Automated goal-oriented error control for stationary variational problems

Marie E. Rognes and Anders Logg

Simula Research Laboratory

'Automated goal-oriented error control I: stationary variational problems'.
The FEniCS project (www.fenics.org)

Free Software for Automated Scientific Computing

Agenda

1. Automation of discretization ✓
2. Automation of error control
3. ...

Key components

- High-level form language (UFL)
- Form compiler (FFC)
- Main interface (DOLFIN)
What is automated goal-oriented error control?

Input

- PDE: find $u \in V$ such that $a(v, u) = L(v) \quad \forall v \in V$
- Quantity of interest/Goal: $M : V \to \mathbb{R}$
- Tolerance: $\epsilon > 0$

Challenge

Find $V_h \subset V$ such that $|M(u) - M(u_h)| < \epsilon$ where $u_h \in V_h$ is determined by

$$a(v, u_h) = L(v) \quad \forall v \in V_h$$

FEniCS/DOLFIN

```python
pde = AdaptiveVariationalProblem(a - L, M)
u_h = pde.solve(1.0e-3)
```
The error measured in the goal is the residual of the dual solution

1. Define residual

\[r(v) := L(v) - a(v, u_h) \]

2. Introduce dual problem

Find \(z \in V \):

\[a^*(v, z) = M(v) \quad \forall v \in V \]

3. Dual solution + residual \(\implies \) error

\[M(u) - M(u_h) = L(z) - a(z, u_h) = r(z) = r(z - z_h) \]

4. A good dual approximation \(\tilde{z}_h \) gives computable error estimate

\[\eta_h = r(\tilde{z}_h) \]

5. Error indicators ... ?
Let us take Poisson’s equation as an example for manual derivation of error indicators

\[a(v, u) = \int_{\Omega} \nabla v \cdot \nabla u \, dx \quad L(v) = \int_{\Omega} vf \, dx \]

Recall error representation:

\[\mathcal{M}(u) - \mathcal{M}(u_h) = r(z) = \int_{\Omega} zf - \nabla z \cdot \nabla u_h \, dx \]

Residual decomposition

\[r(v) = \sum_{T \in \mathcal{T}_h} \int_T v \left(f + \text{div} \nabla u_h \right) + \int_{\partial T} v \left(-\nabla u_h \cdot n \right) \, ds \]

Error indicators:

\[\eta_T = |\langle \tilde{z}_h - z_h, R_T \rangle_T + \langle \tilde{z}_h - z_h, [R_{\partial T}] \rangle_{\partial T}| \]
The residual decomposition can be automatically computed for a class of residuals

Have: \(a - L \) and \(u_h \) \(\implies \) \(r \)

Want: \(\eta_T = |\langle \tilde{z}_h - z_h, R_T \rangle_T + \langle \tilde{z}_h - z_h, [R_{\partial T}] \rangle_{\partial T} | \)

Need: Residual decomposition \(R_T, R_{\partial T} \) for each cell \(T \)

Assumptions

1. \(r(v) = \sum_T r_T(v) \)

2. \(r_T(v) = \int_T v \cdot R_T + \int_{\partial T} v \cdot R_{\partial T} \)

3. \(R_T \in P_k(T), R_{\partial T}|_e \in P_q(e) \) for some integer \(k, q \)
We can compute R_T and $R_{\partial T}$ by solving small local variational problems

Recall assumption:

$$r_T(v) = \int_T v \cdot R_T \, dx + \int_{\partial T} v \cdot R_{\partial T} \quad \text{with} \quad R_T \in P_k(T)$$

Let

- $b_T : T \to \mathbb{R}$ such that $b_T|_{\partial T} = 0$ (Bubble)
- $\{\phi_i\}_{i=1}^n$ be a basis for $P_k(T)$

Lemma

R_T is uniquely determined by the equations

$$\int_T b_T \phi_i \cdot R_T \, dx = r_T(b_T \phi_i)$$

$i = 1, \ldots, n$
An improved dual approximation can be computed by higher-order extrapolation

Dual problem

\[a^*(v, z_h) = M(v) \quad \forall v \in V_h \]

can be generated and solved automatically.

Problem

With same discretization as primal: \(\eta_h = r(z_h) = 0 \).

Suggested solution

Let \(W_h \supset V_h \). Improve approximation by a patch-based least-squares curve fitting procedure:

\[z_h \mapsto \tilde{z}_h = E_h z_h, \quad E_h : V_h \to W_h \]
The error estimates are virtually perfect for Poisson on a 3D L-shape

\[a(v, u) = \langle \nabla v, \nabla u \rangle, \]

\[M(u) = \int_{\Gamma} u \, ds, \quad \Gamma \subset \partial \Omega. \]
The error estimates are highly satisfactory for a three-field mixed elasticity formulation also

\[
a((\tau, v, \eta), (\sigma, u, \gamma)) = \langle \tau, A\sigma \rangle + \langle \text{div} \tau, u \rangle + \langle v, \text{div} \sigma \rangle + \langle \tau, \gamma \rangle + \langle \eta, \sigma \rangle
\]

\[
M((\sigma, u, \eta)) = \int_{\Gamma} g \sigma \cdot n \cdot t \, ds
\]
Goal-oriented adaptivity is worth it

Outflux $\approx 0.4087 \pm 10^{-4}$

Uniform
1,000,000 dofs, > 3 hours

Adaptive
5,200 dofs, 127 seconds

```python
from dolfin import *

class Noslip(SubDomain):
    ...

mesh = Mesh("channel-with-flap.xml.gz")
V = VectorFunctionSpace(mesh, "CG", 2)
Q = FunctionSpace(mesh, "CG", 1)

# Define test functions and unknown(s)
(v, q) = TestFunctions(V * Q)
w = Function(V * Q)
(u, p) = (as_vector((w[0], w[1])), w[2])

# Define (non-linear) form
n = FacetNormal(mesh)
p0 = Expression("(4.0 - x[0])/4.0")
F = (0.02*inner(grad(v), grad(u)) + inner(v, grad(u)*u))*dx
    - div(v)*p + q*div(u) + p0*dot(v, n)*ds

# Define goal and pde
M = u[0]*ds(0)
pde = AdaptiveVariationalProblem(F, bcs=[], M, u=w, ...)

# Compute solution
(u, p) = pde.solve(1.e-4).split()
```