Invariant Forms, Pressure and Rigidity for Anosov Flows
An Anosov flow on a manifold M is a smooth flow ϕ^t with
- an invariant decomposition $TM = X \oplus E^u \oplus E^s$ (where $X = \dot{\phi} \neq 0$ is the generator of the flow and E^u and E^s are called the unstable and stable subbundles) and
- a Riemannian metric on M such that $D\phi^t \big|_{E^s}$ and $D\phi^{-t} \big|_{E^u}$ are contractions whenever $t > 0$.
An Anosov flow on a manifold M is a smooth flow ϕ^t with
- an invariant decomposition $TM = X \oplus E^u \oplus E^s$ (where $X = \dot{\phi} \neq 0$ is the generator of the flow and E^u and E^s are called the unstable and stable subbundles) and
- a Riemannian metric on M such that $D\phi^t \mid_{E^s}$ and $D\phi^{-t} \mid_{E^u}$ are contractions whenever $t > 0$.

The canonical 1-form A of an Anosov flow ϕ^t is defined by $A(X) = 1$ and $E^u, E^s \subset \ker A$.

Patrick Foulon (Université de Strasbourg)

Forms, Pressure and Rigidity for Anosov Flows

2010 2 / 29
Anosov Flows

- An Anosov flow on a manifold M is a smooth flow φ^t with
 - an invariant decomposition $TM = X \oplus E^u \oplus E^s$ (where $X = \dot{\varphi} \neq 0$ is the generator of the flow and E^u and E^s are called the unstable and stable subbundles) and
 - a Riemannian metric on M such that $D\varphi^t|_{E^s}$ and $D\varphi^{-t}|_{E^u}$ are contractions whenever $t > 0$.

- The canonical 1-form A of an Anosov flow φ^t is defined by $A(X) = 1$ and $E^u, E^s \subset \ker A$.

- A canonical time-change is defined using a closed 1-form α by replacing the generator X of the flow by the vector field $X/(1 + \alpha(X))$, provided α is such that the denominator is positive.
Local Charts

Lemma
There exist local coordinates adapted to the invariant laminations, coordinate systems $\Psi : M \times (-\epsilon, \epsilon)^{2n+1} \to M$ such that $\Psi_p \Psi(p, \cdot)$ satisfies

- Ψ_p is a C^k-diffeomorphism onto a neighborhood of p for every $p \in M$.

Ψ_p depends continuously/Hölder-continuously/Zygmund-continuously on p if the strong stable and unstable laminations do.

Ψ_p preserves volume for each $p \in M$; if ϕ_t is transversely symplectic then Ψ_p sends the standard symplectic structure to the one on transversals in M.

$\Psi_p(0) = p$.

$\Psi_p((-\epsilon, \epsilon)^n \times \{0\} \times \{0\}) = W^u_{loc}(p) \cap \Psi_p((-\epsilon, \epsilon)^{2n+1})$.

$\Psi_p^{-1}((\phi_\delta(\Psi_p(u, t, s)))) = (u, t+\delta, s)$ for $|\delta| < \epsilon$.

$\Psi_p((\{0\} \times \{0\} \times (-\epsilon, \epsilon)^n)) = W^s_{loc}(p) \cap \Psi_p((-\epsilon, \epsilon)^{2n+1})$.

Patrick Foulon (Université de Strasbourg)

Forms, Pressure and Rigidity for Anosov Flows

2010 3 / 29
Local Charts

Lemma
There exist local coordinates adapted to the invariant laminations, coordinate systems \(\Psi : M \times (-\epsilon, \epsilon)^{2n+1} \to M \) such that \(\Psi_p \Psi(p, \cdot) \) satisfies

- \(\Psi_p \) is a \(C^k \)-diffeomorphism onto a neighborhood of \(p \) for every \(p \in M \).
- \(\Psi_p \) depends continuously/Hölder-continuously/Zygmund-continuously on \(p \) if the strong stable and unstable laminations do.
Local Charts

Lemma
There exist local coordinates adapted to the invariant laminations, coordinate systems \(\Psi : M \times (-\epsilon, \epsilon)^{2n+1} \to M \) such that \(\Psi_p \Psi(p, \cdot) \) satisfies

- \(\Psi_p \) is a \(C^k \)-diffeomorphism onto a neighborhood of \(p \) for every \(p \in M \).
- \(\Psi_p \) depends continuously/Hölder-continuously/Zygmund-continuously on \(p \) if the strong stable and unstable laminations do.
- \(\Psi_p \) preserves volume for each \(p \in M \); if \(\varphi^t \) is transversely symplectic then \(\Psi_p \) sends the standard symplectic structure to the one on transversals in \(M \).
Local Charts

Lemma
There exist local coordinates adapted to the invariant laminations, coordinate systems \(\Psi : M \times (-\epsilon, \epsilon)^{2n+1} \to M \) such that \(\Psi_p \Psi(p, \cdot) \) satisfies

- \(\Psi_p \) is a \(C^k \)-diffeomorphism onto a neighborhood of \(p \) for every \(p \in M \).
- \(\Psi_p \) depends continuously/Hölder-continuously/Zygmund-continuously on \(p \) if the strong stable and unstable laminations do.
- \(\Psi_p \) preserves volume for each \(p \in M \); if \(\varphi^t \) is transversely symplectic then \(\Psi_p \) sends the standard symplectic structure to the one on transversals in \(M \).
- \(\Psi_p(0) = p \).
Local Charts

Lemma
There exist local coordinates adapted to the invariant laminations, coordinate systems $\Psi: M \times (-\epsilon, \epsilon)^{2n+1} \rightarrow M$ such that $\Psi_p \Psi(p, \cdot)$ satisfies

- Ψ_p is a C^k-diffeomorphism onto a neighborhood of p for every $p \in M$.
- Ψ_p depends continuously/Hölder-continuously/Zygmund-continuously on p if the strong stable and unstable laminations do.
- Ψ_p preserves volume for each $p \in M$; if φ^t is transversely symplectic then Ψ_p sends the standard symplectic structure to the one on transversals in M.
- $\Psi_p(0) = p$.
- $\Psi_p((-\epsilon, \epsilon)^n \times \{0\} \times \{0\}) = W^\mu_{\text{loc}}(p) \cap \Psi_p((-\epsilon, \epsilon)^{2n+1})$.

Patrick Foulon (Université de Strasbourg)
Forms, Pressure and Rigidity for Anosov Flows

2010 3 / 29
Lemma
There exist local coordinates adapted to the invariant laminations, coordinate systems \(\Psi: M \times (-\epsilon, \epsilon)^{2n+1} \rightarrow M \) such that \(\Psi_p \Psi(p, \cdot) \) satisfies

- \(\Psi_p \) is a \(C^k \)-diffeomorphism onto a neighborhood of \(p \) for every \(p \in M \).
- \(\Psi_p \) depends continuously/Hölder-continuously/Zygmund-continuously on \(p \) if the strong stable and unstable laminations do.
- \(\Psi_p \) preserves volume for each \(p \in M \); if \(\phi^t \) is transversely symplectic then \(\Psi_p \) sends the standard symplectic structure to the one on transversals in \(M \).
- \(\Psi_p(0) = p \).
- \(\Psi_p((-\epsilon, \epsilon)^n \times \{0\} \times \{0\}) = W^u_{\text{loc}}(p) \cap \Psi_p((-\epsilon, \epsilon)^{2n+1}) \).
- \(\Psi_p^{-1}(\phi^\delta(\Psi_p(u, t, s))) = (u, t + \delta, s) \) for \(|\delta| < \epsilon \).
Local Charts

Lemma
There exist local coordinates adapted to the invariant laminations, coordinate systems $\Psi: M \times \left(-\epsilon, \epsilon\right)^{2n+1} \to M$ such that $\Psi_p \Psi(p, \cdot)$ satisfies

- Ψ_p is a C^k-diffeomorphism onto a neighborhood of p for every $p \in M$.
- Ψ_p depends continuously/Hölder-continuously/Zygmund-continuously on p if the strong stable and unstable laminations do.
- Ψ_p preserves volume for each $p \in M$; if ϕ^t is transversely symplectic then Ψ_p sends the standard symplectic structure to the one on transversals in M.
- $\Psi_p(0) = p$.
- $\Psi_p((\left(-\epsilon, \epsilon\right)^n \times \{0\} \times \{0\}) = W^{\text{un}}_{\text{loc}}(p) \cap \Psi_p((\left(-\epsilon, \epsilon\right)^{2n+1})$.
- $\Psi_p^{-1}(\phi^\delta(\Psi_p(u, t, s))) = (u, t + \delta, s)$ for $|\delta| < \epsilon$.
- $\Psi_p(\{0\} \times \{0\} \times (\left(-\epsilon, \epsilon\right)^n) = W^{\text{un}}_{\text{loc}}(p) \cap \Psi_p((\left(-\epsilon, \epsilon\right)^{2n+1})$.
Geometric description
Longitudinal KAM cocycle

- Geometric description

Theorem

Let M be a 3-manifold, $k \geq 2$, $\varphi: \mathbb{R} \times M \to M$ a C^k volume-preserving Anosov flow. Then $E^u \oplus E^s$ is Zygmund-regular, and there is an obstruction to higher regularity that can be described geometrically as the curvature of the image of a transversal under a return map. This obstruction defines the cohomology class of a cocycle (the longitudinal KAM-cocycle), and the following are equivalent:

- $E^u \oplus E^s$ is “little Zygmund”.
- The longitudinal KAM-cocycle is a coboundary.
- $E^u \oplus E^s$ is Lipschitz-continuous.
- $E^u \oplus E^s \in C^{k-1}$.
- φ is a suspension or contact flow.

No stronger rigidity should be expected because $E^u \oplus E^s$ is smooth for all suspensions and contact flows.

Paternain, Dairbekov-Paternain for applications of this to magnetic flows.
Geometric description

Theorem

Let M be a 3-manifold, $k \geq 2$, $\varphi : \mathbb{R} \times M \to M$ a C^k volume-preserving Anosov flow. Then $E^u \oplus E^s$ is Zygmund-regular, and there is an obstruction to higher regularity that can be described geometrically as the curvature of the image of a transversal under a return map. This obstruction defines the cohomology class of a cocycle (the longitudinal KAM-cocycle), and the following are equivalent:

- $E^u \oplus E^s$ is “little Zygmund”.
- $E^u \oplus E^s$ is Lipschitz-continuous.
- $E^u \oplus E^s \in C^{k-1}$.
- φ is a suspension or contact flow.

No stronger rigidity should be expected because $E^u \oplus E^s$ is smooth for all suspensions and contact flows.
Theorem

Let M be a 3-manifold, $k \geq 2$, $\varphi: \mathbb{R} \times M \to M$ a C^k volume-preserving Anosov flow. Then $E^u \oplus E^s$ is Zygmund-regular, and there is an obstruction to higher regularity that can be described geometrically as the curvature of the image of a transversal under a return map. This obstruction defines the cohomology class of a cocycle (the longitudinal KAM-cocycle), and the following are equivalent:

- $E^u \oplus E^s$ is “little Zygmund”.
- The longitudinal KAM-cocycle is a coboundary.
Geometric description

Theorem

Let M be a 3-manifold, $k \geq 2$, $\varphi: \mathbb{R} \times M \to M$ a C^k volume-preserving Anosov flow. Then $E^u \oplus E^s$ is Zygmund-regular, and there is an obstruction to higher regularity that can be described geometrically as the curvature of the image of a transversal under a return map. This obstruction defines the cohomology class of a cocycle (the longitudinal KAM-cocycle), and the following are equivalent:

- $E^u \oplus E^s$ is "little Zygmund".
- The longitudinal KAM-cocycle is a coboundary.
- $E^u \oplus E^s$ is Lipschitz-continuous.

No stronger rigidity should be expected because $E^u \oplus E^s$ is smooth for all suspensions and contact flows.
Theorem

Let M be a 3-manifold, $k \geq 2$, $\varphi : \mathbb{R} \times M \to M$ a C^k volume-preserving Anosov flow. Then $E^u \oplus E^s$ is Zygmund-regular, and there is an obstruction to higher regularity that can be described geometrically as the curvature of the image of a transversal under a return map. This obstruction defines the cohomology class of a cocycle (the longitudinal KAM-cocycle), and the following are equivalent:

- $E^u \oplus E^s$ is “little Zygmund”.
- The longitudinal KAM-cocycle is a coboundary.
- $E^u \oplus E^s$ is Lipschitz-continuous.
- $E^u \oplus E^s \in C^{k-1}$.
Longitudinal KAM cocycle

- Geometric description

Theorem

Let M be a 3-manifold, $k \geq 2$, $\varphi : \mathbb{R} \times M \to M$ a C^k volume-preserving Anosov flow. Then $E^u \oplus E^s$ is Zygmund-regular, and there is an obstruction to higher regularity that can be described geometrically as the curvature of the image of a transversal under a return map. This obstruction defines the cohomology class of a cocycle (the longitudinal KAM-cocycle), and the following are equivalent:

- $E^u \oplus E^s$ is “little Zygmund”.
- The longitudinal KAM-cocycle is a coboundary.
- $E^u \oplus E^s$ is Lipschitz-continuous.
- $E^u \oplus E^s \in C^{k-1}$.
- φ is a suspension or contact flow.

No stronger rigidity should be expected because $E^u \oplus E^s$ is smooth for all suspensions and contact flows.
Theorem

Let M be a 3-manifold, $k \geq 2$, $\varphi: \mathbb{R} \times M \to M$ a C^k volume-preserving Anosov flow. Then $E^u \oplus E^s$ is Zygmund-regular, and there is an obstruction to higher regularity that can be described geometrically as the curvature of the image of a transversal under a return map. This obstruction defines the cohomology class of a cocycle (the longitudinal KAM-cocycle), and the following are equivalent:

- $E^u \oplus E^s$ is “little Zygmund”.
- The longitudinal KAM-cocycle is a coboundary.
- $E^u \oplus E^s$ is Lipschitz-continuous.
- $E^u \oplus E^s \in C^{k-1}$.
- φ is a suspension or contact flow.

No stronger rigidity should be expected because $E^u \oplus E^s$ is smooth for all suspensions and contact flows.
Geometric description

Theorem

Let M be a 3-manifold, $k \geq 2$, $\varphi: \mathbb{R} \times M \to M$ a C^k volume-preserving Anosov flow. Then $E^u \oplus E^s$ is Zygmund-regular, and there is an obstruction to higher regularity that can be described geometrically as the curvature of the image of a transversal under a return map. This obstruction defines the cohomology class of a cocycle (the longitudinal KAM-cocycle), and the following are equivalent:

- $E^u \oplus E^s$ is “little Zygmund”.
- The longitudinal KAM-cocycle is a coboundary.
- $E^u \oplus E^s$ is Lipschitz-continuous.
- $E^u \oplus E^s \in C^{k-1}$.
- φ is a suspension or contact flow.

No stronger rigidity should be expected because $E^u \oplus E^s$ is smooth for all suspensions and contact flows.

Paternain, Dairbekov-Paternain for applications of this to magnetic flows.
Let φ be a C^∞ flow on a closed manifold M. Denote by X the generating vector field of φ. The flow φ is said to be \textit{transversely symplectic} if there exists a C^∞ closed 2-form ω on M such that $\text{Ker}\omega = \mathbb{R}X$. The closed 2-form ω is said to be the \textit{transverse symplectic form} of φ. It is easy to see that ω is φ-invariant.
Let φ be a C^∞ flow on a closed manifold M. Denote by X the generating vector field of φ. The flow φ is said to be \textit{transversely symplectic} if there exists a C^∞ closed 2-form ω on M such that $\text{Ker} \omega = \mathbb{R}X$. The closed 2-form ω is said to be the \textit{transverse symplectic form} of φ. It is easy to see that ω is φ-invariant.

Geodesic flows
Let φ be a C^∞ flow on a closed manifold M. Denote by X the generating vector field of φ. The flow φ is said to be transversely symplectic if there exists a C^∞ closed 2-form ω on M such that $\text{Ker}\omega = \mathbb{R}X$. The closed 2-form ω is said to be the transverse symplectic form of φ. It is easy to see that ω is φ-invariant.

- Geodesic flows
- Contact Anosov flows
Longitudinal KAM cocycle, higher dimensions

Magnetic flows are important examples of transversely symplectic flows and are constructed as follows:

Let \((N, g)\) be a closed \(C^\infty\) Riemannian manifold and \(\Omega\) a \(C^\infty\) closed 2-form on \(N\). Let \(\alpha\) denote the \(C^\infty\) 1-form on \(TN\) obtained by pulling back the Liouville 1-form of \(T^*N\) via the Riemannian metric. For \(\lambda \in \mathbb{R}\), the twisted symplectic structure \(\omega_\lambda\) is defined as \(\omega_\lambda = d\alpha - \lambda \pi^* \Omega\), where \(\pi: TN \to N\) denotes the canonical projection. Let \(H: TN \to \mathbb{R}\) be the Hamiltonian function defined as \(H(v) = \frac{1}{2} g(v,v)\) for any \(v \in TN\). The energy level \(H^{-1}(1/2)\) is the unit sphere bundle \(SN\).

Let \(\phi_\lambda\) be the restriction to \(SN\) of the Hamiltonian flow of \(H\) with respect to \(\omega_\lambda\). \(\phi_\lambda\) is a transversely symplectic flow with respect to \(\omega_\lambda|_{SN}\), which is said to be the magnetic flow of the pair \((g, \lambda \Omega)\).
Magnetic flows are important examples of transversely symplectic flows and are constructed as follows:

Let \((N, g)\) be a closed \(C^\infty\) Riemannian manifold and \(\Omega\) a \(C^\infty\) closed 2-form of \(N\). Let \(\alpha\) denote the \(C^\infty\) 1-form on \(TN\) obtained by pulling back the Liouville 1-form of \(T^*N\) via the Riemannian metric. For \(\lambda \in \mathbb{R}\), the twisted symplectic structure \(\omega_\lambda\) is defined as

\[
\omega_\lambda = d\alpha - \lambda \pi^* \Omega,
\]

where \(\pi: TN \to N\)
Magnetic flows are important examples of transversely symplectic flows and are constructed as follows:

Let \((N, g)\) be a closed \(C^\infty\) Riemannian manifold and \(\Omega\) a \(C^\infty\) closed 2-form of \(N\). Let \(\alpha\) denote the \(C^\infty\) 1-form on \(TN\) obtained by pulling back the Liouville 1-form of \(T^*N\) via the Riemannian metric. For \(\lambda \in \mathbb{R}\), the twisted symplectic structure \(\omega_\lambda\) is defined as

\[
\omega_\lambda = d\alpha - \lambda \pi^* \Omega,
\]

where \(\pi: TN \to N\) denotes the canonical projection. Let \(H: TN \to \mathbb{R}\) be the Hamiltonian function defined as

\[
H(v) = \frac{1}{2} g(v, v)
\]

for any \(v \in TN\). The energy level \(H^{-1}(\frac{1}{2})\) is the unit sphere bundle \(SN\). Let \(\varphi^\lambda\) be the restriction to \(SN\) of the Hamiltonian flow of \(H\) with respect to \(\omega_\lambda\).

Longitudinal KAM cocycle, higher dimensions
Magnetic flows are important examples of transversely symplectic flows and are constructed as follows:

Let \((N, g)\) be a closed \(C^\infty\) Riemannian manifold and \(\Omega\) a \(C^\infty\) closed 2-form of \(N\). Let \(\alpha\) denote the \(C^\infty\) 1-form on \(TN\) obtained by pulling back the Liouville 1-form of \(T^*N\) via the Riemannian metric. For \(\lambda \in \mathbb{R}\), the \textit{twisted symplectic structure} \(\omega_\lambda\) is defined as

\[
\omega_\lambda = d\alpha - \lambda \pi^* \Omega,
\]

where \(\pi : TN \to N\) denotes the canonical projection. Let \(H : TN \to \mathbb{R}\) be the Hamiltonian function defined as

\[
H(v) = \frac{1}{2} g(v, v)
\]

for any \(v \in TN\). The energy level \(H^{-1}(\frac{1}{2})\) is the unit sphere bundle \(SN\).

Let \(\varphi^\lambda\) be the restriction to \(SN\) of the Hamiltonian flow of \(H\) with respect to \(\omega_\lambda\).

\(\varphi^\lambda\) is a transversely symplectic flow with respect to \(\omega_\lambda \mid_{SN}\), which is said to be the \textit{magnetic flow} of the pair \((g, \lambda \Omega)\).
An Anosov flow is said to be *uniformly quasiconformal* if

\[
K_i(x, t) := \frac{\|d\varphi^t\big|_{E^i}\|}{\|d\varphi^t\big|_{E^i}\|^*}
\]

is bounded on \(\{u, s\} \times M \times \mathbb{R}\), where \(\|A\|^* := \min_{\|v\| = 1} \|Av\|\) is the *conorm* of a linear map \(A\).
Theorem (Fang)

Let M be a compact Riemannian manifold and $\varphi : \mathbb{R} \times M \rightarrow M$ a transversely symplectic Anosov flow with $\dim E^u \geq 2$ and $\dim E^s \geq 2$. Then φ is quasiconformal if and only if φ is up to finite covers C^∞ orbit equivalent either to the suspension of a symplectic hyperbolic automorphism of a torus, or to the geodesic flow of a closed hyperbolic manifold.
Theorem (Fang)

Let M be a compact Riemannian manifold and $\varphi : \mathbb{R} \times M \to M$ a transversely symplectic Anosov flow with $\dim E^u \geq 2$ and $\dim E^s \geq 2$. Then φ is quasiconformal if and only if φ is up to finite covers C^∞ orbit equivalent either to the suspension of a symplectic hyperbolic automorphism of a torus, or to the geodesic flow of a closed hyperbolic manifold.

Theorem (Fang)

Let φ be a C^∞ volume-preserving quasiconformal Anosov flow. If $E^s \oplus E^u \in C^1$ and $\dim E^u \geq 3$ and $\dim E^s \geq 2$ (or $\dim E^s \geq 3$ and $\dim E^u \geq 2$), then φ is up to finite covers and a constant change of time scale C^∞ flow equivalent either to the suspension of a hyperbolic automorphism of a torus, or to a canonical time change of the geodesic flow of a closed hyperbolic manifold.
Theorem (Fang - F - Hasselblatt 2010)

Let M be a compact Riemannian manifold of dimension at least 5, $k \geq 2$, $\varphi : \mathbb{R} \times M \to M$ a uniformly quasiconformal transversely symplectic C^k Anosov flow.

Then $E^u \oplus E^s$ is Zygmund-regular and there is an obstruction to higher regularity that defines the cohomology class of a cocycle we call the longitudinal KAM-cocycle. This obstruction can be described geometrically as the curvature of the image of a transversal under a return map, and the following are equivalent:

1. $E^u \oplus E^s$ is “little Zygmund”

2. The longitudinal KAM-cocycle is a coboundary.

3. $E^u \oplus E^s$ is Lipschitz-continuous.

4. φ is up to finite covers, constant rescaling and a canonical time-change C^k-conjugate to the suspension of a symplectic Anosov automorphism of a torus or the geodesic flow of a real hyperbolic manifold.
To show that 3 implies 4 we study the *canonical 1-form* of the time-change of a geodesic flow or of the suspension of an infranilmanifold automorphism, and because we only have Lipschitz-continuity at our disposal, we need to explore how smooth-rigidity results can be pushed to the lowest conceivable regularity. This requires two main results
Theorem (Hasselblatt 2010)

Let M be a compact locally symmetric space with negative sectional curvature and suppose A is a Lipschitz continuous 1-form such that dA is invariant under the geodesic flow. Then A is C^∞, and indeed dA is a constant multiple of the exterior derivative of the canonical 1-form for the geodesic flow.

Note that the Lipschitz assumption ensures that dA is defined almost everywhere and essentially bounded (V. M. Goldshtein, V. I. Kuzminov, I. A. Shvedov: Differential forms on a Lipschitz manifold, (1982)). This is all we use. For comparison, we state an earlier result of Hamenstädt:

Theorem (Hamenstadt)

If the Anosov splitting of the geodesic flow of a compact negatively curved manifold is C^1 and A is a C^1 form such that dA is invariant, then dA is proportional to the canonical 1-form of the geodesic flow.
Theorem (F - Hasselblatt 2010)

Let M be a compact locally symmetric space with negative sectional curvature and suppose A is a Lipschitz continuous 1-form such that dA is invariant under the geodesic flow. Then A is C^∞, and indeed dA is a constant multiple of the exterior derivative of the canonical 1-form for the geodesic flow.
Invariant Forms

Theorem (F - Hasselblatt 2010)

Let M be a compact locally symmetric space with negative sectional curvature and suppose A is a Lipschitz continuous 1-form such that dA is invariant under the geodesic flow. Then A is C^∞, and indeed dA is a constant multiple of the exterior derivative of the canonical 1-form for the geodesic flow.

Note that the Lipschitz assumption ensures that dA is defined almost everywhere and essentially bounded (V. M. Goldshtein, V. I. Kuzminov, I. A. Shvedov: *Differential forms on a Lipschitz manifold*, (1982)). This is all we use. For comparison, we state an earlier result of Hamenstädt:

Patrick Foulon (Université de Strasbourg)
Invariant Forms

Theorem (F - Hasselblatt 2010)

Let M be a compact locally symmetric space with negative sectional curvature and suppose A is a Lipschitz continuous 1-form such that dA is invariant under the geodesic flow. Then A is C^∞, and indeed dA is a constant multiple of the exterior derivative of the canonical 1-form for the geodesic flow.

Note that the Lipschitz assumption ensures that dA is defined almost everywhere and essentially bounded (V. M. Goldshtein, V. I. Kuzminov, I. A. Shvedov: *Differential forms on a Lipschitz manifold*, (1982)). This is all we use. For comparison, we state an earlier result of Hamenstädt:

Theorem (Hamenstadt)

If the Anosov splitting of the geodesic flow of a compact negatively curved manifold is C^1 and A is a C^1 1-form such that dA is invariant, then dA is proportional to the canonical 1-form of the geodesic flow.
Invariant Forms

Corollary

Let M be a compact locally symmetric space with negative sectional curvature and consider a time-change whose canonical 1-form is Lipschitz-continuous. Then the canonical form of the time-change is C^∞, and the time-change is a canonical time-change.

Theorem (F - Hasselblatt 2010)

Let ψ be a hyperbolic automorphism of a torus or an infranilmanifold $\Gamma \backslash M$. Then any essentially bounded invariant 2-form is almost everywhere equal to an M-invariant (hence smooth) closed 2-form.

If, in addition, the form is exact, then it vanishes almost everywhere.
Corollary

Let M be a compact locally symmetric space with negative sectional curvature and consider a time-change whose canonical 1-form is Lipschitz-continuous. Then the canonical form of the time-change is C^∞, and the time-change is a canonical time-change.
Corollary

Let M be a compact locally symmetric space with negative sectional curvature and consider a time-change whose canonical 1-form is Lipschitz-continuous. Then the canonical form of the time-change is C^∞, and the time-change is a canonical time-change.

Theorem (F - Hasselblatt 2010)

Let ψ be a hyperbolic automorphism of a torus or a infranilmanifold $\Gamma \backslash M$. Then any essentially bounded invariant 2-form is almost everywhere equal to an M-invariant (hence smooth) closed 2-form.
If, in addition, the form is exact, then it vanishes almost everywhere.
Invariant Forms

- We point out that in this proof we use that the automorphism is mixing (rather than just ergodic). The need for this is an interesting side light on how parabolic effects enter into our considerations.
Invariant Forms

- We point out that in this proof we use that the automorphism is mixing (rather than just ergodic). The need for this is an interesting side light on how parabolic effects enter into our considerations.

Corollary

Let ψ be a hyperbolic automorphism of a torus or a infranilmanifold $\Gamma \setminus M$ and consider a time-change of the suspension whose canonical 1-form is Lipschitz-continuous. Then the canonical form of the time-change is C^∞, and the time-change is a canonical time-change.
Invariant Forms

We point out that in this proof we use that the automorphism is mixing (rather than just ergodic). The need for this is an interesting side light on how parabolic effects enter into our considerations.

Corollary

Let ψ be a hyperbolic automorphism of a torus or an infranilmanifold $\Gamma \backslash M$ and consider a time-change of the suspension whose canonical 1-form is Lipschitz-continuous. Then the canonical form of the time-change is C^∞, and the time-change is a canonical time-change.

Theorem

Let (N, g) be a n-dimensional closed negatively curved Riemannian manifold and Ω a C^∞ closed 2-form of N. For small $\lambda \in \mathbb{R}$, let φ^λ be the magnetic Anosov flow of the pair $(g, \lambda \Omega)$. Suppose that $n \geq 3$ and φ^λ is uniformly quasiconformal. Then g has constant negative curvature and $\lambda \Omega = 0$. In particular, the longitudinal KAM-cocycle of φ^λ is a coboundary.
Smooth Finsler metrics
Finsler manifolds of negative curvature

Smooth Finsler metrics

- Let \((M, F)\) be a \(C^\infty\) closed Finsler manifold of negative flag curvature.
- Let \(\varphi\) be its geodesic flow defined on the homogeneous bundle \(HM\).
- The lift of this Finsler structure to the universal covering space defines a possibly non-symmetric distance \(\tilde{d}\) on \(\tilde{M}\).
- We study the large scale metric geometry of \(\tilde{d}\)
Finsler manifolds of negative curvature

Preliminaries

\[\pi:HM = TM_0/R \to M \]

Recall that the generator \(X \) of the geodesic flow is a Reeb field of a contact form \(A \) on \(HM \):

\[dA(X, .) = 0 \]

\[A(X) = 1 \]
Finsler manifolds of negative curvature
Preliminaries

Let $\pi : HM = TM_0 / \mathbb{R}^+ \rightarrow M$ be the homogeneous bundle
Finsler manifolds of negative curvature

Preliminaries

- Let \(\pi : HM = TM_0 / \mathbb{R}^+ \to M \) be the homogeneous bundle
- Recall that the generator \(X \) of the geodesic flow is a Reeb field of a contact form \(A \) on \(HM \)
Finsler manifolds of negative curvature

Preliminaries

- Let $\pi : HM = TM_0/\mathbb{R}^+ \to M$ be the homogeneous bundle
- Recall that the generator X of the geodesic flow is a Reeb field of a contact form A on HM
 - $dA(X,.) = 0$
 - $A(X) = 1$
Theorem

Let (M, F) be a closed C^∞ Finsler manifold of negative flag curvature. Then its geodesic flow $\varphi : HM \to HM$ is Anosov. In addition the stable and unstable distributions of φ are both transverse to $V(HM)$.

It is well-known that contact Anosov flows are topologically transitive.
Theorem

Let \((M, F)\) be a closed \(C^\infty\) Finsler manifold of negative flag curvature. Then its geodesic flow \(\varphi : HM \to HM\) is Anosov. In addition the stable and unstable distributions of \(\varphi\) are both transverse to \(V(HM)\).

- It is well-known that contact Anosov flows are topologically transitive.
- There exists on \(HM\) a unique continuous \(\varphi\)-invariant 1-form \(\lambda_\varphi\) such that

\[
\lambda_\varphi(X) = 1 \quad \text{and} \quad \lambda_\varphi(E^{ss}) = \lambda_\varphi(E^{su}) = 0,
\]

which is said to be the canonical 1-form of \(\varphi\).

- \(A = \lambda_\varphi\)
Entropy

For any φ-invariant probability measure μ we denote by $h_\mu(\varphi)$ the metric entropy of φ with respect to μ.

We define the topological entropy of φ, $h_{\text{top}}(\varphi)$ by

$$h_{\text{top}}(\varphi) = \sup \left\{ h_\mu(\varphi) : \mu \text{ is a } \varphi - \text{invariant probability measure} \right\}.$$

There is a unique ergodic fully supported probability measure for which the supremum is attained. This measure is called the Bowen-Margulis measure for φ and is denoted by μ_{BM}.

If φ is in addition volume-preserving, we denote by ν the unique φ-invariant Lebesgue probability measure.

$$h_{\text{top}}(\varphi) \geq h_{\text{vol}}(\varphi).$$
For any ϕ-invariant probability measure μ we denote by $h_\mu(\phi)$ the metric entropy of ϕ with respect to μ.

There is a unique ergodic fully supported probability measure for which the supremum is attained. This measure is called the Bowen-Margulis measure for ϕ and is denoted by μ_{BM}.

If ϕ is in addition volume-preserving, we denote by ν the unique ϕ-invariant Lebesgue probability measure.

$h_{\text{top}}(\phi) \geq h_{\text{vol}}(\phi)$.

Patrick Foulon (Université de Strasbourg)
Entropy

- For any ϕ-invariant probability measure μ we denote by $h_{\mu}(\phi)$ the metric entropy of ϕ with respect to μ.
- We define the topological entropy of ϕ, $h_{\text{top}}(\phi)$ by
 \[h_{\text{top}}(\phi) = \sup \{ h_{\mu}(\phi) : \mu \text{ is a } \phi-\text{invariant probability measure} \}. \]
For any φ-invariant probability measure μ we denote by $h_\mu(\varphi)$ the metric entropy of φ with respect to μ.

We define the topological entropy of φ, $h_{\text{top}}(\varphi)$ by

$$h_{\text{top}}(\varphi) = \sup \{ h_\mu(\varphi) : \mu \text{ is a } \varphi-\text{invariant probability} \}.$$

There is a unique ergodic fully supported probability measure for which the supremum is attained. This measure is called the Bowen-Margulis measure for φ and is denoted by μ_{BM}.
Entropy

- For any φ-invariant probability measure μ we denote by $h_\mu(\varphi)$ the metric entropy of φ with respect to μ.
- We define the topological entropy of φ, $h_{\text{top}}(\varphi)$ by

$$h_{\text{top}}(\varphi) = \sup\{h_\mu(\varphi) : \mu \text{ is a } \varphi-\text{invariant probability}\}.$$

- There is a unique ergodic fully supported probability measure for which the supremum is attained. This measure is called the Bowen-Margulis measure for φ and is denoted by μ_{BM}.
- If φ is in addition volume-preserving, we denote by ν the unique φ-invariant Lebesgue probability measure.
Entropy

For any \(\varphi \)-invariant probability measure \(\mu \) we denote by \(h_{\mu}(\varphi) \) the metric entropy of \(\varphi \) with respect to \(\mu \).

We define the topological entropy of \(\varphi \), \(h_{\text{top}}(\varphi) \) by

\[
h_{\text{top}}(\varphi) = \sup \{ h_{\mu}(\varphi) : \mu \text{ is a } \varphi-\text{invariant probability measure} \}.
\]

- There is a unique ergodic fully supported probability measure for which the supremum is attained. This measure is called the \textit{Bowen-Margulis measure} for \(\varphi \) and is denoted by \(\mu_{BM} \).
- If \(\varphi \) is in addition volume-preserving, we denote by \(\nu \) the unique \(\varphi \)-invariant Lebesgue probability measure.
- \(h_{\text{top}}(\varphi) \geq h_{\text{vol}}(\varphi) \).
More generally, let G be a Hölder continuous function on \mathcal{N}. We define the topological pressure of ϕ with respect to G by

$$P(\phi, G) = \sup \left\{ h_\mu(\phi) + \int_{\mathcal{N}} G \, d\mu : \mu \text{ is a } \phi \text{–invariant probability} \right\}.$$

By the well-known variational principle (see [HK]), there exists again a unique ergodic fully supported ϕ–invariant probability measure for which the supremum in the definition of $P(\phi, G)$ is attained. This measure is called the Gibbs measure of ϕ with respect to G. Clearly, $P(\phi, 0) = h_{\text{top}}(\phi)$ and the Gibbs measure of ϕ with respect to the function zero is just the Bowen-Margulis measure.
More generally, let G be a Hölder continuous function on N. We define the topological pressure of φ with respect to G by

$$P(\varphi, G) = \sup \{ h_\mu(\varphi) + \int_N Gd\mu : \mu \text{ is a } \varphi-\text{invariant probability} \}.$$
More generally, let G be a Hölder continuous function on N. We define the topological pressure of φ with respect to G by

$$ P(\varphi, G) = \sup \{ h_\mu(\varphi) + \int_N Gd\mu : \mu \text{ is a } \varphi-\text{invariant probability} \}. $$

By the well-known variational principle (see [HK]) there exists again a unique ergodic fully supported φ-invariant probability measure for which the supremum in the definition of $P(\varphi, G)$ is attained. This measure is called the Gibbs measure of φ with respect to G. Clearly, $P(\varphi, 0) = h_{\text{top}}(\varphi)$ and the Gibbs measure of φ with respect to the function zero is just the Bowen-Margulis measure.
Two continuous functions G_1 and G_2 are said to be ϕ-cohomologous if $G_1 - G_2 = U'$ for some U which is continuously differentiable with respect to ϕ. If G_1 and G_2 are both H"older continuous then they have the same Gibbs measure if and only if $G_1 - G_2$ is ϕ-cohomologous to a constant, c say. In this case we have $P(\phi, G_1) = P(\phi, G_2) + c$.

Patrick Foulon (Université de Strasbourg)
Two continuous functions G_1 and G_2 are said to be φ-cohomologous if $G_1 - G_2 = U'$ for some U which is continuously differentiable with respect to φ. If G_1 and G_2 are both Hölder continuous then they have the same Gibbs measure if and only if $G_1 - G_2$ is φ-cohomologous to a constant, c say. In this case we have $P(\varphi, G_1) = P(\varphi, G_2) + c$.

Pressure
Cohomological pressure and cohomological Gibbs number

Let $\varphi : \mathbb{N} \to \mathbb{N}$ be a topologically transitive C^∞ Anosov flow generated by X. We denote by $H_1(\mathbb{N}, \mathbb{R})$ the first de Rham cohomology group of \mathbb{N}. Let us recall firstly the Schwartzman's definition of a winding cycle. If μ is a φ-invariant probability measure then the μ-winding cycle is a map $\Phi_\mu : H_1(\mathbb{N}, \mathbb{R}) \to \mathbb{R}$ defined by

$$\Phi_\mu(\alpha) = \int_{\mathbb{N}} \alpha(X) \, d\mu,$$

where α is a closed C^∞ 1-form. Since μ is a φ-invariant, it is easy to see that Φ_μ is a well-defined map.

We define $\Lambda : H_1(\mathbb{N}, \mathbb{R}) \to \mathbb{R}$ by

$$\Lambda(\alpha) = P(\varphi, \alpha(X)),$$

i.e. the topological pressure of φ with respect to the function $\alpha(X)$. Immediately from the definition we obtain the relationship

$$\Lambda(\alpha) = \sup \{ h_\mu(\varphi) + \Phi_\mu(\alpha) : \mu \text{ is } \varphi-\text{invariant} \}$$

and hence that if df is an exact form then $\Lambda(\alpha) = \Lambda(\alpha + df)$. Thus Λ is well-defined.
Cohomological pressure and cohomological Gibbs number

Let \(\varphi : N \to N \) be a topologically transitive \(C^\infty \) Anosov flow generated by \(X \). We denote by \(H^1(N, \mathbb{R}) \) the first de Rham cohomology group of \(N \). Let us recall firstly the Schwartzman's definition of a winding cycle. If \(\mu \) is a \(\varphi \)-invariant probability measure then the \(\mu \)-winding cycle is a map \(\Phi_\mu : H^1(N, \mathbb{R}) \to \mathbb{R} \) defined by

\[
\Phi_\mu(\alpha) = \int_N \alpha(X) d\mu,
\]

where \(\alpha \) is a closed \(C^\infty \) 1-form. Since \(\mu \) is a \(\varphi \)-invariant, it is easy to see that \(\Phi_\mu \) is a well-defined map.
Cohomological pressure and cohomological Gibbs number

- Let $\varphi : N \rightarrow N$ be a topologically transitive C^∞ Anosov flow generated by X. We denote by $H^1(N, \mathbb{R})$ the first de Rham cohomology group of N. Let us recall firstly the Schwartzman’s definition of a winding cycle. If μ is a φ-invariant probability measure then the μ-winding cycle is a map $\Phi_\mu : H^1(N, \mathbb{R}) \rightarrow \mathbb{R}$ defined by

 $$\Phi_\mu(\alpha) = \int_N \alpha(X) d\mu,$$

where α is a closed C^∞ 1-form. Since μ is a φ-invariant, it is easy to see that Φ_μ is a well-defined map.

- We define $\Lambda : H^1(N, \mathbb{R}) \rightarrow \mathbb{R}$ by $\Lambda(\alpha) = P(\varphi, \alpha(X))$, i.e. the topological pressure of φ with respect to the function $\alpha(X)$. Immediately from the definition we obtain the relationship

 $$\Lambda(\alpha) = \sup \{ h_\mu(\varphi) + \Phi_\mu(\alpha) : \mu \text{ is } \varphi - \text{invariant} \}$$

and hence that if df is an exact form then $\Lambda(\alpha) = \Lambda(\alpha + df)$. Thus Λ is well-defined.
Cohomological pressure and cohomological Gibbs number

Definition

Following [Sharp], we define the cohomological pressure of φ, $P(\varphi)$ by $P(\varphi) = \inf \{ \Lambda(\alpha) : [\alpha] \in H^1(N, \mathbb{R}) \}$.

Theorem

([Sharp], Theorem 1) Let $\varphi : N \rightarrow N$ be a topologically transitive C^∞ Anosov flow. Then the following two statements are equivalent:

(i) There exists a fully supported φ-invariant probability measure μ such that $\Phi_\mu \equiv 0$;

(ii) The function $\Lambda : H^1(N, \mathbb{R}) \rightarrow \mathbb{R}$ is bounded below (i.e. $P(\varphi) > -\infty$) and there exists a unique cohomological class $[\alpha] \in H^1(N, \mathbb{R})$ for which the infimum is attained.

If any (and hence both) of the above statements are true then we have

$$P(\varphi) = \sup \{ h_\mu(\varphi) : \mu \text{ is } \varphi - \text{invariant with } \Phi_\mu \equiv 0 \}$$

and $\Phi_{\mu_\alpha} \equiv 0$, where μ_α denotes the Gibbs measure of $\alpha(X)$.

Patrick Foulon (Université de Strasbourg)
Cohomological pressure and cohomological Gibbs number

Definition

The cohomology class of α as in (ii) is said to be the Gibbs class of φ, and the Gibbs measure of φ with respect to $\alpha(X)$ is said to be the cohomological Gibbs measure for φ. The cohomological Gibbs number of φ is defined as

$$G(\varphi) = \int_N \alpha(X) d\mu_{BM} = \Phi_{\mu_{BM}}([\alpha]).$$

Remark If (M, F) is reversible, for example in the Riemmanian case, then it is easy to verify (see [Pa3]) that $\Phi_{\mu_{BM}} \equiv 0$. So cohomological pressure and cohomological Gibbs number are interesting only for non-reversible Finsler manifolds of negative flag curvature.

Proposition

Let φ be a contact C^∞ Anosov flow. Then we have

$$h_{\text{top}}(\varphi) \geq P(\varphi) \geq h_{\text{vol}}(\varphi).$$
Canonical time changes

Definition

For any C^∞ Anosov flow $\varphi : N \to N$ generated by X, a canonical time change of φ is the flow generated by $\frac{X}{1 - \alpha(X)}$, where α is a closed C^∞ 1-form on N such that $1 > \alpha(X)$. We denote by φ^α the flow of $\frac{X}{1 - \alpha(X)}$.
Canonical time changes

Proposition

Let $\varphi : N \to N$ be a contact C^∞ Anosov flow generated by X. Let α be a closed C^∞ 1-form on N such that $1 > \alpha(X)$. Then we have $P(\varphi) = P(\varphi^\alpha)$.

Proposition

Let φ be a contact C^∞ Anosov flow with $\Phi_{\mu_{BM}} \equiv 0$. Let α be a closed C^∞ 1-form on N such that $1 > \alpha(X)$. Then the Gibbs class of φ^α is $[-h_{\text{top}}(\varphi) \cdot \alpha]$.
Canonical time changes

Proposition

Let φ be a topologically transitive C^∞ Anosov flow and let G be a Hölder continuous function on N. Let f be any positive C^∞ function on N. Then we have

$$P(\varphi, G) = P(\varphi^f, \frac{G}{f} - P(\varphi, G) \cdot \frac{1-f}{f}).$$

In addition the Gibbs measure of φ with respect to G is equivalent to that of φ^f with respect to the function $\frac{G}{f} - P(\varphi, G) \cdot \frac{1-f}{f}$.
Anosov splitting regularity of Finsler geodesic flows

Theorem
([Ha], Theorem B) Let φ be the geodesic flow of a closed negatively curved Riemannian manifold. If the Anosov splitting of φ is C^2, then the topological entropy of φ coincides with its metric entropy.
Anosov splitting regularity of Finsler geodesic flows

Theorem

([Ha], Theorem B) Let \(\varphi \) be the geodesic flow of a closed negatively curved Riemannian manifold. If the Anosov splitting of \(\varphi \) is \(C^2 \), then the topological entropy of \(\varphi \) coincides with its metric entropy.

G. Paternain (see [Pa2]) : Let \(g \) be a locally symmetric Riemannian metric on \(M \) and \(\theta \) be a small closed but non-exact \(C^\infty \) 1-form on \(M \). Let \(F = \sqrt{g} - \theta \) be the Randers metric and \(\varphi \) be its geodesic flow.
Anosov splitting regularity of Finsler geodesic flows

Theorem

([Ha], Theorem B) Let \(\varphi \) be the geodesic flow of a closed negatively curved Riemannian manifold. If the Anosov splitting of \(\varphi \) is \(C^2 \), then the topological entropy of \(\varphi \) coincides with its metric entropy.

G. Paternain (see [Pa2]) : Let \(g \) be a locally symmetric Riemannian metric on \(M \) and \(\theta \) be a small closed but non-exact \(C^\infty \) 1-form on \(M \). Let \(F = \sqrt{g} - \theta \) be the Randers metric and \(\varphi \) be its geodesic flow.

- The Anosov splitting of \(\varphi \) is \(C^\infty \).
- \(\varphi \) is generated by \(\frac{X}{1 - \pi^*\theta(X)} \).
- The Gibbs class of \(\varphi \) is not trivial
- \(h_{\text{top}}(\varphi) > P(\varphi) = h_{\text{vol}}(\varphi) \).
Theorem
(Fang - Foulon 2009) Let (M, F) be a closed C^∞ Finsler manifold of negative flag curvature and φ its geodesic flow. If the Anosov splitting of φ is C^2, then the cohomological pressure of φ coincides with its metric entropy.
Ingredients for the proof

Definition

We say that φ is $d\lambda$-transitive if any continuous exact 2-form is a constant multiple of dA, where A denotes the potential of the metric F.

Proposition

Let φ be a contact C^∞ Anosov flow such that E^{ss} and E^{su} are both orientable. If φ is $d\lambda$-transitive and its Anosov splitting is C^2, then the cohomological pressure of φ coincides with its metric entropy.

So the key point is to show

Proposition

Let φ be the geodesic flow of a closed C^∞ Finsler manifold (M, F) of negative flag curvature. If the Anosov splitting of φ is C^1, then φ is $d\lambda$-transitive.
Action of the fundamental group

Let $\pi_1(M)$ be the fundamental group of M. For any $\gamma \in \pi_1(M)$, γ acts naturally on \tilde{M} and preserves the lifted Finsler metric \tilde{F}. Thus γ acts naturally and Hölder continuously on the boundaries.

Definition

Let X be a topological space and $\Phi : X \rightarrow X$ be a homeomorphism. Then Φ is said to have a north-south dynamic if Φ fixes exactly two points $\{a, b\} \subseteq X$ and for any $x \in X - \{a, b\}$, $\Phi^n(x) \rightarrow a$ and $\Phi^{-n}(x) \rightarrow b$ as $n \rightarrow +\infty$.

Proposition

Let $\gamma \in \pi_1(M)$. If γ is not trivial, then the γ-action on $\partial^s\tilde{M}$ (respectively on $\partial^u\tilde{M}$) has a north-south dynamic.