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1 K. Falconer (St. Andrews)

Let A ⊆ R2 and define the distance set D(A) to be

D(A) := {|x− y| : x, y ∈ A}.

A well known result of Erdös [7] states that in the case that A is finite then

c−1#A1/2 ≤ #D(A) ≤ c#A

(log #A)1/2
.

for some constant c > 1. The lower bound was recently improved by Katz and
Tardos [16] with the exponent being pushed up to ≈ 0.86. Recently an improvement
on the lower bound came from Guth-Katz [15] who applied the ‘Polynomial ham
sandwich theorem’ to obtain

#D(A) ≥ c#A

log #A
.

For more details on this we refer the reader to Terry Tao’s blog
For A of infinite cardinality it is conjectured that dimH(A) > 1 implies that

D(A) has positive Lebesgue measure. Results in this direction have been obtained
by Falconer and later Wolf for the bounds dimH(A) > 3/2 and dimH(A) > 4/3
respectively.

Question 1.1 Let A ⊆ R2 and suppose that dimH(A) > 1. Does it follow that
dimB(D(A)) = 1?
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Question 1.2 Let A ⊆ Rn and suppose that dimH(A) > n/2. Does it follow that
L(D(A)) > 0?

A further question asked by Stratmann (Bremen):

Question 1.3 Is there an application to limit sets of Kleinian groups?

2 M. Urbanski (UNT)

Let (X, d) denote a compact metric space and let A ⊆ X. Let f : A → Rn be
Lipschitz. By a theorem of E. Marczewski we have that

dimtop(f(A)) ≤ [dimH(f(A))]

here [·] denotes the integer part of a real number. On the other hand, as Lips-
chitz maps cannot increase dimension we immediately have dimH(f(A)) ≤ dimH(A).
Combining these observations we have

sup{dimtop(f(A)) : f is Lipschitz} ≤ [dimH(A)].

It should be noted that this is not necessarily an equality: Let k be a positive
integer and A ⊂ X be such that k = dimH(A) and Hk(A) = 0. This implies that
Hk(f(A)) = 0 and so dimtop(f(A)) ≤ k − 1.

Question 2.1 Is it true that

sup{dimtop(f(A)) : f : A→ Rn is Lipschitz} ≥ [dimH(A)]− 1?

3 J. Robinson (Warwick)

Let f : Rn → Rn be a continuously differentiable map and let X ⊂ Rn be such
that f(X) = X. Douady and Oesterlé [6] gave an upper bound on the Hausdorff
dimension of the set X.

Let H is a Hilbert space. If X ⊂ H is such that dimB(X) <∞ then there exists a
(smooth?) embedding L : X → Rk with k = 2dimB(X). The map L−1 : L(X)→ X
is only Hölder in general.

The Assouad dimension of a set X, denoted by dimA(X), is defined to be the
infemum over all positive real numbers s such that there exists a constant M > 0
such that for any ρ > 0 we have

N(X ∩B(x, ρ), r) ≤M(ρ/r)s
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for all x ∈ X and 0 < r ≤ ρ, where N(X, δ) denotes the minimum number of balls
of radius δ required to cover X.

If dimA(X − X) < ∞ then there exists a smooth embedding L : X → RN for
N ≥ s. Moreover L−1 is Lipschitz with a logarithmic correction.

Question 3.1 Is it possible to obtain bounds on the Assouad dimension similar to
Douady and Oesterlé?

4 A. Mathé (Warwick)

Fix a ∈ (0, 1/4) and let Ca denote the middle (1 − 2a)-Cantor set. For x, y ∈ R2

we let l(x,y) denote the unique line segment connecting these two points. We define
E ⊂ R2 to be the set

E =
⋃

x∈Ca×{0}

⋃
y∈Ca×{1}

l(x,y).

It is easy to show that dimH(E) = 2dimH(Ca) + 1. We define a map π : Ca ×
Ca × [0, 1]→ E by

π(x, y, λ) = λ(x, 0) + (1− λ)(y, 1).

Let ν denote the push-forward under the map π of the measure µ×µ×Leb, where
µ denotes the (normalised) restriction of the log(2)/ log(3)-dimensional Hausdorff
measure. For α ≥ 0 we let

E(α) = {x ∈ E : local dimension of ν at x is α}.

Question 4.1 What is dimH(E(α))?

This is related to the following problem: for θ ∈ [0, π) we let pθ denote the
orthogonal projection of R2 on the the line through the origin making angle θ with
the x-axis. We are interested in quantifying the dimension of points x ∈ pθ(Ca×Ca)
such that dimH{y ∈ Ca × Ca : pθ(y) = x} is large.

5 Z. Buczolich (Budapest)

Let f : S1 → R be measurable and for α ∈ (0, 2π) we let
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Mα
n f(x) =

1

n

n−1∑
k=0

f(x+ kα).

Setting

Γf = {α ∈ [0, 2π) : Mα
n f(x)converges for Lebesgue almost all x}.

In [2] it is shown that if Γf has positive Lebesgue measure then f ∈ L1.

Question 5.1 Let G be a compact abelian topological group with m denoting the
Haar measure. If m(Γf ) > does it follow that f ∈ L1(m)?

Question 5.2 Do there exist small sets A, for example of Hausdorff dimension zero,
such that if A ⊂ Γf then this implies f ∈ L1?

In [4] a non-L1 function is constructed for which Γf is of Hausdorff dimension
1, but according to the above remarks, it is of zero Lebesgue measure. It would
be interesting to determine the size of Γf for some functions with some kind of
“standard singularities”. For some related results concerning non L1 functions see
also the papers [26] and [27].

For 0 < t < 1 we let

f(x) =
1

x| log |x||t

for 0 < |x| < 1
2
, setting f(0) = 0.

Question 5.3 What is dimH(Γf )?

If for the above function we still have dimH(Γf ) = 0 then to obtain a Γf with
larger Hausdorff dimension one can try to consider other functions such as

f(x) =
1

x| log |x||| log | log |x|||t
.

Let α, η irrational then by [3] there exists a non-integrable measurable function
f : S1 → R such that

Mα
n f(x)→ 1

Mη
nf(x)→ 0

for Lebesgue almost all x.
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Question 5.4 Is it true that there exists a non-integrable measurable function f :
S1 → R such that for any c ∈ R there exists αc such that the set

{x ∈ S1 : Mαc
n f(x)→ c}

has full Lebesgue measure.

6 P. Shmerkin (Surrey)

Let µ be a Radon measure on Rm. For s ≥ 0 we define the Riesz s-energy of µ to
be the quantity

Is(µ) =

∫ ∫
|x− y|−sdµ(x)dµ(y).

We define the correlation dimension of µ to be

dimcor(µ) = sup{s : Is(µ) <∞}.
For variants of Marstrand’s projection theorem we are interested in modifying the

definitions. For x ∈ Rm and k ≤ s < k + 1 we let φs(x) = z1z2 · · · zkzs−kk , where the
{zi}ni=1 are the absolute values of the coordinates of x written in decreasing order.
We define

I ′s(µ) =

∫ ∫
φs(x− y)−1dµ(x)dµ(y)

and let
dim′(µ) = sup{s : I ′s(µ) <∞}.

It can be shown that there exists c > 0 such that φs(x) ≤ c|x|s for all x ∈ Rm

and so dim′(µ) ≤ dimcor(µ).

Question 6.1 Does there exists a Radon measure µ such that dim′(µ) < dimcor(µ)?

Falconer: Might this be related to the dimension prints of C.A Rogers? (cf.
[23][Appendix A])

The motivation for this question comes from the following generalisation of Marstrand’s
projection theorem due to Lopez-Velazquez and Moreira [18]. Let µ be a Radon mea-
sure on Rd and let s = dim′(µ). Let π : Rd → Rk be a ‘nice’ linear map of rank k
then for Lesbesgue almost all t ∈ Rd we have

dim(πDt(µ)) ≥ min{s, k}

here Dt denotes the linear map diag(t1, t2, . . . , td).

5



7 M. Rams (Warsaw)

Let f1, f2, f3 : R → R be contractions such that f1 and f2 share a common fixed
point while f3 has a different fixed point.

Question 7.1 Under the assumptions above is it true that for the associated attrac-
tor E we have that dimH(E) < dimsim(E)?

Note that if f1 and f2 are both linear then they commute and the conclusion
above holds.

8 M. Hochmann (Princeton)

A result due to Furstenberg [12] states that if X ⊂ [0, 1] is such that f2X = f3X = X
then X is either finite or X = [0, 1]. Thus if f2X2 = X2 and f3X3 = X3 and X2, X3

are infinite and not [0, 1] then X2 6= X3.

Question 8.1 Let X2, X3 ⊂ [0, 1] be such that f2X2 = X2 and f3X3 = X3. If
∅ 6= I ⊂ [0, 1] is such that #I ∩X2 =∞ then does it follow that I ∩X2 6= I ∩X3?

We know that this in the case that one supports an ergodic measure µ of positive
entropy with µ(I) > 0, this follows from the Rudolph-Johnson [14, 24] theorem. If
one of X2 or X3 is minimal then the problem reduces to Furstenberg’s result.

Next, suppose that µ is a probability measure on [0, 1]. We let µt denote a scaled
copy of µ. As an example we could take µ = 1

2
δ{0} + 1

2
δ{1} and µt = 1

2
δ{0} + 1

2
δ{t}.

We set ν =
∫ 1

0
µtdt. Then ν = 1

2
δ{0} + 1

2
L|[0,1].

Question 8.2 What conditions can be placed on µ or the translated part t 7→ µt so
that ν is large (e.g. dim(ν) = 1).

9 K. Nair (Liverpool)

Let (an)∞n=1 be an increasing sequence with an →∞ and set

D(N, x) = sup
I⊂[0,1]

∣∣∣∣∣ 1

N

N∑
k=1

χI({anx})− Leb(I)

∣∣∣∣∣ .
It can be shown that for Lebesgue almost all x we have

6



D(N, x) = o(N−1/2(log(N))3/2(log log(N))−1+ε).

For the sequence an = o(np), p > 1 if we set

Eq = {x : lim sup
N→∞

N qD(N, x) > 0}

then for q ∈ (0, 1/2) we have

dimH(Eq) ≤ 1− 1− 2q

p+ q
.

Question 9.1 Is this the best possible?

Useful references are Baker [1] and Nair [21].
This uses the Erdös-Turan sequence

ND(x1, x2, . . . , xN) ≤ c(
N

L
+

L∑
h=1

1

h

N∑
n=1

e2πihxi).

Other ingredients are Frostman’s lemma, the large sieve inequality and the Koksma
norm inequality.

For a positive integer n we let d(n) = #{m ∈ N : m|n} we want to estimate the
sum

∑
n≤x d(n). Works of A.G. Abercombie, W.D. Banks and I. Shaparlinski are

relevant to this. Let Bα = {[nα] : n ∈ N} ⊂ N and we set

Sα(f, x) =
∑

n∈Bα∩{1,2,...,x}

f(n)

S(f, x) =
∑
n≤x

f(n)

∆α(f, x) =
∣∣Sα(f, x)− α−1S(f, x)

∣∣
M(f, x) = 1 + max{|f(n) : n ≤ x}.

Then ∆α(f, x) = O(M(f, x)x2/3+ε) for almost all α. If f satisfies f(mn) =
f(m)f(n) whenever gcd(m,n) = 1. For example f(n) = F (T n(x)) for F ∈ L∞(X,B, µ, T ).

10 A.H. Fan (Picardie)

Fan posed a question related to “Coupon collections”.
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11 L. Liao (LAMA)

For x ∈ Q, µ > 1 a result of Schmeling and Troubetzkoy [28] states that

dimH{y ∈ [0, 1] : ‖nx− y‖ < n−µ infinitely often} = µ−1.

Question 11.1 Let φ : N → R+ be such that φ ↘ 0 and lim supn→∞ nφ(n) < 1/2.
What is the dimension of the set

{y ∈ [0, 1] : ‖nx− y‖ < φ(n) infinitely often}?

Now suppose that x is of bounded type, i.e. if we write

x =
1

a1 + 1
a2+···

then the sequence (an)n is bounded. A result of Fan and Wu [11] states that

dimH{y ∈ [0, 1] : ‖nx− y‖ < φ(n) infinitely often} = lim
n→∞

log(n)

− log(φ(n))
.

12 F. Przytycki (Warsaw)

Consider f0 : z 7→ z2 on S1. Let f be a small smooth perturbation of f0 and let J(f)
denote the associated f -invariant Jordan curve close to the unit circle.

Question 12.1 Is it possible that

sup{dimH(µ) : µ is f − invariant probability measure on J(f)} < 1?

13 M. Urbanski (UNT)

Let f : C→ C be given by f(z) = z2 + c. Let Jc denote the Julia set of f .

Question 13.1 Is it true that

sup{dimH(µ) : µ is f -invariant} = dimH(Jc)?
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14 S. Van Strien (Warwick)

Let M denote a smooth Riemannian manifold and m a volume form.

Question 14.1 How exceptional is it for a diffeomorphism f : M → M to have a
hyperbolic fixed point p such that

m

{
x ∈M :

1

n

n−1∑
k=0

δf i(x) → δ{p}

}
> 0?

15 A.H. Fan (Picardie)

Let (X, d) denote a compact metric space and µ a Borel probability measure with
support in X. Recall the definition of the Riesz s-energy of µ

Is(µ) =

∫ ∫
1

d(x, y)s
dµ(x)dµ(y).

For x ∈ X we define the s-potential at x to be

Us(x) =

∫
1

d(x, y)s
dµ(y).

Question 15.1 Compute

dimH{x : Us(x) =∞}.

The s-dimensional capacity of this set is zero ( perhaps this follows from Matilla
[19][Theorem 8.7] ?). Kaufmann showed that Hs+ε{x : Us(x) =∞} = 0 for all ε > 0
which implies that dimH{x : Us(x) =∞} ≤ s.

A result of Fan and Wu states that

sup
r>00

µ(Br(x))

rs
≤ Us(x) ≤ c1 sup

r>0

µ(Br(x))

rs
+ c2.

If µ denotes a Bernoulli measure on {0, 1}N then one can show that

Us(x) ≈
∞∑
k=1

2skµ(Ik(x)).
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16 K. Falconer (St. Andrews)

Let f1, f2, . . . , fn : Rn → Rn be a family of contracting similarities and E ⊂ Rn the
associated attractor. In [9] it is proved that dimH(E) = dimB(E).

We say that a compact set F ⊂ Rn is sub self-similar if

F ⊂
m⋃
i=1

fi(F ).

If the iterated function system satisfies the open set condition then dimH(F ) =
dimB(F ) (cf. [10]).

Question 16.1 Is the open set condition a necessary assumption for dimH(F ) =
dimB(F )?

17 K. Simon (Budapest)

Fix a positive integer m ≥ 2 and let 0 < p0, p1, . . . , pm−1 < 1. Starting with the unit
interval, we remove the interval [i/m, (i+ 1)/m] with probability pi. We repeat this
process to the remaining intervals repeating ad infinitum. Providing

∑m−1
i=0 pi > 1

the random construction will be almost surely non-empty.
For such a construction Dekking and Simon [5] and Mora, Simon and Solomyak

[20] proved that we have the following dichotomy almost surely we have either C1−C2

is either

• small, i.e. Leb(C1 − C2) = 0.

• large, i.e. C1 − C2 contains an interval.

Question 17.1 Can one do the same with three random constructions? i.e. C1 +
C2 + C3 is either small or large.

This is presumably related to the Palis conjecture?
Define the cross-correlations:

γk :=
m−1∑
i=0

pip(i+k)( mod m).

Then if γi > 0 for i = 0, 1, . . . ,m − 1 we have that C2 − C1 contains an interval. If
there exists i such that γi, γi+1 < 1 then C2 − C1 does not contain an interval.
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Shmerkin: if all the probabilities are equal then it follows from the work of Peres
et al.

Fraser: What happens if we define it with different measures?
Now let f1, f2, . . . , fm : R → R be a family of contracting similarities and Λ

the associated attractor. We suppose further that for each i 6= j we have that
fi(Λ) ∩ fj(Λ).

Question 17.2 Does the open set condition hold?

18 A. Ferguson (Warwick)

Let {fi(x) = rix+ai}mi=1 denote a family of contracting similarities of R with contrac-
tion ratios r1, r2, . . . , rm. We assume that fi 6= fj for all i 6= j and that

∑m
i=1 ri ≤ 1.

If the iterated function system {fi}mi=1 satisfies the open set condition then a result
of Hutchinson [13] states that the Hausdorff dimension of the associated attractor Λ
is given by Moran’s formula, i.e. dimH(Λ) = s where s is the unique real number
satisfying

m∑
i=1

|ri|s = 1.

We shall refer to the unique real number satisfying Moran’s equation as the similarity
dimension and denote it by dimsim(Λ).

For a = (a1, a2, . . . , am) ∈ Rm we let Λa denote the attractor of the iterated
function system {fi(x) = rix+ ai}mi=1. Falconer [8] considered the typical behaviour
of the dimension, proving that

dimH(Λa) = dimsim(Λa)

for Lebesgue almost all a ∈ Rm. Another random construction that overcomes the
limitations of the open set condition was considered by Simón and Pollicott [22] who
used the method of transversality to solve the {0, 1, 3}-problem.

In another direction, a long standing conjecture in the field (cf. [25]) that

dimH(Λ) < dimsim(Λ)

implies that there exist i1, i2, . . . , ik, j1, j2, . . . , jl ∈ {1, 2, . . . ,m} such that

fi1fi2 · · · fik = fj1fj2 · · · fjl .

Such a condition is easily seen to be sufficient to cause non coincidence of Hausdorff
and similarity dimensions.
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Question 18.1 Let fm+1 : R → R be a contracting similarity so that the iterated
function system {fi}m+1

i=1 satisfies the standing assumptions outlined at the beginning,
let Lambda′ denote the associated attractor. Does dimH(Λ) < dimsim(Λ) imply that
dimH(Λ′) < dimsim(Λ′)?

A related problem concerning the dimension of measures due to A. Mathé is as
follows. For

p ∈ ∆ := {q = (q1, q1, . . . , qm) : qi ≥ 0,
m∑
i=1

qi = 1}

we let µp denote the unique probability measure satisfying

µp =
m∑
i=1

pi(fi)∗(µp).

If the iterated function system {fi}mi=1 satisfies the open set condition then the mea-
sure µp is easily shown to have dimension

s(p) =

∑m
i=1 pi log(pi)∑m
i=1 pi log(ri)

.

Question 18.2 If there exists p ∈ int(∆) such that dimH(µp) = s(p) does it follow
that dimH(µq) = s(q) for all q ∈ ∆?

Question 18.3 Relate questions (18.1) and (18.2).

19 M. Rams (Warsaw)

Let f1, f2 : R→ R be defined by

f1(x) =
x

2

f2(x) =
3x+ 1

2
.

And let µ denote the unique Borel probability measure satisfying

µ =
1

2
((f1)∗(µ) + (f2)∗(µ)) .

The iterated function system {f1, f2} is contracting on average with respect to
this measure.

Question 19.1 Is the measure µ absolutely continuous?
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20 E. Järvenpää

Let M denote a smooth closed Riemannian manifold of dimension m. Let φt :
T 1M → T 1M denote the geodesic flow on the unit tangent bundle. Let µ denote a
φt ergodic and invariant measure. Let π : T1M →M denote the canonical projection,
i.e. π(x, v) = x. A theorem of Ledrappier and Lindenstrauss [17] states that

dimH(π∗(µ)) = min{dimH(µ),m}.

Moreover, if dimH(µ) > 2 then π∗(µ) is absolutely continuous.

Question 20.1 What happens when the dimension is equal to 2?

Let ∆ψn = λnψn denote the eigenvalues of the Laplacian.

Question 20.2 (Quantum Unique Ergodicity) Is it true that

|ψn|2Leb→ Leb?
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