An n-Dimensional Markov-Functional Interest Rate Model

Linus Kaisajuntti1 Joanne Kennedy2

1Department of Finance, Stockholm School of Economics
2Department of Statistics, University of Warwick

July 12, 2008
Outline

Introduction

The n-dimensional Markov-functional model

Pricing tests

TARNs and Terminal correlations
Background

Some models for the pricing and hedging of interest rate derivatives:

► Short rate models: Stable and fast computations; not very flexible w.r.t. calibration, smiles.

► LIBOR market models (LMM): Easy to understand, good intuition of model behaviour, flexible/powerful calibration; Computationally very (too) intense; Benchmark model.

► Markov-functional models (MFM).
 ► Introduced 1999 by Hunt, Kennedy & Pelsser.
 ► Main intuition: Short rate model efficiency (build on a lattice) combined with the LMM flexibility.
 ► Quite popular in the city.
 ► Only solved for one- or two-dimensional driving state processes → potentially limited correlation structure.
Aim of the paper

- Develop an n-dimensional Markov-functional interest rate model (MFM).
- Investigate similarities and differences between the MFM and the LMM → can we transfer the intuition from the LMM SDE to the MFM?
- Investigate potential usefulness in practise: Price Targeted Accrual Redemption Notes (TARNs). Currently very popular in the market and are typically priced using multifactor LIBOR market models (LMM).
Notation and Setup

- Set of increasing maturities:
 \(\text{today} = 0 < T_1 < T_2 < \cdots < T_n < T_{n+1}, \)
- Zero-coupon bonds: \(D_{tT} \)
- LIBOR forward rates: \(L_t^i \)
- The rolling spot measure, \(N \): The EMM using the discrete savings account as numeraire.

\[
N_t = D_{tT_1}, \quad t \leq T_1, \tag{1}
\]
\[
N_t = D_{tT_{i+1}} \cdot \prod_{j=1}^{i} (1 + \alpha_j L_{T_j}^j), \quad T_i \leq t \leq T_{i+1}. \tag{2}
\]
The LIBOR market model SDE

Let

$$x_t^i = \int_0^t \sigma_s^i dW_s^i, \quad i = 1, \ldots, n$$

(3)

$$dW_t^i dW_t^j = \rho^{ij} dt$$

(4)

Then, under \(\mathbb{N} \), each \(L_{T_i}^i \) is given by

$$L_{T_i}^i = L_0^i \cdot \exp \left(\int_0^{T_i} \mu(L_t^1, \ldots, L_t^i, \sigma, \rho) dt + x_{T_i}^i \right)$$

(5)

▶ Note: Stochastic drift term!
The LIBOR market model: Calibration

- σ^i: Under the measure transformation $\mathbb{N} \rightarrow Q^i$,
 $\mu(L^1_t, \ldots, L^i_t, \sigma, \rho) = 0$. Hence, L^i_t is a lognormal martingale
 → Caplet prices by the Black formula → σ^i are given directly
 from market prices of caplets.

- Instantaneous correlations much harder! Due to efficiency one
 must use approximation formulas:

$$\text{Corr}(\log(L^i_{T_i}), \log(L^j_{T_j})) \approx \frac{\int_0^{\min(T_i, T_j)} \sigma_t \sigma_t \rho_{ij} \, dt}{\sqrt{\int_0^{T_i} (\sigma_t^i)^2 \, dt} \sqrt{\int_0^{T_j} (\sigma_t^j)^2 \, dt}}.$$ \hspace{1cm} (6)

- The trader has a view about Terminal Correlations (typically
 from historical estimation or implied from the Swaptions
 market) and changes ρ_{ij}'s accordingly.
- Dangerous due to approximation errors?
Introduction
The n-dimensional Markov-functional model
Pricing tests

Linus Kaisajuntti, Joanne Kennedy
An n-Dimensional Markov-Functional Interest Rate Model
Postulate

\[L^i_{T_i} = f^i(x^i_{T_i}), \quad i = 1, \ldots, n \]

(7)

where \(f^i \) is some **monotone** function. The functional forms will be found (numerically) by forward induction, forcing the model to be

- arbitrage free, and
- calibrated to Black’s formula for Caplets.

To find the functional forms we use digital Caplets in Arrears (DCiA). Value of a DCiA at time 0 under \(\mathbb{N} \):

\[V_i(K) = N_0 E^{\mathbb{N}} \left[\frac{1\{L^i_{T_i} \geq K\}}{N_{T_i}} \right] . \]

(8)

- Fact: Pricing DCiA (of all strikes) are equivalent to pricing digital Caplets and Caplets.
Introduction

The \(n \)-dimensional Markov-functional model

Pricing tests

Construction: Step 1/3

- Suppose we would like to know \(f^i(x^*) \).

Define

\[
J^i(x^*) = N_0 E^\mathbb{N} \left[\frac{\mathbf{1}\{x^i_{T_i} \geq x^*\}}{N_{T_i}} \right].
\]

(9)

Compute the expectation by Monte Carlo integration

\[
J^i(x^*) \approx N_0 \frac{1}{m} \sum_{k=1}^{m} \frac{\mathbf{1}\{x^i_{T_i}(\omega_k) \geq x^*\}}{\prod_{l=1}^{i-1}(1 + \alpha_l f^l(x^l_{T_l}(\omega_k)))}.
\]

(10)
Construction: Step 2/3

Market prices of DCiA must be consistent with an arbitrage free model.

Want to mimick the lognormal LMM → choose the Black model.

Search for the strike $K(x^*)$ such that

$$V^i(K(x^*)) = J^i(x^*)$$ \hspace{1cm} (11)
Construction: Step 3/3

Conclude that

\[f^i(x^*) = K(x^*) \] \hspace{1cm} (12)

WHY:

\[N_0 E^N \left[\frac{1\{L^i_{T_i} \geq K(x^*)\}}{N_{T_i}} \right] = V^i(K(x^*)) = \]

\[J^i(x^*) = N_0 E^N \left[\frac{1\{x^i_{T_i} \geq x^*\}}{N_{T_i}} \right] = \]

\[N_0 E^N \left[\frac{1\{f^i(x^i_{T_i}) \geq f^i(x^*)\}}{N_{T_i}} \right] = N_0 E^N \left[\frac{1\{L^i_{T_i} \geq f^i(x^*)\}}{N_{T_i}} \right], \]

▶ Note: The monotonicity assumption is crucial.
Introduction

The n-dimensional Markov-functional model

Pricing tests

Linus Kaisajuntti, Joanne Kennedy

An n-Dimensional Markov-Functional Interest Rate Model
TARNs: definition

- Want to price TARN swaps.
- Receive: Structured coupon; \(\max(10\% - 2L^iT_i, 0) \).
- Pay: \(2L^iT_i \).
- Continue until final maturity OR when total received coupon is 10%.
- Need models with good views on Terminal correlations.
TARN prices

- initial LIBORs $L^i_0 = \max(2\% + 0.5\% T_i, 10\%)$
- $\sigma^i_t = 20\%, \forall t, i$
- Instantaneous correlations $\rho^{ij} = \exp\{-0.05|T_i - T_j|\}$
- Notional 10 000.

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMM</td>
<td>-187.6</td>
<td>-729.2</td>
<td>-1095.3</td>
<td>-1270.5</td>
<td>-1338.0</td>
<td>-1362.5</td>
</tr>
<tr>
<td>MFM</td>
<td>-186.5</td>
<td>-719.2</td>
<td>-1067.4</td>
<td>-1230.9</td>
<td>-1294.0</td>
<td>-1316.7</td>
</tr>
<tr>
<td>vega</td>
<td>10.3</td>
<td>21.6</td>
<td>20.6</td>
<td>14.9</td>
<td>10.3</td>
<td>7.5</td>
</tr>
<tr>
<td>corr</td>
<td>-1.7</td>
<td>-9.6</td>
<td>-18.2</td>
<td>-22.4</td>
<td>-24.4</td>
<td>-25.2</td>
</tr>
</tbody>
</table>
Terminal correlations

LIBOR market model

Markov-functional model

Linus Kaisajuntti, Joanne Kennedy
An n-Dimensional Markov-Functional Interest Rate Model
Matching the models

Idea: Matching the models Terminal correlations \rightarrow similar properties.
Test: Change the ρ_{ij}s for the MFM s.t. it matches the simulated Terminal correlations of the LMM.
Results:

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMM</td>
<td>-187.6</td>
<td>-729.2</td>
<td>-1095.3</td>
<td>-1270.5</td>
<td>-1338.0</td>
<td>-1362.5</td>
</tr>
<tr>
<td>MFM</td>
<td>-186.5</td>
<td>-719.2</td>
<td>-1067.4</td>
<td>-1230.9</td>
<td>-1294.0</td>
<td>-1316.7</td>
</tr>
<tr>
<td>MFM</td>
<td>-187.0</td>
<td>-726.5</td>
<td>-1090.3</td>
<td>-1266.6</td>
<td>-1337.9</td>
<td>-1365.9</td>
</tr>
<tr>
<td>vega</td>
<td>10.3</td>
<td>21.6</td>
<td>20.6</td>
<td>14.9</td>
<td>10.3</td>
<td>7.5</td>
</tr>
<tr>
<td>corr</td>
<td>-1.7</td>
<td>-9.6</td>
<td>-18.2</td>
<td>-22.4</td>
<td>-24.4</td>
<td>-25.2</td>
</tr>
</tbody>
</table>
TARN pricing summary

- Calibrate both models using the approximation formula →
 - The MFM will give prices consistent with the formula.
 - The LMM will not.
- Need a better approximation formula in order to calibrate the LMM satisfactory.
- For the MFM this is straightforward.
Punchlines

With the n-dimensional Markov-functional model we have a model that is

- Very similar in spirit to the n-factor LIBOR market model.
- Arbitrage free
- Calibrated to the Caplet market

Moreover it resolves/improves two major problems with n-factor LIBOR market models

- Calibration to Terminal correlations.
- Computation times (The MFM is up to 40 times faster in my implementation).
THANK YOU!