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Recurrent theme in Applied Mathematics:   

Model of interest is a large complex dynamical system involving many interacting spatio-
temporal scales whose most interesting behavior often arises at the largest scales. 

Three motivating examples from material sciences, atmosphere/ocean sciences, 
and molecular dynamics.



1. Magnetization reversal in sub-micron sized ferromagnetic elements 
near superparamagnetic limit

Landau-Lifshitz-Gilbert dynamics: 
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Two metastable states (among others) in
permalloy thin film (200x200x10 nm)
= local minima of LL energy

In plane component of magnetization
blue = right, red = left, yellow = up, green = down

Landau-Lifshitz energy: div(−∇u + m) = 0m : Ω→ S2



2. Bimodality of the Kuroshio current     
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Barotropic ocean model which crudely accounts for the geography/topography (Kyushu 
coastal perturbation and Izu Ridge topography):

S.-Y. Chao, J. Phys. Ocean 14:92 (1984);
J. Weare, PhD thesis



3. Protein insertion in lipid bilayer membrane

Spontaneous insertion of non-constitutive 
proteins such as anti-microbial peptides and 
toxins into a lipid membrane.

Coarse grained model in which groups of 
atoms are lumped into soft beads which 
interact via short-range pairwise repulsive 
potential whose relative strengths permit to 
model hydrophobic forces.

Dynamics modeled by dissipative particle 
dynamics (DPD).

Venturoli M, Sperotto MM, Kranenburg M , Smit B, 
Physics Reports, 437:1-54, 2006



In all cases, it is very challenging to simulate the system’s dynamics up to the 
timescale where the events of interest occur.

(For instance, these timescale are typically way beyond the range of pathwise 
accuracy of the integrator used.)

In addition, a single trajectory in these systems is typically very complicated, 
unreproducible, and often uninformative.



In all cases, it is very challenging to simulate the system’s dynamics up to the 
timescale where the events of interest occur.

(For instance, these timescale are typically way beyond the range of pathwise 
accuracy of the integrator used.)

In addition, a single trajectory in these systems is typically very complicated, 
unreproducible, and often uninformative.

Requires shift in perspective: use probabilistic viewpoint (statistical mechanics) and 
ask different questions. For instance:

1.  Does the system have an invariant measure, i.e. does it reach a statistical 
steady state? (Note that it can be an equilibrium or a nonequilibrium statistical 
steady state.)

2. If rare events occur, what are their preferred pathways if any?

3. What is the average rate at which these events occur?

Two steps needed: (i) identify the right statistical descriptors, and (ii) design 
computational tools to estimate them in practice.



First question is existence and uniqueness of an invariant measure:

Assuming that this is the case, the next issue then become the sampling of !. 

1
T

∫ T

0
f(z(t))dt→

∫

Ω
f(z)dµ(z) as T →∞

In the equilibrium context, this can be done by Monte-Carlo sampling, i.e. by 

using an artificial dynamics which is exactly consistent with the (known) ! and 

possibly different from the original dynamics of z(t).

Many methods developed to accelerate the sampling in this context (umbrella 
sampling, parallel tempering, replica exchange, temperature-accelerated MD, etc.)

But what if we also care about the dynamics of z(t) ?



A result in this direction:

Explicit discretizations with fixed time-step are stochastically unstable, in general. 

Metropolis-Adjusted Langevin Algorithm (MALA): (Roberts & Tweedie)

x∗ = xn −∇V (xn)h +
√

2β−1h ξn

xn+1 =

{
xn if ζ < α(xn, x∗)
x∗ otherwise

MALA is ergodic wrt the exact ! (no sampling error) and:

Thm (N. Bou-Rabee & E. V.-E.): For any T<", ! C>0 s.t. 

Ex sup
0≤n≤T/h

|xn − x(nh)| ≤ Ch3/4

dx(t) = −∇V (x(t))dt +
√

2β−1dW (t), dµ(x) = Z−1 exp(−βV (x))dx

proposal step

acceptance/rejection step



In other words, MALA is ergodic with respect to the exact distribution, and the 
trajectory it provides is a pathwise accurate representation of the true trajectory 
on finite time intervals. 

If one generates an arbitrarily long trajectory with MALA (which is possible since the 

algorithm is stochastically stable), it can be used to sample ! by time-averaging, and finite-
time pieces of this trajectory starting from a point approximate the corresponding pieces of 
a true trajectory starting from that point. 

Similar results for other (stochastic) thermostats, e.g.

{
dq = M−1pdt

dp = −∇V (q)dt− γM−1pdt +
√

2β−1 dW (t)



Typically

converges for times T that are too long to be affordable in simulations.

1
T

∫ T

0
f(z(t))dt→

∫

Ω
f(z)dµ(z) as T →∞

For instance this is the case in systems displaying metastability.
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Wentzell-Freidlin theory of large deviations (W. & F.; Da Prato & Zabczyk)

Consider the S(P)DE for the stochastic process Xε : [0, T ]×Ω "→ H:

dXε(t) = b(Xε(t))dt +
√

ε σ(Xε(t))dW (t)

For any φ(·) ∈ C[0,T ], define the action functional

ST(φ) =
1

2

∫ T

0

∣∣σ−1(φ(t))(φ̇(t)− b(φ(t)))
∣∣2 dt

if φ is absolutely continuous and the integral converges and ST(φ) =∞ otherwise.

Then: The probability P that the trajectory {Xε(t)}t∈[0,T ] be in a small neighborhood
of a given path {φ(t)}t∈[0,T ] is roughly P ( exp(−ε−1ST(φ)).

Lower bound: For any δ > 0, γ > 0, there exists ε0 such that for 0 < ε < ε0,

P
{

sup
0≤t≤T

‖Xε(t)− φ(t)‖ < δ

}
≥ exp(−ε−1[ST(φ) + γ])

where T > 0 and φ(0) = Xε(0).

Upper bound: Let s > 0 and define

Φ(s) = {φ(·) ∈ C[0,T ], φ(0) = Xε(0), ST(φ) ≤ s}
For any δ > 0, γ > 0 and s0 > 0, there exists ε0 such that for 0 < ε < ε0 and 0 < s < s0,

P
{

sup
0≤t≤T

inf
φ(t)∈Φ(s)

‖Xε(t)− φ(t)‖ ≥ δ

}
≤ exp(−ε−1[s− γ])

If the noise amplitude is small enough, we can then use:



LD theory permits to calculate rough estimates of certain expectations and of the 
probability of certain events.

Px(X(T ) ∈ B) " exp(−ε−1S∗)

For instance:

where

S∗ = inf
φ
{ST (φ) : φ(0) = x, φ(T ) ∈ B}

The minimizer of the action also is the path of maximum likelihood by which the 
event occurs. 

Formalism can be generalized to deal with events arising on very long time-
scales,                    , on which the “rare events” are no longer rare. T ! eε−1C



The action can be minimized numerically via the minimum action method (MAM) 
or generalizations thereof.

W. E, W. Ren and E. V.-E. Comm. Pure App. Math. 52:637 (2004);
M. Heymann and E. V.-V., Comm. Pure App. Math. 61:1052 (2008);
X. Zhou, W. Ren, and W. E, J. Chem. Phys. 128:104111 (2008)

W. E, W. Ren, and and E. V.-E., Phys. Rev. B. 66:052301 (2002);
W. E, W. Ren, and E. V.-E. J. Phys. Chem. B. 109:6688 (2005);
L. Maragliano, A. Fischer, E. V.-E., and G. Ciccotti,  J. Chem. Phys. 125:024106 (2006)
W. E, W. Ren, and E. V.-E.,  J. Chem. Phys. 126(16): 164103 (2007);

For gradient systems analyzed on long time-scales, one can use the string method

Both methods are ways to evolve curves on the phase space of the system while 
controlling their parametrization to identify MLPs, etc. 

http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=JCPSA6&possible1=E%2C+Weinan&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=JCPSA6&possible1=Zhou%2C+Xiang&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=JCPSA6&possible1=Zhou%2C+Xiang&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=JCPSA6&possible1=Ren%2C+Weiqing&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=JCPSA6&possible1=Ren%2C+Weiqing&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=JCPSA6&possible1=E%2C+Weinan&possible1zone=author&maxdisp=25&smode=strresults&aqs=true


Two metastable states (among others)
= local minima of Landau-Lifshitz energy

Permalloy thin film 
(200nm x 200nm x 10nm)

In plane component of magnetization
  blue = right, red = left, 
  yellow = up, green = down

Application to thermal magnetization reversal in submicron sized 

ferromagnetic elements 
W. E, W. Ren and E. V.-E. J. App. Phys. 93:2275 (2003)

Minimizers of Freidlin-Wentzell action = minimum energy paths (MEPs), i.e. 
heteroclinic orbits connecting minima via saddle points

E[m] =
η

2

∫
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a)

b)

Sequence of minimum and saddle points along two MEPs: 
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Energy:



The graph of two MEPs:



Long-time dynamics can be reduced to a continuous-time Markov chain

Network: nodes = critical points, and edges = orbits weighted by energy barrier
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How to go beyond the rough estimate of large deviation theory and calculate 
exactly (up to statistical errors) the expectation of certain observables (e.g. 

the probability of exit of a domain after time T)? 

Direct estimation usually unaffordable.

Next natural idea: use Girsanov formula to tilt the trajectory toward the 
minimizer of the Freidlin-Wentzell action (i.e. the MLP for the event), and re-
weight the estimator accordingly. 

(Indeed this is the procedure used to prove the large deviation principle.)

Px(X(T ) ∈ B) = Ex1B(Y (T ))MT

MT = exp

(
−ε−1/2

∫ T

0
〈φ̇∗ − b(Y ), dW (t)〉 − 1

2ε−1

∫ T

0
|φ̇∗ − b(Y )|2

)
where

dY = φ̇∗dt +
√

εdW (t)

Importance sampling  



In general, this does not work (as noted e.g. by P. Dupuis): the variance of the tilted 
estimator is typically worse than the one of the original estimator! 

What needs to be done is use a (non-smooth) viscosity solution of a Hamilton-Jacobi 
equation to tilt the solution. 

This viscosity solution can be estimated locally via minimization of an action, i.e.
always tilt using the most likely path given the current position of the process.  

work in progress with J. Weare

φ∗
x,t(s) = arg inf

φ

{∫ T

t
|φ̇− b(φ)|2ds : φ(t) = x, φ(T ) ∈ B

}

dY (t) = φ̇∗
Y (t),t(t)dt +

√
εdW (t)

Estimators of this type can be proven to be 

efficient (i.e. their variance is bounded as #"0), 

or even to have vanishing error (i.e. their variance 

goes to 0 as #"0).



Energy landscape is typically rugged, i.e.

There are many features of the potential on small scales (e.g. many critical points) 
which are mostly irrelevant for the rare events. What matters are large scale 
features (& LD theory does not apply directly).

Example: Rugged Mueller potential

dx(t) = −∇V (x(t), ε)dt +
√

2β−1 dW (t) V (x, ε) = V0(x) + εV1(x/ε)

More difficult if # $ %-1 
small but finite.

and ...

Beyond large deviation theory



Entropic (i.e. volume) effects matter, presence of dead-ends, dynamical traps, etc

Example: a maze

A

B



A
BGiven a trajectory x(t), let R be the set of 

times during which it is reactive (i.e. red in 
the figure).

Probability density of reactive trajectories defined as: 

ρR(x) = lim
T→∞

1
T

∫ T

0
δ(x− x(t))1R(t)dt

Probability current of reactive trajectories defined as: 

JR(x) = lim
T→∞

1
T

∫ T

0
ẋ(t)δ(x− x(t))1R(t)dt

Transition Path Theory

Key concept: reactive trajectories, i.e. those trajectories by which the reaction occurs.

Conceptually, these reactive trajectories can be obtained by pruning a long ergodic 

trajectory which oscillates between A and B.



The key object to quantify the statistical properties of the reactive trajectories is (beside the 

equilibrium PDF) the committor function q(x) (aka capacitor, p-fold, ...) whose value at 

point x is the probability to reach B first rather A starting from x:

q(x) = Px(τB < τA)

τA = inf{t : x(t) ∈ A},
τB = inf{t : x(t) ∈ B}

Thm (E, V.-E.): a.s. as T"!:

1
T

∫ T

0
δ(x− x(t))1R(t) ◦ dx(t) → Z−1e−βV (x)∇q(x)

1
T

∫ T

0
δ(x− x(t))1R(t)dt→ Z−1e−βV (x)q(x)(1− q(x))
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The maze example:
Committor
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The reaction tube can also be identified by the string method (under suitable assumptions)



The reaction tube can also be identified by the string method (under suitable assumptions)



α

zβzα

Bβ

B

Practical way to perform the domain decomposition: 
Use the Voronoi tessellation associated with a set of centers. 

Each Voronoi cell is defined as: Bα = {z ∈ Ω : ‖z − zα‖ < ‖z − zβ‖ for all β $= α},

In each cell run an independent 
simulation of the system;

Store the point of exit when the 
trajectory attempts to escape the cell;

Reinsert the trajectory in the cell using 
as re-entry point the exit point from 
one of the adjacent cells. 

Dynamically consistent sampling via domain decomposition and trajectory 
parallelization 

work with M. Venturoli

Procedure produces a set of statistically consistent pieces 
of trajectories, rather than a single long trajectory.



How to pick the correct edge of re-entry? 

Λ∑

β=1
β !=α

πβνβ,α =
Λ∑

β=1
β !=α

πανα,β ,
Λ∑

α=1

πα = 1.

P∂Bβ∩∂Bα =
πβνβ,α∑

β′ "=α πβ′νβ′,α
, (β != α),

The flux from       to        is then              and so the probability to re-enter cell      
from cell         is 

Bβ Bα Bα

Bβ

πβνβ,α

The steady state probability to find the system in the cell,                              , satisfiesπα =
∫

Bα

"(z)dz

α

zβzα

Bβ

B



How to pick the correct edge of re-entry? 

In practice: estimate on-the-fly of the effective rate of exit from one cell into another: 

να,β =
Nα,β

Tα

Λ∑

β=1
β !=α

πβνβ,α =
Λ∑

β=1
β !=α

πανα,β ,
Λ∑

α=1

πα = 1.

P∂Bβ∩∂Bα =
πβνβ,α∑

β′ "=α πβ′νβ′,α
, (β != α),

The flux from       to        is then              and so the probability to re-enter cell      
from cell         is 

Bβ Bα Bα

Bβ

πβνβ,α

The steady state probability to find the system in the cell,                              , satisfiesπα =
∫

Bα

"(z)dz

α

zβzα

Bβ

B



Application to protein insertion in a lipid bilayer

Coarse grained model, dissipative particle dynamics

with several hundreds of interacting “beads”.

2 collective variables:

{
θ1(r) = zH1 − zmp

θ2(r) = zH2 − zmp

E. V.-E., M. Venturoli, J. Chem. Phys. in press

Use MLP to build tessellation:
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0.2 0.4 0.7 1.1 1.4Ref.

C

A

B

Chain made of 12 monomers of size 7.2 A solvated in a periodic box of size 99.5 A x 

99.5 A x 116.1 A containing 34,000 rigid water molecules modeled by SPC/E.

Collective variables = monomer positions + local density field

                  - in total over 129,000 collective variables

0.2 0.4 0.7 1.1 1.4Ref.

C

A

B

Application to the hydrophobic collapse of a polymeric chain

T. F. Miller III, E. V.E., and D. Chandler, Proc. Nat. Acad. Sci. USA 104:14559 (2007)



MLP identified by the string method



Free energy

Dominated by work done by the solvent degrees of freedom.



Dynamical trajectories initiated from the transition state region

0 ps 30 ps

60 ps 90 ps 150 ps

-30 ps

-150 ps -90 ps -60 ps



Summarizing:

Times scale issue in complex dynamical systems can be addressed by taking a 
probabilistic (i.e. statistical mechanistic) viewpoint. 

Two steps procedure: 
(i) identify the right statistical descriptors for the system, and 
(ii) design computational tools to estimate them in practice.

Open the door to various kind of accelerated sampling strategies (e.g. with biased/
artificial dynamics building on results from LDT and beyond) to analyze systems on 
very long time scales, e.g. when rare reactive events are not rare anymore.
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