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Employee Stock Options (ESOs)

ESOs are call options (with non-standard features) given to employees
as a form of compensation.

Idea is to align the interests of employees and shareholders.

Huge debate 1993-2004 about whether ESOs should be expensed.
Required by FASB to do so since 2005.

Next debate: How to value them?
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Main Features of ESOs

American call: firm’s stock Y , strike K → payoff (Yt −K)+.

Vesting period: length tv ≈ 4 years; expiration date T ≈ 10 years.

Non-tradability: employee can’t sell/transfer ESO.

Short-sale constraint: employee can’t short own firm’s stock.

Job termination risk: possible departure at a random time τλ, ESO is
either forfeited or exercised immediately.

Early Exercise Phenomenon: empirically, employees tend to exercise
early/suboptimally, often right after vesting.
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ESO Payoff Structure
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Some Existing Models

Exercise at a given barrier:
Hull-White (2004), Cvitanic-Wiener-Zapatero (2004)

Exogenous exercises:
Jennergen-Naslund (1993), Carpenter (1998), Carr-Linetsky (2000)

Indifference pricing approach for American options:
Oberman-Zariphopoulou (2003), Henderson (2005)

Multiple American ESOs:
Grasselli (2005), Grasselli-Henderson (2006), Scheinkman-Rogers
(2006)
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Valuation Methodology

The employee’s investment problem:

Account for risk aversion, optimal hedging, & job termination.
Solve for the optimal exercise policy (boundary y?(t)).
Analyze contributors to early exercises.

The firm’s cost calculation:

Firm is allowed to hedge their liability.
Determine ESO cost by no-arbitrage (risk-neutral) pricing theory,
with y?(t) as an input.
Study the impact of factors on ESO cost.
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Model Formulation

(Ω,F , (Ft)0≤t≤T ,P) with price processes:

dYt = (ν − q)Yt dt+ ηYt dWt, (Firm, nontraded)

dSt = µSt dt+ σSt dBt, (Index, traded)

where E{dWt · dBt} = ρ dt.

A dynamic trading strategy (θt)0≤t≤T is the cash amount invested in

the index, with E{
∫ T
0 θ2

t dt} <∞. The trading wealth follows

dXt = θt
dSt
St

+ (Xt − θt)r dt

= [θt(µ− r) + rXt] dt+ θtσ dBt.

Employee’s utility function: U(x) = −e−γx.
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Stochastic Control Problem

Job termination time: τλ ∼ exp(λ), independent of W and B.

Exercise time is a stopping time τ ∈ [0, T ], and let τ̂ = τ ∧ τλ.

After exercise, the employee will face the classical Merton problem:

M(t, x) = sup
θ

E
{
−e−γXT |Xt = x

}
= −e−γxer(T−t)e−

(µ−r)2

2σ2 (T−t).

The employee’s value function at time t is

V (t, x, y) = sup
τ, θ

Et,x,y
{
M(τ̂ , Xτ̂ + (Yτ̂ −K)+)

}
.
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HJB Variational Inequality

Look for a solution of the fully nonlinear Variational Inequality

λ (Λ− V ) + Vt + sup
θ
LV ≤ 0 ,

V ≥ Λ ,(
λ (Λ− V ) + Vt + sup

θ
LV

)
·
(

Λ− V
)

= 0 ,

for (t, x, y) ∈ [0, T )×R× (0,+∞), with Λ(t, x, y) = M (t, x+ (y −K)+).

Transformation: V (t, x, y) = M(t, x) ·H(t, y)
1

(1−ρ2) .

Solve for the optimal exercise boundary y?(t), so that
optimal exercise time: τ? = inf{ 0 ≤ t ≤ T : Yt = y?(t)}.
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Optimal Exercise Boundary
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constraint enforced by PSOR.
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Analytical Results

Risk aversion increases (γ ↑) / Job termination risk rises (λ ↑)
⇒ optimal exercise boundary shifts downward.

Firm’s stock growth rate increases (ν − q ↑)
⇒ optimal exercise boundary shifts upward.

−→ These follow from comparison principle for the VI.

Connection with indifference price (p): M(t, x+ p(t, y)) = V (t, x, y).
↪→ The employee demands $p to forgo the ESO.
↪→ τ? = inf { t ≤ T : p(t, Yt) = (Yt −K)+ } .
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Cost to the Firm

With y?(t) known, the ESO cost is the expected discounted payoff
under the risk-neutral measure Q.

Under Q, the firm’s stock evolves according to

dYt = (r − q)Yt dt+ ηYt dW
Q
t ,

where WQ is a Q-Brownian motion.

Vested ESO Cost:

C(t, y) = EQ
t,y

{
e−r(τ

?∧τλ−t)(Yτ?∧τλ −K)+
}
.

Unvested ESO Cost:

C̃(t, y) = EQ
t,y

{
e−r(tv−t)C(tv, Ytv)1{τλ>tv}

}
.

We assume λ to be identical under both measures P and Q.

Tim Leung (Princeton Univ.) Employee Stock Options 12 July, 2008 16 / 42



Other Utility-based models
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Impacts of Various Features

Black-Scholes Henderson Grasselli +λ = 0.1 3yr vesting

4.879 4.510 3.412 2.597 2.491

Risk-aversion lowers the cost by about 8% in the perpetual
approximation, or by about 30% when we retain finite maturity.

Job termination risk reduces the cost by a further 17% of the
Black-Scholes value.

Vesting reduces by yet another 2%.
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Optimal Multiple Exercise Boundaries
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Impact of Multiple Grants on ESO Cost
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Static-Dynamic Hedge for ESOs

Call and put options on the firm’s stock are traded in the market.

While employee cannot short calls, he/she can purchase puts.

Payoff of a put: (K − Yτ )+.

Augment the hedging strategy:

Dynamic Hedge: market index S and bank account.
Static Hedge: buy and hold α units of identical American puts.

Employee’s investment problem:

Order of Exercises: ESO-puts, or puts-ESO? When?
Optimal Static Hedge: optimal number of puts that maximizes the
value function.

For simplicity, assume no job termination risk (λ = 0) here.
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Optimal Exercise Boundaries
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Optimal Exercise Scenario I
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Optimal Exercise Scenario II
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The Impact of Static-Dynamic Hedge

The optimal number of puts is found from the Fenchel-Legendre
transform of p∗ as a function of α, evaluated at the market price π.

α∗ = arg max
α≥0

p∗(t, y;α)− απ.

ESO Cost Comparison:

Black-Scholes Dynamic Hedge only Static-Dynamic Hedge

4.879 3.412 3.831 (α∗ = 2.6)

Risk-aversion (with dynamic hedge) lowers the costs by 30%, compared
to the Black-Scholes value.
When American puts are used, the cost increases by 8%, but still 22%
lower than the Black-Scholes value.
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Concluding Remarks

Analytical and computationally tractable model for ESO valuation:

Risk aversion and job termination risk lead to early exercises.
Static hedges delay ESO exercises, and lead to higher costs.

Some major challenges:

Inference of risk aversion from empirical exercises
↪→ Data segmentation based on employees’ attributes.

Non-exponential/stochastic utility functions
↪→ Analyticity and tractability issues.

General semimartingale framework:

Duality relationship between exponential utility maximization and
relative entropy minimization with optimal stopping.
Characterization of optimal exercise times via indifference prices.
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Appendix
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Transformation to Reaction-Diffusion VI

The free boundary problem for H is of reaction-diffusion type.

Ht + L̃H − (1− ρ2)λ[H − b(t, y)H−ρ̂] ≥ 0,

H(t, y) ≤ κ(t, y),(
Ht + L̃H − (1− ρ2)λ[H − b(t, y)H−ρ̂]

)
·
(
κ(t, y)−H(t, y)

)
= 0,

for (t, y) ∈ [0, T ]× (0,+∞), where

ρ̂ =
ρ2

1− ρ2
, L̃ =

η2y2

2
∂2

∂y2
+ (ν − q − ρµ− r

σ
η)y

∂

∂y
.

Optimal exercise boundary:

y?(t) = inf{ y ≥ 0 : H(t, y) = κ(t, y)} ,

so that τ? = inf{ 0 ≤ t ≤ T : Yt = y?(t)}.
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VI for H

ρ̂ =
ρ2

1− ρ2
,

b(t, y) = e−γ(y−K)+er(T−t) ,

κ(t, y) = e−γ(1−ρ
2)(y−K)+er(T−t) .

The boundary conditions are

H(T, y) = κ(T, y), H(t, 0) = 1.
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Connection with Indifference Price

Definition

The ESO holder’s indifference price is defined by

M(t, x) = V (t, x− p, y).

The indifference price satisfies

V (t, x, y) = M(t, x) · e−γp(t,y)er(T−t) .

⇒
Optimal hedge: θ? =

µ− r
γσ2

e−r(T−t)︸ ︷︷ ︸
Merton

− ρ
η

σ
ypy(t, y)︸ ︷︷ ︸

due to ESO

.

Optimal exercise time: τ? = inf
{
t ≤ u ≤ T : p(u, Yu) = (Yu −K)+

}
.
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Free Boundary Problem for the Indifference Price

The indifference price solves the free boundary problem:

pt + L̃ p− rp− 1
2
γ(1− ρ2)η2y2er(T−t)p2

y +
λ

γ

(
1− b(t, y)eγpe

r(T−t)
)
≤ 0 ,

p ≥ (y −K)+,(
pt + L̃ p− rp− 1

2
γ(1− ρ2)η2y2er(T−t)p2

y +
λ

γ

(
1− b(t, y)eγpe

r(T−t)
))

·
(

(y −K)+ − p
)

= 0,

for (t, y) ∈ [0, T ]× (0,+∞), with b(t, y) = e−γ(y−K)+er(T−t) , and

p(T, y) = (y −K)+ ,
p(t, 0) = 0 .
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Cost to the Firm
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Effect of Risk Aversion & Vesting
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ESOs with Multiple Exercises

Employee is granted n ESOs with the same strike and maturity.

Let τi be the exercise time when i ≤ n options remain unexercised.
τn ≤ τn−1 ≤ · · · ≤ τ2 ≤ τ1.

Employee’s value function of holding i ESOs is defined recursively by

V (i)(t, x, y) = sup
τi, θ

Et,x,y
{
V (i−1)

(
τi, Xτi + (Yτi −K)+, Yτi

)
·1{τi<τλ}

+M
(
τλ, Xτλ + i (Yτλ −K)+

)
·1{τi≥τλ}

}
This stochastic control problem with optimal sequential stopping
leads to a system of free boundary problems of reaction-diffusion type.
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ESOs With Multiple Exercises

Solve the system of VIs

λ
(
M
(
t, x+ i(y −K)+

)
− V (i)

)
+ V

(i)
t + sup

θ
LV (i) ≤ 0 ,

V (i)(t, x, y) ≥ V (i−1)(t, x+ (y −K)+, y) ,(
λ
(
M
(
t, x+ i(y −K)+

)
− V (i)

)
+ V

(i)
t + sup

θ
LV (i)

)
·
(
V (i−1)

(
t, x+ (y −K)+, y

)
− V (i)(t, x, y)

)
= 0 ,

for (t, x, y) ∈ [0, T )× R× (0,+∞), with boundary conditions

V (i)(T, x, y) = −e−γ(x+i(y−K)+) ,

V (i)(t, x, 0) = −e−γxe
r(T−t)

e−
(µ−r)2

2σ2 (T−t) .
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Connection with Indifference Price

Definition

The employee’s indifference price for holding i ≤ n ESOs with multiple
exercises is defined by

M(t, x) = V (i)(t, x− p(i), y) .

The indifference price p(i) satisfies

V (i)(t, x, y) = M(t, x) · e−γp(i)(t,y)er(T−t) (1)

⇒

τ?i = inf
{
t ≤ T : V (i)(u,Xθ?

u , Yu) = V (i−1)(u,Xθ?

u + (Yu −K)+, Yu)
}

= inf{t ≤ T : p(i)(u, Yu)− p(i−1)(u, Yu)︸ ︷︷ ︸
premium for the ith ESO

= (Yu −K)+}.

(2)
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ESO Costs

C
(i)

(t, y) = EQ
t,y

{
e
−r(τλ−t)

i
(
Y
τλ
−K

)+
1{τλ≤τ?

i
}

+ e
−r(τ?i −t)

[(
Yτ?
i
−K

)+
+ C

(i−1)
(
τ
?
i , Yτ?

i

)]
1{τλ>τ?

i
}

}
.
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The Optimal Second Exercises

There are two orders of exercises: ESO–Puts, or Puts–ESO. Consider
the second exercises here.

If the employee holds an ESO only:

V (t, x, y) : = sup
τ,θ

Et,x,y
{
M(τ,Xτ + (Yτ −K)+)

}
= M(t, x− p(t, y)).

The value function for holding α puts:

V̂ (t, x, y;α) : = sup
τ,θ

Et,x,y
{
M(τ,Xτ + α(K ′ − Yτ )+)

}
= M(t, x− p̂(t, y;α)).

Solving the VIs associated with V and V̂ , we obtain the optimal
exercise boundaries for the second exercises.
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The Optimal First Exercises

The employee’s value function is

V ∗(t, x, y;α) := sup
τ, θ

Et,x,y{max{V (τ,Xτ + α(K ′ − Yτ )+),

V̂ (τ,Xτ + (Yτ −K)+;α)}}
= sup

τ, θ
Et,x,y {M(τ,Xτ +Rατ ) } ,

where Rατ = max{α(K ′ − Yτ )+ + p(τ, Yτ ), (Yτ −K)+ + p̂(τ, Yτ ;α)}.

Optimal first exercise time (of either ESO or puts) is

τ∗ = inf{t ≤ T : p∗(t, Yt;α) = Rαt }
= min(τE , τP ) ,

where

τE := inf { t ≤ T : p∗(t, Yt;α) = (Yt −K)+ + p̂(τ, Yt;α)},
τP := inf { t ≤ T : p∗(t, Yt;α) = α(K ′ − Yt)+ + p(t, Yt) }.
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The Optimal Static Hedge

Recall that indifference price is defined by the equation:

V ∗(t, x, y;α) = M (t, x+ p∗(t, y;α))

The employee chooses the optimal α to maximize the value function.

α∗ = arg max
α≥0

V ∗(t, x− απ, y;α)

= arg max
α≥0

M (t, x− απ + p∗(t, y;α))

= arg max
α≥0

p∗(t, y;α)− απ.
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The Optimal Static Hedge
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General Semimartingale Framework

Consider the utility maximization (primal) problem

V (t,Xt) := ess sup
τ,θ

E{M(τ,Xτ + (Yτ −K)+) |Ft}.

Derive the dual for V , and deduce from V (t,Xt) = M(t,Xt + pt) the
indifference price

pt = ess sup
τ

ess inf
Q∈P

EQ
{

(Yτ −K)+ + φt(τ,Q) |Ft
}
,

where φt is a conditional entropic penalty.

Have two stochastic games, with the same optimal exercise time

τ? = inf{0 ≤ t ≤ T : pt = (Yt −K)+}.
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