EPSRC Symposium Workshop on Dynamical Systems and Dimension problem sessions

April 2011

1 K. Falconer (St. Andrews)

Let $A \subseteq \mathbb{R}^2$ and define the distance set D(A) to be

$$D(A) := \{ |x - y| : x, y \in A \}.$$

A well known result of Erdös [7] states that in the case that A is finite then

$$c^{-1} \# A^{1/2} \le \# D(A) \le \frac{c \# A}{(\log \# A)^{1/2}}$$

for some constant c > 1. The lower bound was recently improved by Katz and Tardos [16] with the exponent being pushed up to ≈ 0.86 . Recently an improvement on the lower bound came from Guth-Katz [15] who applied the 'Polynomial ham sandwich theorem' to obtain

$$\#D(A) \ge \frac{c\#A}{\log \#A}.$$

For more details on this we refer the reader to Terry Tao's blog

For A of infinite cardinality it is conjectured that $\dim_H(A) > 1$ implies that D(A) has positive Lebesgue measure. Results in this direction have been obtained by Falconer and later Wolf for the bounds $\dim_H(A) > 3/2$ and $\dim_H(A) > 4/3$ respectively.

Question 1.1 Let $A \subseteq \mathbb{R}^2$ and suppose that $\dim_H(A) > 1$. Does it follow that $\underline{\dim}_B(D(A)) = 1$?

Question 1.2 Let $A \subseteq \mathbb{R}^n$ and suppose that $\dim_H(A) > n/2$. Does it follow that $\mathcal{L}(D(A)) > 0$?

A further question asked by Stratmann (Bremen):

Question 1.3 Is there an application to limit sets of Kleinian groups?

2 M. Urbanski (UNT)

Let (X, d) denote a compact metric space and let $A \subseteq X$. Let $f : A \to \mathbb{R}^n$ be Lipschitz. By a theorem of E. Marczewski we have that

$$\dim_{top}(f(A)) \le [\dim_H(f(A))]$$

here $[\cdot]$ denotes the integer part of a real number. On the other hand, as Lipschitz maps cannot increase dimension we immediately have $\dim_H(f(A)) \leq \dim_H(A)$. Combining these observations we have

 $\sup\{\dim_{top}(f(A)) : f \text{ is Lipschitz}\} \leq [\dim_H(A)].$

It should be noted that this is not necessarily an equality: Let k be a positive integer and $A \subset X$ be such that $k = \dim_H(A)$ and $\mathcal{H}^k(A) = 0$. This implies that $\mathcal{H}^k(f(A)) = 0$ and so $\dim_{top}(f(A)) \leq k - 1$.

Question 2.1 Is it true that

 $\sup\{\dim_{top}(f(A)) : f : A \to \mathbb{R}^n \text{ is } Lipschitz\} \ge [\dim_H(A)] - 1?$

3 J. Robinson (Warwick)

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a continuously differentiable map and let $X \subset \mathbb{R}^n$ be such that f(X) = X. Douady and Oesterlé [6] gave an upper bound on the Hausdorff dimension of the set X.

Let \mathcal{H} is a Hilbert space. If $X \subset \mathcal{H}$ is such that $\dim_B(X) < \infty$ then there exists a (smooth?) embedding $L: X \to \mathbb{R}^k$ with $k = 2\dim_B(X)$. The map $L^{-1}: L(X) \to X$ is only Hölder in general.

The Assound dimension of a set X, denoted by $\dim_A(X)$, is defined to be the infemum over all positive real numbers s such that there exists a constant M > 0 such that for any $\rho > 0$ we have

$$N(X \cap B(x,\rho),r) \le M(\rho/r)^s$$

for all $x \in X$ and $0 < r \le \rho$, where $N(X, \delta)$ denotes the minimum number of balls of radius δ required to cover X.

If $\dim_A(X - X) < \infty$ then there exists a smooth embedding $L : X \to \mathbb{R}^N$ for $N \ge s$. Moreover L^{-1} is Lipschitz with a logarithmic correction.

Question 3.1 Is it possible to obtain bounds on the Assouad dimension similar to Douady and Oesterlé?

4 A. Mathé (Warwick)

Fix $a \in (0, 1/4)$ and let C_a denote the middle (1 - 2a)-Cantor set. For $x, y \in \mathbb{R}^2$ we let $l_{(x,y)}$ denote the unique line segment connecting these two points. We define $E \subset \mathbb{R}^2$ to be the set

$$E = \bigcup_{x \in C_a \times \{0\}} \bigcup_{y \in C_a \times \{1\}} l_{(x,y)}.$$

It is easy to show that $\dim_H(E) = 2\dim_H(C_a) + 1$. We define a map $\pi : C_a \times C_a \times [0,1] \to E$ by

$$\pi(x, y, \lambda) = \lambda(x, 0) + (1 - \lambda)(y, 1).$$

Let ν denote the push-forward under the map π of the measure $\mu \times \mu \times \text{Leb}$, where μ denotes the (normalised) restriction of the log(2)/log(3)-dimensional Hausdorff measure. For $\alpha \geq 0$ we let

 $E(\alpha) = \{ x \in E : \text{ local dimension of } \nu \text{ at } x \text{ is } \alpha \}.$

Question 4.1 What is $\dim_H(E(\alpha))$?

This is related to the following problem: for $\theta \in [0, \pi)$ we let p_{θ} denote the orthogonal projection of \mathbb{R}^2 on the the line through the origin making angle θ with the *x*-axis. We are interested in quantifying the dimension of points $x \in p_{\theta}(C_a \times C_a)$ such that $\dim_H \{y \in C_a \times C_a : p_{\theta}(y) = x\}$ is large.

5 Z. Buczolich (Budapest)

Let $f: \mathbb{S}^1 \to \mathbb{R}$ be measurable and for $\alpha \in (0, 2\pi)$ we let

$$M_n^{\alpha} f(x) = \frac{1}{n} \sum_{k=0}^{n-1} f(x+k\alpha).$$

Setting

 $\Gamma_f = \{ \alpha \in [0, 2\pi) : M_n^{\alpha} f(x) \text{ converges for Lebesgue almost all } x \}.$

In [2] it is shown that if Γ_f has positive Lebesgue measure then $f \in L^1$.

Question 5.1 Let G be a compact abelian topological group with m denoting the Haar measure. If $m(\Gamma_f) > does$ it follow that $f \in L^1(m)$?

Question 5.2 Do there exist small sets A, for example of Hausdorff dimension zero, such that if $A \subset \Gamma_f$ then this implies $f \in L^1$?

In [4] a non- L^1 function is constructed for which Γ_f is of Hausdorff dimension 1, but according to the above remarks, it is of zero Lebesgue measure. It would be interesting to determine the size of Γ_f for some functions with some kind of "standard singularities". For some related results concerning non L^1 functions see also the papers [26] and [27].

For 0 < t < 1 we let

$$f(x) = \frac{1}{x|\log|x||^t}$$

for $0 < |x| < \frac{1}{2}$, setting f(0) = 0.

Question 5.3 What is $\dim_H(\Gamma_f)$?

If for the above function we still have $\dim_H(\Gamma_f) = 0$ then to obtain a Γ_f with larger Hausdorff dimension one can try to consider other functions such as

$$f(x) = \frac{1}{x |\log |x|| |\log |\log |x|||^t}$$

Let α, η irrational then by [3] there exists a non-integrable measurable function $f: \mathbb{S}^1 \to \mathbb{R}$ such that

$$M_n^{\alpha} f(x) \to 1$$

 $M_n^{\eta} f(x) \to 0$

for Lebesgue almost all x.

Question 5.4 Is it true that there exists a non-integrable measurable function $f : \mathbb{S}^1 \to \mathbb{R}$ such that for any $c \in \mathbb{R}$ there exists α_c such that the set

$$\{x \in \mathbb{S}^1 : M_n^{\alpha_c} f(x) \to c\}$$

has full Lebesgue measure.

6 P. Shmerkin (Surrey)

Let μ be a Radon measure on \mathbb{R}^m . For $s \ge 0$ we define the *Riesz s-energy* of μ to be the quantity

$$I_s(\mu) = \int \int |x - y|^{-s} d\mu(x) d\mu(y).$$

We define the correlation dimension of μ to be

$$\dim_{cor}(\mu) = \sup\{s : I_s(\mu) < \infty\}.$$

For variants of Marstrand's projection theorem we are interested in modifying the definitions. For $x \in \mathbb{R}^m$ and $k \leq s < k+1$ we let $\phi^s(x) = z_1 z_2 \cdots z_k z_k^{s-k}$, where the $\{z_i\}_{i=1}^n$ are the absolute values of the coordinates of x written in decreasing order. We define

$$I'_s(\mu) = \int \int \phi^s(x-y)^{-1} d\mu(x) d\mu(y)$$

and let

$$\dim'(\mu) = \sup\{s : I'_s(\mu) < \infty\}.$$

It can be shown that there exists c > 0 such that $\phi^s(x) \leq c|x|^s$ for all $x \in \mathbb{R}^m$ and so $\dim'(\mu) \leq \dim_{cor}(\mu)$.

Question 6.1 Does there exists a Radon measure μ such that $\dim'(\mu) < \dim_{cor}(\mu)$?

Falconer: Might this be related to the dimension prints of C.A Rogers? (cf. [23][Appendix A])

The motivation for this question comes from the following generalisation of Marstrand's projection theorem due to Lopez-Velazquez and Moreira [18]. Let μ be a Radon measure on \mathbb{R}^d and let $s = \dim'(\mu)$. Let $\pi : \mathbb{R}^d \to \mathbb{R}^k$ be a 'nice' linear map of rank k then for Lesbesgue almost all $t \in \mathbb{R}^d$ we have

$$\dim(\pi D_t(\mu)) \ge \min\{s, k\}$$

here D_t denotes the linear map diag (t_1, t_2, \ldots, t_d) .

7 M. Rams (Warsaw)

Let $f_1, f_2, f_3 : \mathbb{R} \to \mathbb{R}$ be contractions such that f_1 and f_2 share a common fixed point while f_3 has a different fixed point.

Question 7.1 Under the assumptions above is it true that for the associated attractor E we have that $\dim_H(E) < \dim_{sim}(E)$?

Note that if f_1 and f_2 are both linear then they commute and the conclusion above holds.

8 M. Hochmann (Princeton)

A result due to Furstenberg [12] states that if $X \subset [0, 1]$ is such that $f_2X = f_3X = X$ then X is either finite or X = [0, 1]. Thus if $f_2X_2 = X_2$ and $f_3X_3 = X_3$ and X_2, X_3 are infinite and not [0, 1] then $X_2 \neq X_3$.

Question 8.1 Let $X_2, X_3 \subset [0,1]$ be such that $f_2X_2 = X_2$ and $f_3X_3 = X_3$. If $\emptyset \neq I \subset [0,1]$ is such that $\#I \cap X_2 = \infty$ then does it follow that $I \cap X_2 \neq I \cap X_3$?

We know that this in the case that one supports an ergodic measure μ of positive entropy with $\mu(I) > 0$, this follows from the Rudolph-Johnson [14, 24] theorem. If one of X_2 or X_3 is minimal then the problem reduces to Furstenberg's result.

Next, suppose that μ is a probability measure on [0, 1]. We let μ_t denote a scaled copy of μ . As an example we could take $\mu = \frac{1}{2}\delta_{\{0\}} + \frac{1}{2}\delta_{\{1\}}$ and $\mu_t = \frac{1}{2}\delta_{\{0\}} + \frac{1}{2}\delta_{\{t\}}$. We set $\nu = \int_0^1 \mu_t dt$. Then $\nu = \frac{1}{2}\delta_{\{0\}} + \frac{1}{2}\mathcal{L}|_{[0,1]}$.

Question 8.2 What conditions can be placed on μ or the translated part $t \mapsto \mu_t$ so that ν is large (e.g. dim $(\nu) = 1$).

9 K. Nair (Liverpool)

Let $(a_n)_{n=1}^{\infty}$ be an increasing sequence with $a_n \to \infty$ and set

$$D(N,x) = \sup_{I \subset [0,1]} \left| \frac{1}{N} \sum_{k=1}^{N} \chi_I(\{a_n x\}) - \text{Leb}(I) \right|.$$

It can be shown that for Lebesgue almost all x we have

$$D(N, x) = o(N^{-1/2}(\log(N))^{3/2}(\log\log(N))^{-1+\epsilon}).$$

For the sequence $a_n = o(n^p)$, p > 1 if we set

$$E_q = \{x : \limsup_{N \to \infty} N^q D(N, x) > 0\}$$

then for $q \in (0, 1/2)$ we have

$$\dim_H(E_q) \le 1 - \frac{1 - 2q}{p + q}.$$

Question 9.1 Is this the best possible?

Useful references are Baker [1] and Nair [21]. This uses the Erdös-Turan sequence

$$ND(x_1, x_2, \dots, x_N) \le c(\frac{N}{L} + \sum_{h=1}^{L} \frac{1}{h} \sum_{n=1}^{N} e^{2\pi i h x_i}).$$

Other ingredients are Frostman's lemma, the large sieve inequality and the Koksma norm inequality.

For a positive integer n we let $d(n) = \#\{m \in \mathbb{N} : m|n\}$ we want to estimate the sum $\sum_{n \leq x} d(n)$. Works of A.G. Abercombie, W.D. Banks and I. Shaparlinski are relevant to this. Let $B_{\alpha} = \{[n\alpha] : n \in \mathbb{N}\} \subset \mathbb{N}$ and we set

$$S_{\alpha}(f,x) = \sum_{n \in B_{\alpha} \cap \{1,2,\dots,x\}} f(n)$$
$$S(f,x) = \sum_{n \le x} f(n)$$
$$\Delta_{\alpha}(f,x) = \left| S_{\alpha}(f,x) - \alpha^{-1}S(f,x) \right|$$
$$M(f,x) = 1 + \max\{|f(n) : n \le x\}.$$

Then $\Delta_{\alpha}(f,x) = O(M(f,x)x^{2/3+\epsilon})$ for almost all α . If f satisfies f(mn) = f(m)f(n) whenever gcd(m,n) = 1. For example $f(n) = F(T^n(x))$ for $F \in L^{\infty}(X, \mathcal{B}, \mu, T)$.

10 A.H. Fan (Picardie)

Fan posed a question related to "Coupon collections".

11 L. Liao (LAMA)

For $x \in \mathbb{Q}$, $\mu > 1$ a result of Schmeling and Troubetzkoy [28] states that

$$\dim_H \{ y \in [0,1] : \|nx - y\| < n^{-\mu} \text{ infinitely often} \} = \mu^{-1}$$

Question 11.1 Let $\phi : \mathbb{N} \to \mathbb{R}^+$ be such that $\phi \searrow 0$ and $\limsup_{n \to \infty} n\phi(n) < 1/2$. What is the dimension of the set

$$\{y \in [0,1] : ||nx - y|| < \phi(n) \text{ infinitely often}\}?$$

Now suppose that x is of bounded type, i.e. if we write

$$x = \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

then the sequence $(a_n)_n$ is bounded. A result of Fan and Wu [11] states that

$$\dim_H \{ y \in [0,1] : \|nx - y\| < \phi(n) \text{ infinitely often} \} = \lim_{n \to \infty} \frac{\log(n)}{-\log(\phi(n))}$$

12 F. Przytycki (Warsaw)

Consider $f_0: z \mapsto z^2$ on \mathbb{S}^1 . Let f be a small smooth perturbation of f_0 and let J(f) denote the associated f-invariant Jordan curve close to the unit circle.

Question 12.1 Is it possible that

 $\sup\{\dim_H(\mu) : \mu \text{ is } f - invariant \text{ probability measure on } J(f)\} < 1?$

13 M. Urbanski (UNT)

Let $f : \mathbb{C} \to \mathbb{C}$ be given by $f(z) = z^2 + c$. Let J_c denote the Julia set of f.

Question 13.1 Is it true that

$$\sup\{\dim_H(\mu) : \mu \text{ is } f\text{-invariant}\} = \dim_H(J_c)?$$

14 S. Van Strien (Warwick)

Let M denote a smooth Riemannian manifold and m a volume form.

Question 14.1 How exceptional is it for a diffeomorphism $f : M \to M$ to have a hyperbolic fixed point p such that

$$m\left\{x \in M : \frac{1}{n} \sum_{k=0}^{n-1} \delta_{f^i(x)} \to \delta_{\{p\}}\right\} > 0?$$

15 A.H. Fan (Picardie)

Let (X, d) denote a compact metric space and μ a Borel probability measure with support in X. Recall the definition of the Riesz s-energy of μ

$$I_s(\mu) = \int \int \frac{1}{d(x,y)^s} d\mu(x) d\mu(y).$$

For $x \in X$ we define the *s*-potential at x to be

$$U_s(x) = \int \frac{1}{d(x,y)^s} d\mu(y)$$

Question 15.1 Compute

$$\dim_H \{x : U_s(x) = \infty \}.$$

The s-dimensional capacity of this set is zero (perhaps this follows from Matilla [19][Theorem 8.7]?). Kaufmann showed that $\mathcal{H}^{s+\epsilon}\{x : U_s(x) = \infty\} = 0$ for all $\epsilon > 0$ which implies that $\dim_H\{x : U_s(x) = \infty\} \leq s$.

A result of Fan and Wu states that

$$\sup_{r>00} \frac{\mu(B_r(x))}{r^s} \le U_s(x) \le c_1 \sup_{r>0} \frac{\mu(B_r(x))}{r^s} + c_2.$$

If μ denotes a Bernoulli measure on $\{0,1\}^{\mathbb{N}}$ then one can show that

$$U_s(x) \approx \sum_{k=1}^{\infty} 2^{sk} \mu(I_k(x)).$$

16 K. Falconer (St. Andrews)

Let $f_1, f_2, \ldots, f_n : \mathbb{R}^n \to \mathbb{R}^n$ be a family of contracting similarities and $E \subset \mathbb{R}^n$ the associated attractor. In [9] it is proved that $\dim_H(E) = \dim_B(E)$.

We say that a compact set $F \subset \mathbb{R}^n$ is sub self-similar if

$$F \subset \bigcup_{i=1}^m f_i(F).$$

If the iterated function system satisfies the open set condition then $\dim_H(F) = \dim_B(F)$ (cf. [10]).

Question 16.1 Is the open set condition a necessary assumption for $\dim_H(F) = \dim_B(F)$?

17 K. Simon (Budapest)

Fix a positive integer $m \ge 2$ and let $0 < p_0, p_1, \ldots, p_{m-1} < 1$. Starting with the unit interval, we remove the interval [i/m, (i+1)/m] with probability p_i . We repeat this process to the remaining intervals repeating ad infinitum. Providing $\sum_{i=0}^{m-1} p_i > 1$ the random construction will be almost surely non-empty.

For such a construction Dekking and Simon [5] and Mora, Simon and Solomyak [20] proved that we have the following dichotomy almost surely we have either $C_1 - C_2$ is either

- small, i.e. $Leb(C_1 C_2) = 0$.
- large, i.e. $C_1 C_2$ contains an interval.

Question 17.1 Can one do the same with three random constructions? i.e. $C_1 + C_2 + C_3$ is either small or large.

This is presumably related to the Palis conjecture? Define the cross-correlations:

$$\gamma_k := \sum_{i=0}^{m-1} p_i p_{(i+k)(\mod m)}$$

Then if $\gamma_i > 0$ for i = 0, 1, ..., m - 1 we have that $C_2 - C_1$ contains an interval. If there exists *i* such that $\gamma_i, \gamma_{i+1} < 1$ then $C_2 - C_1$ does not contain an interval.

Shmerkin: if all the probabilities are equal then it follows from the work of Peres et al.

Fraser: What happens if we define it with different measures?

Now let $f_1, f_2, \ldots, f_m : \mathbb{R} \to \mathbb{R}$ be a family of contracting similarities and Λ the associated attractor. We suppose further that for each $i \neq j$ we have that $f_i(\Lambda) \cap f_i(\Lambda)$.

Question 17.2 Does the open set condition hold?

18 A. Ferguson (Warwick)

Let $\{f_i(x) = r_i x + a_i\}_{i=1}^m$ denote a family of contracting similarities of \mathbb{R} with contraction ratios r_1, r_2, \ldots, r_m . We assume that $f_i \neq f_j$ for all $i \neq j$ and that $\sum_{i=1}^m r_i \leq 1$.

If the iterated function system $\{f_i\}_{i=1}^m$ satisfies the open set condition then a result of Hutchinson [13] states that the Hausdorff dimension of the associated attractor Λ is given by Moran's formula, i.e. $\dim_H(\Lambda) = s$ where s is the unique real number satisfying

$$\sum_{i=1}^m |r_i|^s = 1$$

We shall refer to the unique real number satisfying Moran's equation as the similarity dimension and denote it by $\dim_{sim}(\Lambda)$.

For $\underline{a} = (a_1, a_2, \ldots, a_m) \in \mathbb{R}^m$ we let $\Lambda_{\underline{a}}$ denote the attractor of the iterated function system $\{f_i(x) = r_i x + a_i\}_{i=1}^m$. Falconer [8] considered the typical behaviour of the dimension, proving that

$$\dim_H(\Lambda_{\underline{a}}) = \dim_{sim}(\Lambda_{\underline{a}})$$

for Lebesgue almost all $\underline{a} \in \mathbb{R}^m$. Another random construction that overcomes the limitations of the open set condition was considered by Simón and Pollicott [22] who used the method of transversality to solve the $\{0, 1, 3\}$ -problem.

In another direction, a long standing conjecture in the field (cf. [25]) that

$$\dim_H(\Lambda) < \dim_{sim}(\Lambda)$$

implies that there exist $i_1, i_2, \ldots, i_k, j_1, j_2, \ldots, j_l \in \{1, 2, \ldots, m\}$ such that

$$f_{i_1}f_{i_2}\cdots f_{i_k}=f_{j_1}f_{j_2}\cdots f_{j_l}$$

Such a condition is easily seen to be sufficient to cause non coincidence of Hausdorff and similarity dimensions. Question 18.1 Let $f_{m+1} : \mathbb{R} \to \mathbb{R}$ be a contracting similarity so that the iterated function system $\{f_i\}_{i=1}^{m+1}$ satisfies the standing assumptions outlined at the beginning, let Lambda' denote the associated attractor. Does $\dim_H(\Lambda) < \dim_{sim}(\Lambda)$ imply that $\dim_H(\Lambda') < \dim_{sim}(\Lambda')$?

A related problem concerning the dimension of measures due to A. Mathé is as follows. For

$$\underline{p} \in \Delta := \{ \underline{q} = (q_1, q_1, \dots, q_m) : q_i \ge 0, \sum_{i=1}^m q_i = 1 \}$$

we let μ_p denote the unique probability measure satisfying

$$\mu_{\underline{p}} = \sum_{i=1}^{m} p_i(f_i)_*(\mu_{\underline{p}}).$$

If the iterated function system $\{f_i\}_{i=1}^m$ satisfies the open set condition then the measure μ_p is easily shown to have dimension

$$s(\underline{p}) = \frac{\sum_{i=1}^{m} p_i \log(p_i)}{\sum_{i=1}^{m} p_i \log(r_i)}$$

Question 18.2 If there exists $\underline{p} \in int(\Delta)$ such that $\dim_H(\mu_{\underline{p}}) = s(\underline{p})$ does it follow that $\dim_H(\mu_q) = s(\underline{q})$ for all $\underline{q} \in \Delta$?

Question 18.3 Relate questions (18.1) and (18.2).

19 M. Rams (Warsaw)

Let $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ be defined by

$$f_1(x) = \frac{x}{2}$$

 $f_2(x) = \frac{3x+1}{2}$

And let μ denote the unique Borel probability measure satisfying

$$\mu = \frac{1}{2} \left((f_1)_*(\mu) + (f_2)_*(\mu) \right).$$

The iterated function system $\{f_1, f_2\}$ is contracting on average with respect to this measure.

Question 19.1 Is the measure μ absolutely continuous?

20 E. Järvenpää

Let M denote a smooth closed Riemannian manifold of dimension m. Let $\phi_t : T^1M \to T^1M$ denote the geodesic flow on the unit tangent bundle. Let μ denote a ϕ_t ergodic and invariant measure. Let $\pi : T_1M \to M$ denote the canonical projection, i.e. $\pi(x, v) = x$. A theorem of Ledrappier and Lindenstrauss [17] states that

 $\dim_H(\pi_*(\mu)) = \min\{\dim_H(\mu), m\}.$

Moreover, if $\dim_H(\mu) > 2$ then $\pi_*(\mu)$ is absolutely continuous.

Question 20.1 What happens when the dimension is equal to 2?

Let $\Delta \psi_n = \lambda_n \psi_n$ denote the eigenvalues of the Laplacian.

Question 20.2 (Quantum Unique Ergodicity) Is it true that

$$|\psi_n|^2 \text{Leb} \to \text{Leb}?$$

References

- R. C. Baker. Metric number theory and the large sieve. J. London Math. Soc. (2), 24(1):34–40, 1981.
- Z. Buczolich. Arithmetic averages of rotations of measurable functions. Ergodic Theory Dynam. Systems, 16(6):1185–1196, 1996.
- [3] Z. Buczolich. Ergodic averages and free \mathbb{Z}^2 actions. Fund. Math., 160(3):247–254, 1999.
- [4] Z. Buczolich. Non-L¹ functions with rotation sets of Hausdorff dimension one. Acta Math. Hungar., 126(1-2):23-50, 2010.
- [5] M. Dekking and K. Simon. On the size of the algebraic difference of two random Cantor sets. *Random Structures Algorithms*, 32(2):205–222, 2008.
- [6] A. Douady and J. Oesterlé. Dimension de Hausdorff des attracteurs. C. R. Acad. Sci. Paris Sér. A-B, 290(24):A1135–A1138, 1980.
- [7] P. Erdös. On sets of distances of n points. Amer. Math. Monthly, 53:248–250, 1946.

- [8] K. J. Falconer. The Hausdorff dimension of some fractals and attractors of overlapping construction. J. Statist. Phys., 47(1-2):123–132, 1987.
- K. J. Falconer. Dimensions and measures of quasi self-similar sets. Proc. Amer. Math. Soc., 106(2):543-554, 1989.
- [10] K. J. Falconer. Sub-self-similar sets. Trans. Amer. Math. Soc., 347(8):3121– 3129, 1995.
- [11] A.-H. Fan and J. Wu. A note on inhomogeneous Diophantine approximation with a general error function. *Glasg. Math. J.*, 48(2):187–191, 2006.
- [12] H. Furstenberg. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. *Math. Systems Theory*, 1:1–49, 1967.
- [13] J. E. Hutchinson. Fractals and self-similarity. Indiana Univ. Math. J., 30(5):713– 747, 1981.
- [14] A. S. A. Johnson. Measures on the circle invariant under multiplication by a nonlacunary subsemigroup of the integers. *Israel J. Math.*, 77(1-2):211–240, 1992.
- [15] N. H. Katz and L. Guth. On the erdos distinct distance problem in the plane. preprint: http://arxiv.org/abs/1011.4105, 2010.
- [16] N. H. Katz and G. Tardos. A new entropy inequality for the Erdős distance problem. In *Towards a theory of geometric graphs*, volume 342 of *Contemp. Math.*, pages 119–126. Amer. Math. Soc., Providence, RI, 2004.
- [17] F. Ledrappier and E. Lindenstrauss. On the projections of measures invariant under the geodesic flow. Int. Math. Res. Not., (9):511–526, 2003.
- [18] J. E. López Velázquez and C. G. Moreira. A variant of marstrand's theorem for projections of cartesian products. *preprint: http://arxiv.org/abs/1106.5776*, 2011.
- [19] P. Mattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Fractals and rectifiability.
- [20] P. Móra, K. Simon, and B. Solomyak. The Lebesgue measure of the algebraic difference of two random Cantor sets. *Indag. Math.* (N.S.), 20(1):131–149, 2009.

- [21] R. Nair. Some theorems on metric uniform distribution using L^2 methods. J. Number Theory, 35(1):18–52, 1990.
- [22] M. Pollicott and K. Simon. The Hausdorff dimension of λ -expansions with deleted digits. *Trans. Amer. Math. Soc.*, 347(3):967–983, 1995.
- [23] C. A. Rogers. *Hausdorff measures*. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1998. Reprint of the 1970 original, With a foreword by K. J. Falconer.
- [24] D. J. Rudolph. ×2 and ×3 invariant measures and entropy. Ergodic Theory Dynam. Systems, 10(2):395–406, 1990.
- [25] K. Simon. Overlapping cylinders: the size of a dynamically defined Cantorset. In Ergodic theory of Z^d actions (Warwick, 1993–1994), volume 228 of London Math. Soc. Lecture Note Ser., pages 259–272. Cambridge Univ. Press, Cambridge, 1996.
- [26] Y. G. Sinai and C. Ulcigrai. A limit theorem for Birkhoff sums of non-integrable functions over rotations. In *Geometric and probabilistic structures in dynamics*, volume 469 of *Contemp. Math.*, pages 317–340. Amer. Math. Soc., Providence, RI, 2008.
- [27] Y. G. Sinai and C. Ulcigrai. Renewal-type limit theorem for the Gauss map and continued fractions. *Ergodic Theory Dynam. Systems*, 28(2):643–655, 2008.
- [28] S. Trubetskoĭ and I. Shmeling. Inhomogeneous Diophantine approximations and angular recurrence for billiards in polygons. Mat. Sb., 194(2):129–144, 2003.