1,...,n
non−intersecting

n∏
i=1

wt
(
πi
)
+

∑
πi∈Π

vi
ui

: i=1,...,n
intersecting

n∏
i=1

wt
(
πi
)

+
∑

σ∈Sn , σ ̸=Id
sgn(σ)

n∏
i=1

wt
(
Π
vσ(i)
ui

)
We will show that the total sum of the second and third terms is equal to zero. Notice that the last
two terms contain all paths that intersect. We construct a mapping (actually an involution) between
intersecting paths that maintains the weight but reverses the sign of the permutation σ. To see how this
works look at the following picture:

←→

If paths meet find the first intersection point (going upwards, eg in the above picture the intersecting
point of the blue and red path) and then map this set of paths to the set where the blue and red path are
flipped. This new path is still in the class of intersecting paths. They have the same weight as the original
set as the edges traced do not change but the sign of the corresponding σ′s has changed, eg in the above
example

σ =
(

1 2 3
3 1 2

)
has mapped to σ′ =

(
1 2 3
1 3 2

)
and note that sgn(σ) = 1 while sgn(σ′) = −1. Note also that the above mapping is an involution since if
you apply it again, then the upper parts of the blue and red paths will exchange colours again, thus going
back to the original set of paths. In other words the mapping is a bijection within the set on intersecting
paths. Since the mapping maintains the weight of the paths but changes the sign the total (signed) weight
will cancel, thus ∑

πi∈Π
vi
ui

: i=1,...,n
intersecting

n∏
i=1

wt
(
πi
)
+

∑
σ∈Sn , σ ̸=Id

sgn(σ)
n∏
i=1

wt
(
Π
vσ(i)
ui

)
= 0

□

We can now complete the proof of the Jacobi-Trudi identity:

Prof of Theorem 5.1. By the mapping (5.2) we have that

sλ(x) = wt
(
Π

(λi−i,n) : i=1,...,n
(−i,0) : i=1,...,n

)
,

and by the Lindström-Gessel-Viennot theorem we have that this equals

det
(
Π

(λi−i,n)
(−j,0)

)
= det

(
hλi−i+j(x)

)
.
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□

Exercise 19. Prove the following alternative Jacobi-Trudi identity. Recall that if λ = (λ1 ≥ · · · ≥ λn)
is a partition, then λ′ is the conjugate partition. Recall also the elementary symmetric polynomials
ek(x) := ek(x1, .., xn) =

∑
1≤i1<···<ik xi1 · · ·xik . We then have that

sλ(x) = sλ(x1, ..., xn) = det
(
eλ′i−i+j(x)

)
1≤i,j≤n.

5.2. Back to RSK. Before getting to prove the properties of RSK developing a bit heavier methodology,
let us warm up with a couple of fun applications.

Theorem 5.3 (Erdős-Szekeres theorem). If σ ∈ Sn is a permutation and n > rs for some integers
r, s, then either the longest increasing subsequence is > r or the longest decreasing subsequence is < s.

Proof. Map via RSK

σ ←→
(
P,Q

)
.

Since σ ∈ §n the P and Q tableau will have n > rs boxes. The length of the longest increasing subsequence
is the length of the first row and the length of the longest decreasing subsequence is the length of the first
column but if the first is ≤ r and the second ≤ s the Young diagram P will be embedded in a rectangle of
side lengths r, s, thus the total number of boxes will be ≤ rs, which is a contradiction. □

The next proposition should be considered more as an exercise on RSK similar to that of the Cauchy
identity.

Proposition 5.4. Let hµ be the complete homogeneous function corresponding to partition µ and Kλµ

be the Kostka number, i.e. the number of SSY T (λ, µ) of shape λ and type µ (the type of a SSYT is the
vector whose ith coordinate is the number of i′s in the tableau. We then have that

hµ =
∑
λ

Kλµsλ.

Proof.

hµ(x) = hµ1(x)hµ2(x) · · · =
∏
j≥1

( ∑
α1
j ,...,α

n
j ≥0

α1
j+···+αn

j =µj

x
α1
j

1 · · ·x
αn
j
n

)

=
∑

α1
j ,...,α

n
j ≥0 : j≥1

α1
j+···+αn

j =µj

∏
i≥1

x
∑

j α
i
j

i

By the RSK correspondence we can change variables (ie map) and instead of sumingm over all matrices
A = (aij)1≤i,j≤n, where i correspond to rows and j to columns, sum over (P,Q) = RSK(A) tableaux or
(ZP , ZQ) Gelfand-Tsetlin patterns. We can then write (recall the notation from (3.24) and (4.4))

hµ =
∑

(ZP ,ZQ)

1type(ZP )=µ

∏
i≥1

x
|ziQ|−|zi−1

Q |
i

=
∑
λ

( ∑
ZP : sh(ZP )=λ

1type(ZP )=µ

)( ∑
ZQ : sh(ZQ)=λ

∏
i≥1

x
|zi|−|zi−1|
i

)
=

∑
λ

Kλµsλ(x).

□

Our final fun proposition will give a combinatorial proof of the fact (in the case of Sn) that for a group
G which decomposes to irreducible representations as G = ⊕i miVi, where mi is the multiplicity of Vi,
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then

|G| =
∑
i

(dim(Vi))
2.

More precisely, we have

Proposition 5.5. Let fλ be the number of STY (λ), i.e. the standard Young Tableaux of shape λ. Then

n! =
∑
λ

(fλ)2.

Proof. The proof is just the RS bijection:

n! =
∑

A : permutation matrix

1 =
∑
λ

∑
P,Q∈SY T (λ)

1 =
∑
λ

(fλ)2.

□

5.3. Matrix construction of RSK and Kirillov’s geometric lifting. Berenstein and
Kirillov’s (max,+) formulation. Berenstein and Kirillov [BK95] adopted a different point of view of
the RSK correspondence, which was to encode the combinatorial transformations via piecewise linear
transformations. This is a particularly useful approach for applications in the probabilistic models we
are interested in and we will describe it now. The exposition here follows mainly the presentation in
Noumi-Yamada [NY04].

Let us describe how the P tableau is constructed. This is done by successive row insertions of words
w1, w2, ... as described in the RS correspondence. Let us start by inserting w1, that is the sequence of
letters

1 · · · 1︸ ︷︷ ︸
w1

1

2 · · · 2︸ ︷︷ ︸
w1

2

· · · N · · ·N︸ ︷︷ ︸
w1

N

.

Since the letters in w1 are ordered from smaller to larger, the insertion of w1 will produce the one-row
tableau

P1 =

w1
1

1 1

w1
2

2 2

w1
N

N N

We note that we can identify the row of a tableau with words by reading the letters from left to right. In
the case of P1, the tableau can be identified with the single word (recall the notation introduced in (3.20))

p1 := 1p
1
12p

1
2 · · ·Np1N = 1w

1
12w

1
2 · · ·Nw1

N = w1.

Next, we insert word w2 into P1 and this insertion will produce a new tableau P̃1. We denote this
schematically as

w2

P1 −→
y P̃1.

This insertion will change the first row p1 of P1 by (possibly) bumping some letters out of it and replacing
them with letters from w2. The bumped letters will form a word, which will then be inserted in the second
row of the tableau, which in the case of P1 is ∅. We denote this schematically as

w2

p1 −→y p̃ 1,
v2

with p 1 denoting the first row of P1, p̃ 1 the first row of P̃1 and v2 the word that will form from the
bumped down letters from P1 after the insertion of w2.
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This picture is a building block of RSK, since the row insertion of a word w in a tableau P consisting of
rows p1, p2, ..., pn, can be decomposed as

w =: v1

p1 −→y p̃ 1

v2

p2 −→y p̃ 2

...
vn

pn −→y p̃n.
vn+1

(5.3)

This picture means that the letters that will drop down from p1, after the insertion of v1 = w, will form a
word v2 which will be inserted in p2, forming a new row p̃ 2, and will bump down letters which will then
form a new word v3 to be inserted into p3 and so on.

An important remark is that row pi, which is constructed via the RS algorithm, will only include letters
with value larger or equal to i. This is an easy consequence of the algorithm. For example, p2 will not
include 1’s as ‘1’ is the smallest possible letter and so when a ‘1’ is inserted in the first row it will stay
there, bumping out 2’s, 3’s,...

It will be important to have an explicit, algebraic expression of the transformation
a

x −→y x̃
b

, where

variables x := ixi(i + 1)xi+1 · · ·NxN and a := iai(i + 1)ai+1 · · ·NaN , for i ≥ 1, are considered as input
variables (x corresponds to the generic case of an i-th row in a tableau) and x̃ := ix̃i(i+ 1)x̃i+1 · · ·N x̃N

and b := (i+1)bi+1(i+ 2)bi+2 · · ·N bN are output variables, with x̃ being the new row after the insertion of
a and b being the bumped down letters (as explained in the previous paragraphs, b will only have letters
strictly larger than i). In particular, we want to express x̃i, x̃i+1, ... and bi+1, bi+2, ... as piecewise linear
transformations of xi, xi+1, ... and ai, ai+1, ... To do so, it will be more convenient to introduce cumulative
variables

ξj := xi + · · ·+ xj , and ξ̃j := x̃i + · · ·+ x̃j , for j ≥ i.

We derive the piecewise linear transformations as follows: When inserted into x, the ai letters i will bypass
the already existing letters i in x and will be appended after the last i in x. Thus, the new total number
of letters i will be

ξ̃i = ξi + ai.

When this insertion is completed a number of (i+ 1)’s will be bumped off x. The number of these will
equal

bi+1 = min
(
ξ̃i − ξi, ξi+1 − ξi

)
= min

(
ξ̃i, ξi+1

)
− ξi. (5.4)

This is to be understood as follows: either ai is smaller than the number of (i+ 1)’s in x, which equals
xi+1 = ξi+1 − ξi, and so there will only be ai = ξ̃i − ξi number of (i+ 1)’s bumped down, or ai is larger
than or equal to xi+1, in which case all of the (i+ 1)’s in x, the number of which equals ξi+1 − ξi, will be
bumped down.

We also record an alternative formula for the number of bumped (i+ 1)’s, which is

bi+1 = ai+1 + xi+1 − x̃i+1 = ai+1 + (ξi+1 − ξi)− (ξ̃i+1 − ξ̃i), (5.5)

where the first equality is to be understood as that the number of (i+ 1)’s, which will be bumped, equals
the number of (i+ 1)’s that existed in x (denoted by xi+1) plus the number of (i+ 1)’s that we inserted
(denoted by ai+1) minus the number of (i+1)’s that we finally see in x̃ (denoted by x̃i+1). This is depicted
in the following figures, where blocks marked with i or i+ 1 indicate consecutive boxes occupied by i or
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i+ 1. The first figure shows the case where the i’s inserted in x do not bump out all (i+ 1)’s:

i i / i+ 1 i+ 1

xi+1 ai+1

bumped
(i+ 1)’s

replaced by i’s

x̃i+1

and the next figure depicts the situation where the i’s inserted in x have bumped out all (i+ 1)’s:

i i i+ 1

xi+1 ai+1

the inserted i’s have
bumped all (i+ 1)’s in x

x̃i+1

in which case x̃i+1 = ai+1 and so bi+1 = ai+1 + xi+1 − x̃i+1 = xi+1.

We now want to get an expression for ξ̃i+1, which denotes the total number of numbers up to i+ 1 that
exist in the output word x̃. Again, either the i’s that we inserted from a did not bump all the (i+1)’s that
existed in x (first of the two figures above), in which case the ai+1-many of (i+ 1)’s, which are inserted
from a will be appended at the end of the last (i+ 1) in x, giving ξ̃i+1 = ξi+1 + ai+1, or the ai-many i’s
in a bumped all the (i+ 1)’s in x (second of the two figures above), in which case the new (i+ 1)’s from
a will be appended after the i’s in x̃. In this case, ξ̃i+1 = ξ̃i + ai+1. Altogether, we have that

ξ̃i+1 = max
(
ξ̃i, ξi+1

)
+ ai+1. (5.6)

We can now iterate this procedure through diagram (5.3). The RSK row insertion via piecewise linear
transformations can be summarised as

Proposition 5.6. Let 1 ≤ i ≤ N . Consider two words x = ixi(i + 1)xi+1 · · ·NxN and a = iai(i +
1)ai+1 · · ·NaN . The row insertion of the word a into the word x denoted by

a

x −→y x̃
b

,

transforms (x,a) into a new pair (x̃, b) with x̃ = ix̃i(i+ 1)x̃i+1 · · ·N x̃N and b = (i+ 1)bi+1 · · ·N bN , which
in cumulative variables

ξj = xi + · · ·+ xj , and ξ̃j = x̃i + · · ·+ x̃j , for j ≥ i, (5.7)

is encoded via 
ξ̃i = ξi + ai,

ξ̃k = max
(
ξ̃k−1, ξk

)
+ ak, i+ 1 ≤ k ≤ N

bk = ak + (ξk − ξk−1)− (ξ̃k − ξ̃k−1), i+ 1 ≤ k ≤ N,

(5.8)

for i < N . If i = N , then ξ̃N = ξN + aN and the output b is empty and we write b = ∅.

It is worth noticing that the recursion

ξ̃k = max
(
ξ̃k−1, ξk

)
+ ak,

is actually the same as the recursion of last passage percolation. To see this more clearly, we can consider
the example of x = 1x12x2 · · ·NxN ,a = 1a12a2 · · ·NaN and for ξj = x1 + · · ·+ xj and ξ̃j = x̃1 + · · · x̃j we
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iterate as

ξ̃N = max
(
ξ̃N−1 + aN , ξN + aN

)
= max

(
max

(
ξ̃N−2 + aN−1 + aN , ξN−1 + aN−1 + aN ) , ξN + aN

)
...

= max
1≤j≤N

(
ξj + aj + · · ·+ aN )

= max
1≤j≤N

(
x1 + · · ·+ xj + aj + · · ·+ aN ), (5.9)

which, as shown in the figure below, is a last passage percolation on a two-row array

maxj

∑
weights of nodes
along red path a

x
j

(5.10)

This is an indication of the relevance of RSK, and in particular this formulation, for last passage percolation
and other models in the KPZ class. Moreover, this formulation is amenable to a generalisation which will
be important in treating the positive temperature case relating to directed polymers. In Section 5.5 we
will prove this connection in more detail.

5.4. A geometric lifting of RSK - Kirillov’s “Tropical RSK”. As we have seen in
Proposition 5.6, RSK can be encoded in terms of piecewise linear recursive relations, using the (max,+)
algebra. Kirillov [K01] replaced the (max,+) in the set of RSK’s piecewise linear relations with relations
(+,×), thus establishing a geometric lifting of RSK, which he named tropical RSK. This name was given
by Kirillov in honour of P. Schützenberger, see [K01], page 84, for some clues regarding the etymology of
this name. However, since the term tropical has been reserved for the opposite passage from the (+,×)
algebra to the (max,+), the term geometric RSK (gRSK) has now prevailed for the geometric lifting of the
RSK correspondence. In this section we will present the construction of gRSK following mostly a matrix
reformulation by Noumi and Yamada [NY04] motivated by discrete integrable systems. The approach is
closely related to that of Proposition 5.6. Let us start with the definition of the geometric row insertion.

5.5. Geometric RSK via a matrix formulation. This section will not be examinable but
please enjoy it.

We start with the following definition (compare to Proposition 5.6):

Definition 5.7. Let 1 ≤ i ≤ N . Consider two words x = (xi, ..., xN ) and a = (ai, ..., aN ). We define the
geometric lifting of row insertion or shortly geometric row insertion of the word a into the word
x, denoted by

a

x −→y x̃
b

,

as the transformation that takes (x,a) into a new pair (x̃, b) with x̃ = (x̃i, · · · x̃N ) and b = (bi+1 · · · bN ),
which in cumulative variables

ξj = xi · · ·xj , and ξ̃j = x̃i · · · x̃j , for j ≥ i, (5.11)

is encoded via 
ξ̃i = ξi · ai,

ξ̃k = ak
(
ξ̃k−1 + ξk

)
, i+ 1 ≤ k ≤ N

bk = ak
ξk ξ̃k−1

ξk−1 ξ̃k
, i+ 1 ≤ k ≤ N.

(5.12)

for i < N . If i = N , then ξ̃N = ξN · aN and the output b is empty and we write b = ∅.
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It was observed by Noumi and Yamada that the geometric row insertion (x,a) 7→ (x̃, b), described in
Definition 5.7 via relations (5.12), is equivalent to a system of equations, related to discrete Toda systems
(see [NY04], Lemma 2.2 and Remark 2.3):

aixi = x̃i, and ajxj = x̃jbj for j ≥ i+ 1,

1

ai
+

1

xi+1
=

1

bi+1
, and

1

aj
+

1

xj+1
=

1

x̃j
+

1

bj+1
for j ≥ i+ 1.

(5.13)

The derivation of the system of equations in (5.13) from (5.12) is a matter of a simple algebraic manipulation.
(5.13) can be put into a matrix form as:

1
. . .

1
āi 1

āi+1 1
. . .

. . .

1
āN





1
. . .

1
x̄i 1

x̄i+1 1
. . .

. . .

1
x̄N


(5.14)

=



1
. . .

1

x̃i 1

x̃i+1 1
. . .

. . .

1

x̃N





1
. . .

1
1

b̄i+1 1
. . .

. . .

1
b̄N


where we have used the notation

x̄ :=
1

x
,

for a nonnegative real x. For a vector x with nonnegative real entries, we will denote by x̄ the vector
whose entries are the inverses of the corresponding entries in x. In the above matrices the entries that
are left empty are equal to zero. Moreover, in the first three matrices the upper left corner is an identity
matrix of size i− 1, while in the fourth matrix the upper left corner is an identity matrix of size i. We put
this matrix equation in a more concrete notation as follows: For a vector x = (xi, ..., xn) we define the
matrix

Ei(x) :=
i−1∑
j=1

Ejj +
N∑
j=i

xjEjj +
N−1∑
j=i

Ej,j+1, (5.15)

where for 1 ≤ i, j ≤ n we define the matrices Eij := (δaiδbj)1≤a,b≤n with δab being the Kronecker delta. In
other words, Eij has entry (i, j) equal to 1 and all others equal to zero. We will denote E1(x) simply by
E(x). Then (5.14) is written more concretely as

Ei(ā)Ei(x̄) = Ei(x̃)Ei+1(b̄) (5.16)

The entries of matrices Ei(x), with x = (xi, ..., xN ), can be readily read graphically from the following
diagram

x
j1

1

N

Nj + 1i

i
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where on the diagonal edges and on the first (i− 1) vertical edges we assign the value 1 and on the rest
of the vertical edges we assign the values xi, xi+1, . . . , xN in this order. Then the (k, ℓ) entry of Ei(x) is
given by Ei(x)(k,ℓ) =

∑
π : (1,k)→(2,ℓ) wt(π), where the sum is over all down-right paths (consisting in this

case of one step), along existing edges, starting from site k in the top row to site ℓ in the bottom row
and the weight of the path π is given by the product of the weights along the edges that path π traces.
Furthermore, one can easily check that for products of the form E(y1, ...,yk) := E1(y

1)E2(y
2) · · ·Ek(yk),

where we understand that for i = 1, ..., k the vector yi = (yii, ..., y
i
N ), the entries can be read graphically

from the following diagram:

y1

yk

i

j

where a vertical edge connecting (a, b) to (a + 1, b) (in matrix coordinates) is assigned the weight yab
and all the diagonal edges are assigned weight one. Entry (i, j) of the matrix E(y1, ...,yk) is given by
E(y1, ...,yk)(i,j) =

∑
π : (1,i)→(k∧j+1,j) wt(π), where the sum is over all down-right paths, along existing

edges, from site (1, i) (in matrix coordinates) in the top row to site (k ∧ j + 1, j), k ∧ j := min(k, j), along
the lower border and where the weight of a path is wt(π) :=

∏
e∈π we, with the product over all edges e

that are traced by the path π.
More remarkably, minor determinants of matrices E(y1, ...,yk) have also a similar graphical represen-

tation. If we denote by detE(y1, ...,yk)i1,...,irj1,...,jr
the determinant of the sub-matrix of E(y1, ...,yk) which

includes rows i1 < · · · < ir and columns j1 < · · · < jr then

detE(y1, ...,yk)i1,...,irj1,...,jr
=

∑
π1,...,πr ∈Π

i1,...,ir
j1,...,jr

wt(π1) · · ·wt(πr), (5.17)

where Π i1,...,ir
j1,...,jr

is the set of directed, non-intersecting paths, starting at locations i1, ..., ir in the top row
and ending at locations j1, ..., jr at the bottom border of the grid :

y1

yk

i1 ir

j1 jr

Notice that the non-intersecting property and the orderings i1 < · · · < ir and j1 < · · · jr enforces that the
path starting at ia will end at ja for all a = 1, ..., r.

Since E(y1, ...,yk)(i,j) =
∑

π : (1,i)→(k∧j+1,j) wt(π), (5.17) is a consequence of the Lindström-Gessel-
Viennot theorem.

There is also a set of matrices dual to Ei(x), which we now introduce, the entries and minor determinants
of which are given in terms of the total weights of paths moving in the more standard up-right, directed
fashion. Let us start with the i = 1 case, where we recall the convention that E1(x) = E(x), and define

H(x) := DE(x̄)−1D−1, with D = diag
(
(−1)i−1

)N
i=1
. (5.18)
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An easy computation shows that H(x) =
∑

1≤i≤j≤N xixi+1 · · ·xjEij , that is, the (i, j) entry of H(x)
equals xixi+1 · · ·xj if i ≤ j and zero otherwise.

In general, for k ≥ 1, and x = (xk, ..., xn), in which case we note that H(x) = H(xk, ..., xN ) is a k × k
matrix, we define the N ×N matrix

Hk(x) :=

[
Ik−1 0
0 H(x)

]
where Ik−1 is a (k − 1)× (k − 1) identity matrix. Then using (5.18) equation (5.16) can be equivalently
written as

Hi(x)Hi(a) = Hi+1(b̄)Hi(x̃) (5.19)

Similarly to E(y1, ...,yk), products of the form H(y1, ...,yn) := H(y1) · · ·H(yn) or more generally
H(y1, ...,yk) := Hk(y

k) · · ·H1(y
1) have the property that their entries and their minor determinants are

given via ensembles of non-intersecting paths. This is again a consequence of the Lindström-Gessel-Viennot
theorem: denoting by detH(y1, ...,yk)i1,...,irj1,...,jr

the minor determinant of H(y1, ...,yk) consisting of rows
i1 < · · · < ir and columns j1 < · · · < jr, then

detH(y1, ...,yk)i1,...,irj1,...,jr
=

∑
π1,...,πr

wt(π1) · · ·wt(πr)

where the sum is over up-right, non crossing paths, starting at locations i1, ..., ir at the bottom border
(including possibly the diagonal part) and ending at locations j1, ..., jr at the top row of the grid.

y1

yk

j1 jr

i1

ir

Each vertex (a, b) of the grid is assigned a weight yab and in this case the total weight of a path is
wt(π) =

∏
(a,b)∈π y

a
b .

Noumi and Yamada [NY04] used these observations in order to give a matrix reformulation of geometric
RSK allowing the output of geometric RSK to be expressed in terms of total weight (often also called
partition functions) of ensembles of non-intersecting paths. The main theorem towards this is the following
whose origins are in the theory of total positivity.

Theorem 5.8. Given a matrix X := (xij : 1 ≤ i ≤ n, 1 ≤ j ≤ N) =: (x1, ...,xn)T the matrix equation

H(x1)H(x2) · · ·H(xn) = Hk(y
k)Hk−1(y

k−1) · · ·H1(y
1), k = min(n,N), (5.20)

has a unique solution (y1, ...,yk) with yi := (yii, ..., y
i
N ), given by

yii =
τ ii
τ i−1
i

, and yij =
τ ij τ

i−1
j−1

τ i−1
j τ ij−1

for i < j, (5.21)

where

τ ij :=
∑

π1,...,πi∈Π1,...,i
j−i+1,...,j

wt(π1) · · ·wt(πi) (5.22)

is the total weight (partition function) of an ensemble of i non-intersecting, down-right paths π1, ..., πi,
along the entries of X, starting from (1, 1), ..., (1, i) and ending at (n, j − i+1), ..., (n, j), respectively, with
the weight of a path πr given by wt(πr) :=

∏
(a,b)∈πr x

a
b .
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Proof. The fact that the left-hand side of (5.20) can be written uniquely as a product of the form of the
right-hand side of (5.20) follows from a more general result of Berenstein-Fomin-Zelevinsky [?], which
states that any upper triangular matrix A = (aij)1≤i,j≤n such that

• aij = 0, if j < i or j > i+m for some m ≤ n, i.e. A is a “band” upper triangular matrix . Moreover,
we assume that aij = 1 for j = i+m,

• the minor determinants

Qi,j := Qi,j(A) := detA1,...,j−i+1
i,i+1,...,j ,

are non-zero for all i, j such that i ≤ j and i ≤ m,

can be written uniquely in the form Hk(y
k)Hk−1(y

k−1) · · ·H1(y
1). Let us note that the second bullet

is essentially enforced by the first but we preferred to state it separately as the non-vanishing of these
minor determinants is an important feature in this matrix representation as well as in terms of the path
representation that follows. We refer for this general result and proofs to [NY04], Propositions 1.5, 1.6 and
Theorem 2.4. The proof of this statement is a clever linear algebra using the Gauss decomposition but we
prefer to omit it as we would like to go straight to the connection to path weights.

It is easy to check that the left-hand side of (5.20) satisfies the above conditions. Here we will only prove
that the solution to (5.20) is given via (5.21), which shows the relation between the minor determinants of
products (5.20) and partition functions of paths.

From the graphical representation of the minor determinants of H(x1)H(x2) · · ·H(xn), we have that

τ ij = det
(
H(x1)H(x2) · · ·H(xn)

)1,...,i
j−i+1,...,j

.

But by (5.20) this is equal to det
(
Hk(y

k)Hk−1(y
k−1) · · ·H1(y

1)
)1,...,i
j−i+1,...,j

and again from the graphical
representation we see that this equals

∑
γ1,...,γr

wt(γ1) · · ·wt(γr) ≡
∑

γ1,...,γr

(5.23)

where the summation is over non-intersecting, up-right paths on the trapezoidal lattice with weights y, that
start from vertices (1, 1), ..., (i, i) in the lower-left border of the lattice and go to vertices (1, j−i+1), ..., (1, j)
at the upper border. As seen in the figure in relation (5.23), there is only one such i-tuple of paths with
total weight

∏
1≤a≤i , a≤b≤j y

a
b . Writing similarly τ i−1

j , τ i−1
j−1, τ

i
j−1 we see that

τ ii
τ i−1
i

= yii, and for i < j
τ ij τ

i−1
j−1

τ i−1
j τ ij−1

= yij .

□

Let us now describe how geometric RSK can be encoded in this matrix formulation. We will make
reference to the following diagram (refer to relation (5.3) for a reminder on the notation):

x1 x2 =: x2,1 x3 =: x3,1

∅ −→y y1,1 −→y y2,1 −→y y3,1 · · ·
x2,2 x3,2

∅ −→y y2,2 −→y y3,2 · · ·
x3,3

∅ −→y y3,3 · · ·

∅ · · ·

where xi = (xi1, ..., x
i
N ) for i ≥ 1, is a sequence of words, which are successively row inserted via geometric

RSK. We should keep in mind the useful identification of entries xij with number of letters ‘j’ in a ‘word ’
xi as in (3.20).
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Let us now describe geometric RSK in this matrix language translating essentially from the language of
RSK as described in Section ??. For this reason we will be using the terms tableau, row insertion, word etc.

Initially, we have an empty tableau ∅ to which we insert the first word x1 as
x1

∅ −→y y1,1

∅
. Of course,

in this situation the output tableau will only have one row y1,1 and y1,1 = x1, which we trivially encode
via the matrix equation

H(x1) = H(y1,1). (5.24)

Next, to the single-row tableau y1,1 we insert x2 as
x2

y1,1 −→y y2,1

x2,2

. Here, y2,1 corresponds to the

updated first row of the new tableau and y2,2 = x2,2 to its second row. We notice that x2,2 is the word
consisting of the dropdown letters after the insertion of x2 into y1,1, which are then inserted into the
empty second row and this is the reason why the second row of the updated tableau y2,2 equals x2. This
second set of insertions can be be encoded via a matrix equation, which is derived by multiplying (5.24)
on the right by H(x2) and using (5.20) to obtain

H(x1)H(x2) = H1(y
1,1)H(x2)

(5.20)
= H2(y

2,2)H1(y
2,1). (5.25)

The fact that this matrix multiplication and the output variables y2,2,y2,1 give the output of geometric
row insertion with input x1,x2 is a consequence of Definition 5.7, its matrix reformulation (5.16), (5.20)
and finally Theorem 5.8.

In a similar way, we encode the third group of row insertions :

x3

y2,1 −→y y3,1

x3,2

[word x3 is row inserted to the first line y2,1 of the current tableau],

x3,2

y2,2 −→y y3,2

x3,3

[word x3,2 formed by the dropped down letters are row

inserted to the second line y2,2 of the current tableau],
x3,3

∅ −→y y3,3

∅
[the dropdown letters from the previous insertion form the new row y3,3],

via multiplying on the right (5.25) by H(x3) and using successively relation (5.20) as

H(x1)H(x2)H(x3) = H2(y
2,2)H1(y

2,1)H(x3)
(5.20)
= H2(y

2,2)H2(x
3,2)H1(y

3,1)

(5.20)
= H3(x

3,3)H2(y
3,2)H1(y

3,1) = H3(y
3,3)H2(y

3,2)H1(y
3,1)

We point out that the second equality above is a matrix representation of the diagram
x3

y2,1 −→y y3,1

x3,2

,

the third equality of the diagram
x3,2

y2,2 −→y y3,2

x3,3

and the fourth of the (trivial) diagram
x3,3

∅ −→y y3,3

∅
.

This procedure continues during the first N insertions at which stage the resulting tableau will have the
full depth of N rows. After that, no additional rows will be created in the subsequent tableaux and the
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process continues as follows

xN+1 =: xN+1,1 xN+2 =: xN+2,1 xN+3 =: xN+3,1

yN,1 −→y yN+1,1 −→y yN+2,1 −→y · · ·
xN+1,2 xN+2,2 xN+3,2

yN,2 −→y yN+1,2 −→y yN+2,2 −→y · · ·
xN+1,3 xN+2,3 xN+3,3

yN,3 −→y yN+1,3 −→y yN+2,3 −→y · · ·
xN+1,4 xN+2,4 xN+3,4

...
...

...
...

...
...

...

xN+1,N xN+2,N xN+3,N

yN,N −→y yN+1,N −→y yN+2,N −→y · · ·
∅ ∅ ∅

Overall, the above, two-step procedure is encoded via the matrix equation
H(x1)H(x2) · · ·H(xn) = Hn(y

n,n)Hn−1(y
n,n−1) · · ·H1(y

n,1), if n ≤ N

H(x1)H(x2) · · ·H(xn) = HN (y
n,N )HN−1(y

n,N−1) · · ·H1(y
n,1), if n ≥ N

(5.26)

We have seen how to encode (geometric) row insertion in a matrix formulation, thus producing the P
tableau of geometric RSK. We can state the geometric RSK as a one-to-one correspondence between input
matrices X = (xij : 1 ≤ i ≤ n, 1 ≤ j ≤ N) and two sets of variables P := (pij : 1 ≤ i ≤ N ∧ n, i ≤ j ≤ N)

and Q := (qij : 1 ≤ i ≤ N ∧ n, i ≤ j ≤ n). These will be the analogues of the P and Q tableaux in the
standard RSK correspondence. For a full proof of this theorem (in particular the reconstruction of X from
(P,Q)), we refer to [NY04], Section 3 and Theorem 3.8.

Theorem 5.9. Consider a matrix X := (xij : 1 ≤ i ≤ n, 1 ≤ j ≤ N) with nonnegative entries and denote
by (x1, ...,xn) its rows and by (x1, ...,xN ) its columns. Then there exists a one-to-one correspondence
between X and a set of variables p i := (pii, ..., p

i
N ) for i = 1, ...,min(n,N) and q i = (q ii , ..., q

i
n) for

i = 1, ...,min(n,N), which are uniquely determined via equations

H(x1)H(x2) · · ·H(xn) = Hk(p
k)Hk−1(p

k−1) · · ·H1(p
1), k = min(n,N), (5.27)

H(x1)H(x2) · · ·H(xN ) = Hk(q
k)Hk−1(q

k−1) · · ·H1(q
1), k = min(n,N), (5.28)

Variables (pij) and (qij) are given in terms of the input variables (xij) via relations (5.20) and (5.22).

An immediate consequence of the formulation of gRSK as in Theorem 5.9 and in particular the matrix
equations (5.27), (5.28) is that if the input matrix X is symmetric then the P and Q tableaux of gRSK are
equal.

Geometric RSK on (geometric) Gelfand-Tsetlin patterns. It is useful to put geometric RSK and
Theorem 5.9 under a Gelfand-Tsetlin framework. To this end, if p1, ...,pk and q1, ..., qk are as in (5.27),
(5.28), set

zij := pjj p
j
j+1 · · · p

j
i−1 p

j
i for 1 ≤ j ≤ i ≤ N, and j ≤ n ∧N,

(zij)
′ := q jj q

j
j+1 · · · q

j
i−1 q

j
i for 1 ≤ j ≤ i ≤ n, and j ≤ n ∧N.

Then Theorem 5.9 establishes a bijection between matrices X := (xij : 1 ≤ i ≤ n, 1 ≤ j ≤ N) with
nonnegative entries and a pair (Z,Z′) = gRSK(X). We will call the arrays Z = (zij : 1 ≤ j ≤ i ≤ N, j ≤ n∧N)

and Z′ = ((zij)
′ : 1 ≤ j ≤ i ≤ n, j ≤ n ∧ N), geometric Gelfand-Tsetlin patterns, even though in

general they do not satisfy the interlacing constraints zi+1
j+1 ≤ zij ≤ z

i+1
j (however, they do degenerate to

genuine Gelfand-Tsetlin patterns in the combinatorial limit described in the next paragraph). For short,
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we will often denote geometric Gelfand-Tsetlin patterns by gGT, while at other times, when it is clear
from the context, we may omit the adjective “goemetric”.

Bearing in mind property (5.21) we obtain that variables zij are given in terms of ratios of partition
functions

zij =
τ ji
τ ji−1

=

∑
π1,...,πj

wt(π1) · · ·wt(πj)∑
π1,...,πj−1

wt(π1) · · ·wt(πj−1)
, (5.29)

where the sum in the numerator is over directed, non-intersecting paths along entries of X starting from
(1, 1), ..., (1, j) and ending at (n, i− j+1), ..., (n, i), respectively, and the denominator sum is over directed,
non-intersecting paths starting from (1, 1), ..., (1, j − 1) and ending at (n, i− j + 2), ..., (n, i), respectively.
In particular,

zN1 =
∑

π : (1,1)→(n,N)

wt(π) =
∑

π : (1,1)→(n,N)

∏
(a,b)∈π

xab , (5.30)

which defines the partition function of the directed polymer model.

Passage to standard (combinatorial) RSK setting. We will now see how the geometric RSK
framework degenerates to the standard RSK framework and how in this way we can obtain via Theorem
5.9 both Schensted’s and Greene’s theorems as well as the links between RSK and last passage percolation
alluded to in (5.9) and (5.10).

Replacing in (5.12) variables ξk, ξ̃k, ak, bk by eξk/ε, eξ̃k/ε, eak/ε, ebk/ε, taking the logarithm on both sides
of each relation therein and multiplying by ε, the set of equations (5.12) may be written as

ξ̃i = ξi + ai,

ξ̃k = ak + ε log
(
eξ̃k−1/ε + eξk/ε

)
, i+ 1 ≤ k ≤ N

bk = ak + (ξk − ξk−1)− (ξ̃k − ξ̃k−1), i+ 1 ≤ k ≤ N.

(5.31)

Taking now the limit ε→ 0 these reduce to the piecewise linear transformations (5.8) defining the standard
RSK correspondence. Replacing also the variables xij , p

i
j , q

i
j in Theorem 5.9 by ex

i
j/ε, ep

i
j/ε, eq

i
j/ε we obtain

in the limit ε→ 0 the RSK correspondence, in the sense that variables (pij) and (qij) encode the P and Q
tableaux of the standard RSK.

In particular, the solution to the degeneration, as ε→ 0, of problem (5.27) is given via the degeneration
of relations (5.21), (5.22) as:

pii = σii − σi−1
i and pij = σij + σi−1

j−1 − σ
i−1
j − σij−1 for i < j,

with σij := max
π1,...,πi∈Π1,...,i

j−i+1,...,j

i∑
k=1

wt(πk)

being last passage percolation functionals corresponding to ensembles of i non-intersecting, down-right
paths π1, ..., πi, starting from (1, 1), ..., (1, i) and ending at (n, j − i+1), ..., (n, j), respectively. The weight
of a path πr in this case is wt(πr) :=

∑
(a,b)∈πr x

a
b .

Passing to the Gelfand-Tsetlin variables, we set

zij := pjj + p jj+1 + · · ·+ p ji−1 + p ji = σ ji − σ
j
i−1

for 1 ≤ j ≤ i ≤ N, and j ≤ n ∧N . From this we get that

zN1 + · · · zNj := σ jN ,

which in the case j = 1 is Schensted’s theorem.
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6. Pieri rules and integrable Markov processes.

6.1. Pieri Rule. Pieri rule is the rule of how to expand sνhn and sνen, for ν a partition, in terms of
Schur functions. Notice that the function sνhn and sνen are symmetric and since Schur functions are a
basis for the ring of symmetric functions, such an expansion exists and the question is to determine the
coefficients. We will see that the Pieri rule has probabilistic interpretations, in particular showing that the
evolution of the shape of Young tableaux through RSK is Markovian.

The Pieri rule is a particular case of the expansion

sµsν =
∑
λ

cλµνsλ,

with the coefficients cλµν called the Littlewood-Richardson coefficients. These coefficients have a beautiful
and deep combinatorial interpretation that goes through Schtzenberger involution or jeu-de-taquin (the
“ teasing game”). Littlewood-Richardson coefficient also have a wide range of application in algebraic
geometry (Schubert calculus, Grassmanians etc.) and representations theory. Unfortunately, I don’t think
we will have time to go through all these...but you can take a look at the appendix of Stanley’s book.

Let us just expose Pieri’s rules and the links to probability. We need to start with some definitions.

Definition 6.1. Let λ, µ be partitions such that µ ⊂ λ, i.e. the Young diagrams with shape µ lies inside
the skew diagram with shape λ. We define the skew partition λ/µ to be the skew-shaped diagram that
remains after removing the boxes of µ from the Young diagram corresponding to λ. That is, λ/mu =
(λ1 − µ1, λ2 − µ2, ...).

An example of a skew partition and its skew Young diagram depiction is this:

λ =

µ

In this figure the blue shaded area is the skew partition λ/µ.

Definition 6.2. A skew partition λ/µ is called a horizontal strip if it contains no two boxes on top of
each other.

Two (typical) examples of horizontal skew-partitions are :

λ =

µ

or λ =

µ

(6.1)

where again the blue are depicts λ/µ.

Definition 6.3. A skew partition λ/µ is called a vertical strip if it contains no two boxes at the same
horizontal level.

We can now state the first Pieri rule and give a bijective proof of it. For an inner product proof look at
Stanley’s book.

Theorem 6.4 (Pieri rule). Let ν be a partition and let sν be the corresponding Schur functions. Let also
sn be the Schur function that corresponds to the partition (n), which consists of one part with n boxes. We
then have the identity

sνsn =
∑

λ : λ/ν is a horizontal strip of size n

sλ.
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Since sn = hn (explain why) the same identity holds for the product sνhn.

Proof. The bijective proof is another nice application of the RSK algorithm.
We start with the combinatorial definition of the Schur functions and write

sνsn =
∑

T∈SSY T (ν)

x
α1(T )
1 x

α2(T )
2 · · ·

∑
T ′∈SSY T ((n))

x
α1(T ′)
1 x

α2(T ′)
2 · · ·

=
∑

T∈SSY T (ν),T ′∈SSY T ((n))

x
α1(T )+α1(T ′)
1 x

α2(T )+α2(T ′)
2 · · · (6.2)

Setting βi := αi(T ) + αi(T
′) for i ≥ 1, Pieri’s rule amounts to finding a bijection between, on the one

hand, the set of pairs (T, T ′) of T ∈ SSY T (ν) and T ′ ∈ SSY T ((n)) with type(T ) = (α1(T ), α2(T ), ...)

and type(T ′) = (α1(T
′), α2(T

′), ...) and, on the other hand, the union
⋃
λ : λ/ν is a horizontal strip of size n T

β
λ

of the set of SSY T (λ) with λ/ν is a horizontal strip of size n and type β = α(T ) + α(T ′).
To do so, let encode a T ′ ∈ SSY T ((n)) via the sequence of numbers t′1t′2 · · · t′n as they appear in its boxes.

Let us now start inserting letters t′1, t′2, . . . , t′n in this sequence into tableau T via RSK (row insertion), i.e.(
((T ← t′1)← t′2)← · · ·

)
← t′n. (6.3)

The fact that the resulting tableau in (6.3) will have an additional horizontal strip added to ν will be a
consequence of the fact that t′1 ≤ t′2 ≤ · · · ≤ t′n and the following consideration: Let us look at the insertion
T ← t′1:

(i) either t′1 will be inserted at the end of the first row and the insertion will finish or
(ii) it will bump an entry of the first row, denote it by t′′2, which will then be inserted in the second row

bumping another entry t′′′1 etc. initiating a cascade until eventually a new box is created at the end of a
row. For example:

T ← t′1 =

t′1

t′′1

t′′′1

Notice that the red path will move towards the left, weakly, as we move downwards. Let us see this by
seeing why the placement of t′′1 in the second row should be (weakly) in the left of the placement of t′1 in
the first row: t′1 took the place of t′′1, which means that the box just below that position would contain a
number a1 strictly larger than t′′1. So when t′′1 gets to be inserted in the second row, it cannot go beyond
the box of a1.

Let us now insert t′2. We know that t′1 ≤ t′2, so the box where t′2 is inserted in the first row will be in
the right of that of t′1. There are two possibilities:

(i) It may be inserted at the end of the row in which case the insertion ends and the resulting tableau
after both t′1 and t′2 is clearly obtained from T by adding a horizontal strip of two boxes (occupied
by t′2 and t′′′1 ) like in the picture:

(
T ← t′1

)
← t′2 =

t′1

t′′1

t′′′1

t′2

(ii) Or it might bump an entry t′′2, which will then be inserted into the second row. Let’s see what
happens in this case:
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Let a2 be the entry of the box below that of the box used to be occupied by t′′2 (and which now is
occupied by t′2. We have that

t′1 ≤ t′2 < t′′2 < a2

with the second inequality as a consequence of the fact that t′2 bumped t′′2. Moreover, we have that
t′′1 ≤ t′′2 since t′′1 used to occupy in the T tableau the box of t′1, which is in the left of that that t′′2
used to occupy before it was bumped. This inequality implies that, when inserted in the second row,
t′′2 will be strictly to the right t′′1 but also weakly to the left of a2. This process will continue, it t′′′1
was not appended at the end of the row. Let’s see what happens if t′′′1 was appended at the end of
the next row.

Before being bumped, t′′′1 was occupying the box which is currently occupied by t′′1, hence t′′′1 ≤ t′′′2
since the box of t′′′2 (which will occupied by t′′2 was on the right of that occupied by t′′′1 (before being
bumped). But since t′′′2 is larger than t′′′1 , when inserted in the row that t′′′1 currently lies, it will
bypass it. Since we have assumed that t′′′1 is currently at the end of the row, t′′′2 will go at the end of
the same row, next to t′′′1 . See the picture:

(
T ← t′1

)
← t′2 =

t′1

t′′1

t′′′1

t′2
a2t′′2

t′′′2

It is now clear that
(
T ← t′1

)
← t′2 is obtained by T by adding a horizontal line, consisting of the

boxes occupied by t′′′1 and t′′′2 .

The process continues in the same way, therefore
(
((T ← t′1)← t′2)← · · ·

)
← t′n is obtained from T by

adding a horizontal strip. □

Exercise 20. Prove the dual Pieri rule that

sνs1n = sνen =
∑

λ : λ/ν is a vertical strip of size n

sλ.

Use the homomorphism ω and the fact† that ω(sλ) = sλ′ , where for a partition λ, λ′ is the partition whose
rows (in the Young diagram representation) are the columns of λ.

6.2. Solvable particle systems. We will recast RSK into a two-dimensional (triangular array)
interacting particle system, which couples two one-dimensional interacting particle systems. The one 1d
particle system will be the right diagonal of the ϑ pattern and the other its bottom row (which is also the
shape of the Young tableau). Both systems will be Markovian but while the Markovianity of the diagonal
will be obvious the Morkovianity of the bottom row (or, equivalently, the evolution of the shape of the
Young tableau of RSK) is very non obvious. The Markovian evolution of the shape will be related to the
Pieri rule.

To start, we will need to recall the Gelfand-Tsetlin representation of Young tableaux from Section 3.7.
This is a triangular array of numbers (zij)1≤j≤i≤N which interlace, meaning that

zi+1
j+1 ≤ z

i
j ≤ zi+1

j . (6.4)

We also recall the encoding of Young tableaux that the Gelfand-Tsetlin patterns offer, which is that

zij is the total number of boxes in row j, which contain numbers up to i

†if you want understand why this fact holds, look at Stanley’s book, Section 7.14. This fact used the dual RSK, which we
didn’t cover
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A matrix, which serves as the input of RSK will be considered as encoding a sequence of signals which
trigger particle motion. Pictorially we can image

×

×

×

×

×

←−

(6.5)

where the lines in the left can be thought of as the input array

0 1 0 0
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
...

...
...

...


.

The first pulse being on line 2, will trigger, via row insertion, a move of particle z12 and this move will
trickle downwards in teh gelfand-Tsetlin pattern in a particular way, which is consisent with the row
insertion. The rule is the following:

• a particle zij can only move to the right by 1.

• if zij < zi+1
j , then the motion will propagate to particle zi+1

j+1, which will move to the right by 1
step,

• if zij = zi+1
j , then the motion will propagate to particle zi+1

j , which will move to the right by 1
step,

• the process continues in the above fashion until the motion reached the bottom room of the
Gelfand-Tsetlin pattern.

For example, a particle motion of the form

indicates that :

1. there was a “2” that was row-inserted, which causes z21 to jump to the right by 1,

2. before its jump, z21 was strictly less than z31 and so z21 “pulls” particle z32 to the right by 1

3. before its jump, z32 was equal to z43 and so it pushes particle z43 to the right by 1.

To see why this motion is consistent with row insertion, we invite the reader to work out the particle
representation of the row insertion of the word (2, 3) into the Young tableau / Gelfand-tsetlin pattern:

1 1 2 2 3 4
2 2 3 4
3 4
2

≡

2
2 4

1 3 5
1 2 4 6

←− (2, 3)

We can view the right diagonal (zi1 : i = 1, ..., N) of the Gelfand-Tsetlin pattern as a one-dimensional
particle system, called push-TASEP (TASEP stands for Totally Asymmetric Exclusion Process). Indeed,
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setting
xi := zi1 −N + i, for i = 1, ..., N

and given that zi1 ≤ z
i+1
1 , we have that xi < xi+1 and so we can map the diagonal to a linear system of

particles where no two particles occupy the same location. For example, the diagonal (2, 4, 5, 6) of the
above gelfand-Tsetlin pattern maps to particles

If a particle that attempts to jump is blocked by the particle in front of it, then it pushes that particle
one step ahead. Recall that the location of the first particle from the left is x1 = z11 −N + 1, the location
of the second particle is x2 = z12 −N + 2 and so on... If, now, a 2 is inserted in the tableau, the second
particle (from the left) will want to jump to the right as

If, now, another 2 is inserted, again the second particle (from the left) will want to jump to the right but
in this case it is blocked by the third particle and so it will push it also to the right as

It is clear that push-TASEP is Markovian because knowing the randomness (ie which particle is prompted
to jump) and the current configuration, we can determine the next configuration. Moreover, it is easy to
see that the whole Gelfand-Tsetlin configuration (zij : 1 ≤ j ≤ i ≤ N) is Markovian. However, it is not
obvious that the evolution of the bottom row zN (n) := (zNi (n) : i = 1, ..., N) is Markovian on its own, that
is, that knowing the random input wn = 1w

n
1 2w

n
2 · · ·Nwn

N and the configuration zN (n), we can determine
(the statistics of) the next configuration without any further information or the history of (zN (t) : t < n).
We will determine that this is the case when the distributions of (W i

j ) are independent geometric with
parameters piqj . This consideration is important because it will turn out the Markovian dynamics of the
bottom row are recognised as (analogues) of Markovian dynamics coming from Random Matrix Theory
and so the statistics of the largest particle of push-TASEP are identified as the (analogues of the) statistics
of largest eignevalue a random matrix ensemble.

The bottom row of a Gelfand-Tsetlin pattern can be viewed as a function of the Gelfand-Tsetlin pattern,
in particular (zNi : i = 1, ..., N) is the projection of Z := (zij : 1 ≤ j ≤ i ≤ N) onto its bottom row. Given
that Z evolves as a Markov process, the question is a particular case of the following question :

when is a function of a Markov process a Markov process itself ?

This question naturally brings us to the point that we should do a quick recap of Markov process and
prove the main theorem on Markov functions, which is known as the Pitman-Rogers theorem.

6.3. A quick reminder / introduction of Markov processes and the Pitman-
Rogers theorem. A Markov process is a stochastic process (Xn)n≥0 such that the future only depends
on the present and not the past. In particular

P(Xn+1 = xn+1 |Xn, ..., X0) = P(Xn+1 = xn+1 |Xn).

Recall that for two variables X,Y

P(Y = y |X = x) =
P(Y = y,X = x)

P(X = x)
,

by Bayes rule.
An important notion in Markov processes is the transition probability matrix. This is defined as

Qn(y, x) := P(Xn+1 = y |Xn = x), for x, y in the state space S of (Xn)
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A Markov process is called (time) homogeneous, if the transition matrix Qn is independent of the time n,
i.e. Qn(x, y) = Q(x, y) for all x, y ∈ S.

Another thing to note is that Qn(x, y) are what is called stochastic matrices, i.e.
∑

y∈S Qn(x, y) = 1 for
all x ∈ S.

Markov processes are essentially the only processes for which a complete theory exists. If a process is
not Markov, ie it has memory, then its study can be formidable. Some such examples are the self-avoiding
walk, reinforced random walk etc.

Another interesting point is the relation between Markov processes and differential operators. To
understand the link, we can look at the Simple Random Walk (SRW) on Zd, that is the Markov process
such that

Q(x, y) =
1

2d
1|x−y|1=1

. Viewed as an operator Q acts on functions as

(Qf)(x) =
∑
y∈S

Q(x, y)f(y),

and in the special case of SRW

(QSRWf)(x) =
1

2d

∑
y∈Zd : |y−x|1=1

f(y).

The operator Q− I, where I is the identity operator is also distinguished and often it is call the generator
of the Markov process. It is important as it converts Markov process to martingales - another distinguished
class of stochastic processes. In the case of SRW we have that(

(QSRW − I)f
)
(x) =

1

2d

∑
y∈Zd : |y−x|1=1

(
f(y)− f(x)

)
and this is the discrete Laplacian on Zd, i.e. in a suitable spatial scaling limit it converges to 1

2∆.
All in all, having Markov processes is important as we can use the theory. In general, a function of a

Markov process is not Markov (can you think of such a situation ?), so knowing when the Markovianity is
maintained is important. A criterion is provided by the following theorem:

Theorem 6.5 (Pitman-Rogers [RP81]). Consider a discrete time Markov process Z(·) on a measurable
space (Z, µ) with transition probability kernel Π and a measurable function Φ : Z → X , with X a measurable
space. Assume that there exists a kernel P(·, ·) : X × X → R such that for almost every x ∈ X , P(x, ·) is a
probability measure and a kernel K(·, ·) : X × Z → R satisfying:

(i) for all x ∈ X , K(x,Φ−1(x)) = 1,

(ii) the inter-twinning relation KΠ = PK holds.

If, for arbitrary x ∈ X , the initial distribution of the Markov process Z(·) is K(x, ·)/
∫
Z K(x, z)µ(dz), then

it holds that

(i) The process Xn = Φ(Zt) is Markov with respect to its own filtration Xn := σ{Xs : s ≤ n} with
transition probability kernel P and initial condition X0 = x,

(ii) For all x ∈ X and all bounded Borel functions f on Z,

E
[
f(Zt)

∣∣Xs, s < t, Xt = x
]
= (Kf)(x).

Proof. For simplicity, let us assume that µ is the counting measure and that
∑

z K(x, z) = 1. Let us
compute the probability

P(Xn = xn |Xn−1 = xn−1, ..., X1 = x1, X0 = x0) =
P(Xn = xn, Xn−1 = xn−1, ..., X1 = x1, X0 = x0)

P(Xn−1 = xn−1, ..., X1 = x1, X0 = x0)
,
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and let us concentrate on the numerator, which we can write as

P(Xn = xn, ..., X1 = x1, X0 = x0) =
∑

zn∈Φ−1(xn),...,z0∈Φ−1(x0)

P(Zn = zn, ..., Z0 = z0)

and since (Zn) is Markov, we can write this as∑
zn∈Φ−1(xn),...,z0∈Φ−1(x0)

P(Zn = zn |Zn−1 = zn−1) · · ·P(Z1 |Z0 = z0)P(Z0 = z0)

=
∑

zn∈Φ−1(xn),...,z0∈Φ−1(x0)

Π(zn−1, zn) · · ·Π(z0, z1)K(x0, z0),

where we also used the fact that the initial distribition, ie the distribution of Z0 is K(x0, ·). Let us now
compute using, first, property (i) and then the intertwining property (ii)∑

z0∈Φ−1(x0)

Π(z0, z1)K(x0, z0) =
∑
z0

Π(z0, z1)K(x0, z0)

=
∑
z0

K(x0, z0)Π(z0, z1)

=
∑
x̃0

P(x0, x̃0)K(x̃0, z1)

but, again, because of assumption (i) this is equal to

P(x0, x1)K(x1, z1)

feeding this into the next summation, we have that∑
z1∈Φ−1(x1)

Π(z1, z2)
∑

z0∈Φ−1(x0)

Π(z0, z1)K(x0, z1) =
∑

z1∈Φ−1(x1)

Π(z1, z2)P(x0, x1)K(x1, z1)

=
∑

z1∈Φ−1(x1)

K(x1, z1)Π(z1, z2)P(x0, x1)

= K(x2, z2)P(x1, x2)P(x0, x1)

where in the last step we used the intertwining property in the same way we used it above. Repeating this
procedure we obtain that

P(Xn = xn, ..., X1 = x1, X0 = x0) =
∑

zn∈Φ−1(xn)

K(xn, zn)P(xn−1, xn) · · ·P(x1, x2)P(x0, x1)

= P(xn−1, xn) · · ·P(x1, x2)P(x0, x1),

where in the second equality we used assumption (i). This clearly leads to

P(Xn = xn |Xn−1 = xn−1, ..., X1 = x1, X0 = x0) = P(xn−1, xn),

which is the desired Markov property.
Claim (ii) is left as an exercise. □

6.4. Application to RSK dynamics. (this subsection will not be examinable but please enjoy it)
We now want to apply the Pitman-Rogers theorem to show that the bottom row of the Gelfand-Tsetlin

pattern (or the shape of the Young tableau) induced by the RSK dynamics is Markovian. This is not the
case for any distribution on the entries of the input matrix W = (wij). It happens only when the entries
have either a geometric distribution or an exponential distribution (the latter can be recovered as a limit
of geometric random variables).

For the sake of exposition, let us assume exponential distributions. In this case and referring to (6.5),
the crosses on the input lines constitute a Poisson Point Process (is the inter-arrival times has exponential
distributions). As we said, and we will refresh below, the evolution of the whole pattern is Markovian
and denote its transition matrix by Π(Z,Z ′). To show that the bottom row of the Gelfand-Tsetlin
pattern evolves markovianly, we need to find two kernels, P (λ, ν), where λ = (λ1 ≥ λ2 ≥ · · · ≥ λN ) and
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ν = (ν1 ≥ ν2 ≥ · · · ≥ νN ) (λ, ν being partitions representing the state space of shapes) and another kernel
K(λ, Z) that intertwines P with the transition kernel Π of the whole pattern. The question is how to
guess these !

The answer comes from the structure of RSK, its relations to Schur functions and the structure of Schur
functions via its combinatorial definition and the Pieri rule.

• First, let us recall the RSK dynamics: on a GT pattern Z = (zij : 1 ≤ j ≤ i ≤ n) only particles
zi1, i = 1, 2, ..., n jump of their own volition and they do so at exponential times at rate xi, respectively.
The jumps consist of one step to the right and trickle down the pattern as follows: if particle zij
jumps and before the jump took place we had zij = zi+1

j , then particle zi+1
j is pushed one step to the

right along with zij . If zij < zi+1
j , then particle zi+1

j+1 is pulled one step to the right along with zij . The
jumps trickle down until they reach the bottom of the pattern. The Markov generator of this process
can be easily written. Concretely, in the case N = 2, it may be written as

Π(Z, Z̃) = x1 1{(z̃1,z̃2)=(z1+e1,z2+e1)}1{z11=z21} + x1 1{(z̃1,z̃2)=(z1+e1,z2+e2)}1{z11<z21}

+ x21{(z̃1,z̃2)=(z1,z2+e1)},

where we have denoted the base vectors on R2 by e1 := (1, 0) and e2 := (0, 1). Observe that∑
Z̃

Π(Z, Z̃) = x1 + x2 = h1(x1, x2), (6.6)

the complete, symmetric function of degree one, in variables x1, x2.

• Next let us recall the Pieri and in fact we will just need the particular case of multiplying the Schur
function with h1(x1, ..., xn) =

∑n
i=1 xi. In this case, the Pieri rule may be written as

h1sλ =
∑
ν≻1λ

sν =
n∑
i=1

sλ+ei . (6.7)

where the symbol ν ≻1 λ means adding one box at the end of one of the rows of the Young diagram
with shape λ or in terms of Gelfand-Tsetlin parametrisation to one of the particles of its bottom row
jumping one step to the right.

• Third, let us recall the combinatorial form of the Schur functions, written in Gelfand-Tsetlin variables
as

sλ(x) =
∑

Z : Gelfand-Tsetlin pattern
with shape λ, i.e zN = λ

N∏
i=1

x
|zi|−|zi−1|
i =:

∑
Z : Gelfand-Tsetlin pattern
with shape λ, i.e zN = λ

K(λ, Z) (6.8)

We should mention that the above formula is also called branching rule as it also has a representation
theoretic significance (it describes the characters of the induced representations when we restrict
GLn to GLn−1). For the moment let us now expand on this but restrict to only use the terminology
branching rule.

Let us now see how these three elements come together to produce a guess for the desired intertwining.
Let us start with (6.6), then the Pieri rule and then move with the branching rule to produce the sequence
of identities:∑

Z,Z̃

K(λ, Z)Π(Z, Z̃)
(6.6)
= h1

∑
Z

K(λ, Z)
(6.7)
=

n∑
i=1

sλ+ei(x)
(6.8)
=

n∑
i=1

∑
Z̃

K(λ+ ei, Z̃)

=
∑

ν : |ν−λ|1=1

∑
Z̃

P (λ, ν)K(ν, Z̃),
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where P (λ, ν) = 1|ν−λ|1=1 if λ, ν are partitions. Now one can be imaginative and wonder whether the
above equality still holds if one dropped the summations of Z̃, ie whether∑

Z

K(λ, Z)Π(Z, Z̃)
???
=

∑
ν : |ν−λ|1=1

P (λ, ν)K(ν, Z̃) (6.9)

⇐⇒ KΠ(λ, Z̃)
???
= PK(λ, Z̃),

which is the intertwining we seek. Once the guess is made, it only remains to check whether this is correct
and this can only be done via a direct check. This turns out to be true but we will skip the computation,
which is straightforward but a bit tedious (remember, mathematics have two parts: one is the inspiration
and the other is the hard work !).

One thing to note, though, is that P (λ, ν) is not a probability kernel as
∑

ν P (λ, ν) equals N rather
than 1. The question is how to turn this into a probability kernel. The guess of dividing by N is not quite
right...The correct is to consider the kernel

P̂ (λ, ν) =
sν(x)

sλ(x)
P (λ, ν). (6.10)

The fact that this is a probability kernel is a consequence of the Pieri rule. Actually, in another language,
Pieri rule can be interpreted as saying that the Schur functions are harmonic functions for operator P
and the tranformation (6.10) is actually a particular case what is called Doob’s transform in stochastic
processes. Intertwining (6.9) can be rewritten as∑

Z

1

sλ(x)
K(λ, Z)Π(Z, Z̃) =

∑
ν : |ν−λ|1=1

sν(x)

sλ(x)
P (λ, ν)

1

sν(x)
K(ν, Z̃)

⇐⇒ K̂Π̂(λ, Z̃) = P̂ K̂(λ, Z̃),

where

K̂(λ, Z) :=
1

sλ(x)
K(λ, Z).

So, finally, applying the Pitman-Rogers theorem, the shape of the Young tableau induced by RSK is a
Markov process with transition probability kernel

P̂ (λ, ν) =
sν(x)

sλ(x)
P (λ, ν).

Remark 6.6. The fact that kernel P̂ is a probability (and also a Markovian) kernel is a consequence of
the Pieri rule.

6.5. q-deformed dynamics and Macdonald functions. This subsection is also not exam-
inable but please enjoy it.

Let us start with a definition of dynamics on Gelfand-Tsetlin patterns

where the jump rates / probabilities will depend on the relative distance of the particles via a parameter
q, which can be tuned to several limits.

Definition 6.7 (q-Whittaker 2d growth model). Let x1, ..., xn be positive numbers. Each of the
particles zkj in a Gelfand-Tsetlin pattern (zkj : 1 ≤ j ≤ k ≤ n) jumps, independently of others, to the right
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by one step at rate

xk
(1− qz

k−1
j−1−z

k
j )(1− qz

k
j −zkj+1+1)

1− qz
k
j −z

k−1
j +1

, (6.11)

and when it jumps it pushes along the string of particles zk+1
j , zk+2

j , ... with the property that zkj = zk+1
j =

zk+2
j = ... Notice that if zkj = zk−1

j−1 then the jump of zkj is suppressed (the rate in this case is equal to zero),
which is consistent with presrving the interlacing property. We implicitly use the convention that terms
which contain particles that are not included in the Gelfand-Tsetlin pattern are omitted from expression
(6.11).

Let us remark that the q-Whittaker dynamics are different than the dynamics induced by RSK. This
is because in the latter the independent jumps only take place on the diagonal zk1 with k = 1, ..., n and
the jumps propagate to the rest of the Gelfand-Tsetlin pattern, while in the q-Whittaker dynamics each
particle has its own independent exponential clock that initiates jumps. In fact, the above dynamics are a
deformation of what is known as Warren dynamics (from Jon Warren of Warwick !) [[W07]. The above
deformation was introduce in [BC14]. The name q-Whittaker comes from the special functions that are
involved in these dynamics and q-deform Schur functions (but also the Whittaker functions).

Notice that the rates of particles (zkk : k = 1, ..., n) are just given by xk(1− qz
k−1
k−1−z

k
k ), which means that

the evolution (zkk : k = 1, ..., n) is also Markovian: it is a q deformation of TASEP, called q-TASEP. The
probability of a particle to jump depends on its distance to the following particle. Thus, we see again that
particle znn has a double nature: on the one hand that of the smallest particle in a string of q-TASEP and
on the other that of the smallest particle in a Dyson-like process.

But how does one come up with such crazy dynamics ? Macdonald polynomials were defined by
Macdonald in [M88], see also [M98], as a family of symmetric polynomials, depending on two parameters
q, t in a way that they degenerate, in certain limits of q, t to several other families of symmetric polynomials
that includes Schur, Hall-Littlewood, Jack, zonal etc. The way that Macdonald defined these functions was
via the inner product approach and bi-orthgonalisation, similar to the third definition of Schur functions,
see Section 3.5. In particular, Macdonald proved the following theorem

Theorem 6.8 ([M88]). Consider the inner product ⟨·, ·⟩(q,t) defined via its values on power symmetric
polynomials as

⟨pλ, pµ⟩(q,t) = zλ(q, t)δλ,µ, with zλ(q, t) := zλ

ℓ(λ)∏
i=1

1− qλi
1− tλi

, (6.12)

and zλ as in (2.1). Then, for each partition λ, there exists a unique symmetric function Pλ(x1, x2, ...) =
Pλ(x1, x2, ...; q, t) such that

(A) Pλ = mλ +
∑
µ<λ

uλµ(q, t)mµ and

(B) ⟨Pλ, Pµ⟩(q,t) = 0, if λ ̸= µ.

In (A) the coefficients uλµ(q, t) are rational functions in q, t.

We notice that when q = t, then zλ(q, q) = zλ and, thus, the inner product in (6.12) becomes the
same as in the Schur case. So in this case, by the uniqueness, the Macdoland polynomials are identical
to the Schur. When t = 0, we talk about the q-Whittaker function (the name because they provide a
q-deformation of the Whittaker functions. Macodnald functions are important because they interpolate
in-between many other distinguished special functions that appear in many fields of mathematics (from
mathematical physics, representation theory, number theory and even statistics). We refer to the diagram
in Figure 1 for a glimpse. Macdonald are eigenfunctions of the different operator:
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Macdonald-diag.png

Figure 1. The above diagram shows possible degenerations of Macdonald func-
tions and related integrable stochastic processes. The image is taken from slides
of a talk by Borodin, https://math.temple.edu/events/seminars/grosswald/past/
oct2015/IPLecture2and3.pdf

D =
n∑
i=1

(∏
i ̸=j

txi − xj
xi − xj

)
Tq,xi

with the operator Tq,xi , for i = 1, ..., n, defined via its action on a function f(x1, ..., xn) as

(Tq,xif)(x1, ..., xn) = f(x1, ..., qxi, ..., xn).

The eigenvalue cλλ is also explicit and given by qλ1tn−1 + qλ2tn−2 + · · ·+ qλn , see [M98], VI (4.15).
Macdonald polynomials satisfy the Cauchy identity:∑

λ

Pλ(x; q, t)Qλ(y; q, t) = H(x, y) with

H(x, y) := H(x, y; q, t) :=
∏
i,j

(txiyj ; q)∞
(xiyj ; q)∞

,

where in the last expression (a; q)∞ :=
∏∞
i=0(1− aqi) is the q-Polchammer symbol and Qλ(·; q, t) are

the dual Macdoland polynomials:

Qλ(·; q, t) :=
Pλ(·; q, t)

⟨Pλ(·; q, t), Pλ(·; q, t)⟩(q,t)
.

Moreover, Macdonald polynomials satisfy a Pieri identity:

Pµer =
∑

λ/µ is a vertical r strip

ψ′
λ/µPλ, (6.13)

with

ψ′
λ /µ =

∏
i<j : λi=µi , λj=µj+1

(1− q µi−µj t j−i−1)(1− q λi−λj t j−i+1)

(1− q µi−µj t j−i)(1− q λi−λj t j−i)
,

for λ/µ a vertical r-strip. The Pieri rule (for t = 0) is what motivates the dynamics in the q-Whittaker
model.

https://math.temple.edu/events/seminars/grosswald/past/oct2015/IPLecture2and3.pdf
https://math.temple.edu/events/seminars/grosswald/past/oct2015/IPLecture2and3.pdf
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7. The Murnaghan-Nakayama rule: Schur functions and characters of
the symmetric group.

We want in this section to prove formula (2.5) which represents the characters of the symmetric group
in terms of (border-strip) Young tableaux. We will do this exploiting certain relations with Schur functions.
Via these relations, we will also provide a different derivation of the orthogonality of the characters of the
symmetric group; a fact that we have seen it is a general property of characters. The text reference here is
[S23], Chapter 7.17.

To start, recall the notion of a border strip tableau from Section 2.4.1. The starting theorem is the
following, which should be viewed as an analogue of the Pieri rule:

Theorem 7.1. Let µ be a partition, r ∈ N and pr the power symmetric polynomials of order r. Then

sµpr =
∑

λ : λ/µ border-strip tableau of size r

(−1)ht(λ/µ)sλ

Proof. We will use the determinantal formula for Schur functions. Let us denote by δ the partition
δ := (n− 1, n− 2, ..., 1) and for a partition λ the determinant

aλ(x) := det
(
x
λj
i

)
(7.1)

In particular, in this notation, we have that

sλ(x) =
det

(
x
λj+n−j
i

)
1≤i,j≤n

det
(
xn−ji

)
1≤i,j≤n

=
aλ+δ(x)

aδ(x)
,

and so it suffices to show that

aµ+δ(x) pr =
∑

λ : λ/µ border-strip tableau of size r

(−1)ht(λ/µ)aλ(x)

Starting from the left-hand side, we have that

aµ+δ(x)pr =
∑
σ∈Sn

sgn(σ)
n∏
i=1

x
µσ(i)+n−σ(i)
i ·

n∑
k=1

xrk

=

n∑
k=1

∑
σ∈Sn

sgn(σ)

n∏
i=1

x
µσ(i)+n−σ(i)
i xrk

=
n∑
k=1

∑
σ∈Sn

sgn(σ)
n∏
i=1

x
µσ(i)+n−σ(i)
i

n∏
i=1

x
rδk,i
i ,

where in the last δk,i is the Kronecker delta. We can continue as

aµ+δ(x)pr =

n∑
k=1

∑
σ∈Sn

sgn(σ)

n∏
i=1

x
µσ(i)+n−σ(i)+rδk,i
i

=

n∑
k=1

det
(
x
µj+n−j+rδk,i
i

)
1≤i,j≤n.

Now, it actually turns out that the latter can also be written as
n∑
k=1

det
(
x
µj+n−j+rδk,j
i

)
1≤i,j≤n, (7.2)

(note the change from δk,i) to δk,j ! (Justify this...)
We now want to rearrange the order of the columns in the determinant, in order to write in the form

(7.1), thus, resembling the numerator in the determinantal formula for Schur functions. For this, we need
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to reorder the sequence

(µ1 + n− 1 , ..., µk + n− k + r︸ ︷︷ ︸
k−position

, ..., µn).

in descending order, since in the definition (7.1), λ needs to be a partition. If the kth position turns out to
be equal to another entry of the vector, then the determinant will be zero. If not, then this entry will
move forward a number of places. In particular, if ℓ is largest number such that

µℓ−1 + n− (ℓ− 1) > µk + n− k + r,

then we will have the vector

(µ1 + n− 1 , ..., µℓ−1 + n− (ℓ− 1) , µk + n− k + r︸ ︷︷ ︸
ℓ−position

, µℓ + n− ℓ, ..., µk−1 + n− (k − 1) , µk + n− k, ..., µn).

whose coordinates are ordered in decreasing fashion. We want to represent this vector in the form
λ+ δ = (λ1 + n− 1 , λ2 + n− 2 , ..., λn), for a partition λ. This will be the case if we set

(λ1 ≥ λ2 ≥ ... ≥ λn) = (µ1 ≥ ... ≥ µℓ−1 ≥ µk + ℓ− k + r ≥ µℓ + 1 ≥ ... ≥ µk−1 + 1 ≥ µk+1 ≥ ... ≥ µn).

In this way

λ/µ = (λ1 − µ1, λ2 − µ2, ..., λn − µn) (7.3)
= (0, ..., 0, µk − µℓ + ℓ− k + r︸ ︷︷ ︸

ℓ−position)

, µℓ − µℓ+1 + 1, ..., µk−1 − µk + 1, 0, ..., 0). (7.4)

This is a border strip (check !) that starts from row ℓ and goes to row k, hence having height ℓ− k, and
the number of boxes it has is

(µk − µℓ + ℓ− k + r) + (µℓ − µℓ+1 + 1) + · · ·+ (µk−1 − µk + 1) = r.

Coming back to (7.2), we have that

aµ+δpr =

n∑
k=1

det
(
x
µj+n−j+rδk,j
i

)
1≤i,j≤n

=

n∑
k=1

(−1)ℓ−kaλ+δ

=

n∑
k=1

(−1)ht(λ/µ)aλ+δ,

with λ being (7.3), where the factor (−1)ℓ−k is the result of the commutation of the columns in the first
determinant, above, that we performed. Dividing by the Vandermonde determinant aδ, we get

sµpr =

n∑
k=1

(−1)ht(λ/µ)sλ,

and this leads to the desired result as the summation over k indicates the possible lower end of the border
strip. □

We want to extend the above theorem to the case of sµpα, where α = (α1, α2, ...) with αi being
non-negative integers, in which case pα := pα1pα2 · · · . For this, we will need to extend the notion of
border-strip to that of border-strip tableau of type α = (α1, α2, ...). This will be a Young diagram where

• every column and row have weakly increasing entries,

• integer i appears αi times,

• the set of squares occupied by i forms a border-strip.
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An example is

1 1 1 1 6 6 6
1 2 2 5 6
3 3 5 5 6
3 5 5 6 6

We can, now, state the generalisation of Theorem 7.1:

Theorem 7.2. If µ is a partition and α = (α1, α2, ...), then

sµpα =
∑
λ

χλ/µ(α) sλ, where (7.5)

χλ/µ(α) =
∑

T : border-strip tableau of shape λ/µ and type α

(−1)ht(T ). (7.6)

The notation χλ/µ is suggestive that these will be character. In the particular case that µ = ∅ we have that

pα =
∑
λ

χλ(α) sλ. (7.7)

Proof. We write pα = pα1pα2 · · · , and then apply successively Theorem 7.1 to
((
sµpα1

)
pα2

)
· · · . □

We can now state the formula for the characters of the symmetric group

Theorem 7.3. The characters χλ(α) of the symmetric group corresponding to irreducible representations
indexed by λ is given by the formula

χλ(α) =
∑

T : border-strip tableaux of shape λ and type α

(−1)ht(T ).

(Sketch of the) Proof - (obviously not examinable). This is a consequence of the Schur-Weyl du-
ality in representation theory, a deep result which says that the tensor product V ⊗n of a vector space V
can be decomposed as a representation of Sn ×GL(V ) as

V ⊗n = ⊕|λ|=nVλ ⊗ SλV,

where Vλ are the irreducible representations of Sn and SλV are the irreducible representations of GL(V ).
Taking the trace in the above we obtain

pα =
∑
λ

χλ(α) sλ. (7.8)

where χλ(α) are the characters of irreducibles of Sn parametrised by λ. But in (7.7) we proved that this
relation holds for χλ(α) being as in (7.6), from which the assertion follows as Schur functions form a basis
of the symmetric functions. □

We can now re-derive the orthogonality of characters of the symmetric group:

Theorem 7.4. We have that ∑
λ

χλ(α)χλ(β) = zαδα,β. (7.9)

for zα =
∏
i≥1 i

αiαi!
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Proof. Use identity (7.7) and compute

zα δα,β = ⟨pα, pβ⟩

=
∑
λ,µ

χλ(α)χµ(β)⟨sλ(α), sµ(β)⟩

=
∑
λ,µ

χλ(α)χµ(β)δλ,µ

=
∑
λ

χλ(α)χλ(β).

□

We also have another orthogonality relation, which reads as follows:

Theorem 7.5. The following relation holds∑
α

1

zα
χλ(α)χµ(α) = δλ,µ. (7.10)

Proof. We can also get the above identity via an identity dual to (7.7), which expresses the Schur functions
in a power symmetric function expansion as

sλ =
∑
α

1

zα
χλ(α)pα. (7.11)

Relation (7.11) follows from (7.7) by taking inner products, which implies that

sλ(α) = ⟨pα, χλ(α)⟩,

and using the orthogonality relation ⟨pα, pβ⟩ = zαδα,β , we obtain

sλ(α) =
∑
α

1

zα
⟨pα, χλ(α)⟩pα =

∑
α

1

zα
χλ(α)pα.

We can now obtain (7.10) as

δλ,µ = ⟨sλ, sµ⟩

= ⟨
∑
α

1

zα
χλ(α)pα,

∑
β

1

zβ
χµ(β)pβ⟩

=
∑
α,β

1

zα zβ
χλ(α)χµ(β)⟨pα, pβ⟩

=
∑
α,β

1

zα zβ
χλ(α)χµ(β) zαδα,β

=
∑
α

1

zα
χλ(α)χµ(α).

□

Remark 7.6. The orthogonality relations (7.9) and (7.10) that we obtained through the Murnanghan-
Nakayama rule are the interpretation of the two fundamental character identities (orthogonality) that is
valid for general groups. In Theorem 2.21 we showed that for the inner product

⟨χ, ψ⟩ := 1

|G|
∑
g∈G

χ(g)ψ(g−1),

we have the orthogonality relation ⟨χ, ψ⟩ = δχ,ψ for irreducible characters χ, ψ. Relation (7.10) can be seen
as a version of this orthogonality relation (do the matching !)
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Relation (7.9) can be seen as a version of the second character relation, which we didn’t prove and which
reads as ∑

χ : irreducible characters of G

χ(K)χ(L) =
|G|
|K|

δK,L,

for K,L conjugacy classes of G. In the particular case of Sn, the conjugacy classes of permutations are
determined by the type α of the permutation, the irreducible characters χλ are indexed by partitions λ.
Moreover, we have proved in (2.2) that for conjugacy class Kα corresponding to a permutation of type α,
we have that |Sn|

|Kα| = zα. From these considerations, relation∑
λ

χλ(α)χλ(β) = zαδα,β.

that we proved in Theorem 7.4, follows.

8. Supplementary exercises

Exercise 21. Let x = (x1, x2, ...) be a sequence of indeterminates and for i, j integers, denote by
x(i,j] := (0, ..., 0, xi+1, xi+2, ..., xj , 0, 0, ...). Let en(x), hn(x) be the elementary and complete homogeneous
symmetric functions, respectively. Show that for any i, j,N such that i ≤ N, j ≤ N , it holds that

n∑
r=0

(−1)nen
(
x(i,N ]

)
hn−r

(
x(j,N ]

)
=


hn

(
x(j,i]

)
(x), if j ≤ i,

(−1)nen
(
x(i,j]

)
, if i ≤ j.

Remark, in particular, what happens in the case i = j.

Exercise 22. Show the Littlewood identity:∑
λ

sλ(x) =
∏
i

1

1− xi

∏
i<j

1

1− xixj
.

Exercise 23. Let a permutation σ ∈ Sn be an involution, i.e. σ2 = Id. Show that the number of involutions
is equal to the number of standard Young tableaux with n boxes.

Exercise 24. Let p(n, k) be the number of partitions of n, which have k parts. Show that∑
n,k≥0

p(n, k)tkxn =
∏
i≥1

1

1− xit
,

and that also ∑
n,k≥0

p(n, k)tkxn =
∑
n≥1

xntn

(1− x)(1− x2) · · · (1− xn)
.

Exercise 25. A. Let ek(n) := ek(x1, ..., xn) for indeterminates x1, x2, ... and hk(n) := hk(x1, ..., xn).
Show that they satisfy the following recursions:

ek(n) = ek(n− 1) + xnek−1(n− 1), ek(0) = δk,0,

and

hk(n) = hk(n− 1) + xnhk−1(n), hk(0) = δk,0.

B. Define the Stirling number of the first kind as

c(n, k) := the number of π ∈ Sn with k disjoint cycles,

and the Stirling numbers of the second kind as

S(n, k) = the number of partitions of the set {1, ..., n} into k subsets.
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Show that the following recursions hold

c(n, k) = c(n− 1, k − 1) + (n− 1)c(n− 1, k), c(0, k) = δk,0

and

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k), c(0, k) = δk,0.

C. Show the following identities

(i)

(
n

k

)
= ek(1, ..., 1︸ ︷︷ ︸

n times

) = hk( 1, ..., 1︸ ︷︷ ︸
n−k+1 times

),

(ii) c(n, k) = en−k(1, 2, ..., n− 1),

(iii) S(n, k) = hn−k(1, 2, ..., k).
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