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I. Minimizing configurations

xn+1xn−1 xn xn+2

Elastic interaction : W(y-x)

Quasi-periodic potential : V(x)

- Consider a chain of atoms in R: xn position of the nth atom

- Each atom is in interaction with its nearest neighbours and with an
external potential

- The energy at each site is E(xn, xn+1) = W (xn+1 − xn) + V (xn)
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The main problem

Problem: Describe the set of configurations with the lowest total energy

Etot =
∑
n∈Z

E(xn, xn+1) (the total sum is infinite)

Definition: A configuration {xn}n∈Z is minimizing in the Aubry sense if

E(xn, . . . , xn+k) :=

k−1∑
i=0

E(xn+i, xn+i+1)

≤ E(yn, . . . , yn+k)

whenever xn = yn and xn+k = yn+k, for all n ∈ Z and k ≥ 1
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The original Frenkel-Kontorova

- The environment V (x) is periodic: (of period 1)

V (x) =
K

(2π)2

(
1− cos(2πx)

)
- The elastic interaction W is quadratic:

W (y − x) =
1

2
|y − x− λ|2 (−1

2
λ2)

- A more general framework: Eλ(x, y) = E0(x, y)− λ(y − x)

E0(x, y) is of class C2

E0 is periodic: E0(x+ 1, y + 1) = E0(x, y)

E0 is superlinerar: lim
‖y−x‖→+∞

E0(x, y)

‖y − x‖
= +∞

E0 is twist:
∂2E0

∂x∂y
< −α < 0
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A small part of Aubry theory

Theorem (Aubry 1986): (The periodic case)

1) There exist minimizing configurations with any prescribed rotation
number ρ

sup
n∈Z

|xn − x0 − nρ| < +∞

2) All recurrent minimizing configuration admits a rotation number

3) The main idea in the proof: a translation by an integer of a
minimizing configuration is still minimizing and cannot cross itself

n n+1 n+2

xn
yn=xn+q−p

An impossible
configuration

– It is not any more true in the quasi-periodic case
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Mather minimizing measures

Remark: If {xn}n∈Z is minimizing in the Aubry sense then

∂E

∂y
(xn−1, xn) +

∂E

∂x
(xn, xn+1) = 0, ∀ n

(xn, xn+1) can be computed from (xn−1, xn)

Definition: A minimizing configuration can be seen as a particular orbit
of a dynamical system called Euler-Lagrange dynamics.
Let vn = xn+1 − xn,

ΦEL =

{
T1 × R → T1 × R
(xn, vn) → (xn+1 = xn + vn, vn+1 = vn + V ′(xn+1)

Definition: A configuration {xn}n is minimizing in the Mather sense if

(xn, vn) ∈ Supp(µmin), ∀ n ∈ Z, where µmin is minimizing

µmin = arg min
{∫

T1×R
E(x, x+ v) dµ(x, v) : µ is a ΦEL-inv prob

}
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A small part of Mather theory

Theorem (Mather 1991): (the periodic case) Recall
Eλ(x, y) = E0(x, y)− λ(y − x)

1) Any configuration minimizing Eλ in the Mather sense is minimizing
in the Aubry sense

2) For configurations minimizing in the Aubry sense, minimizing Eλ is
equivalent to minimizing E0

3) Any recurrent minimizing configuration in the Aubry sense is
minimizing Eλ in the Mather sense for any λ related to the rotation
number ω

ω = −dĒ
dλ

(λ)

Ē := min
{∫

E(x, x+ v) dµ(x, v) : µ ΦEL-inv
}
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dλ

(λ)
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II. Environment of Fibonacci type

Problem: Describe the set of minimizing configurations for
quasi-periodic environments of Fibonacci type

L S

V L(x) V S (x)

q0=0

xx

q1 q 2 q3 q 4q−1 q5

S → L
L→ LS

LS→LSL
LSL→LSLLS

LSLLS →LSLLSLSL
LSLLSLSL→LSLLSLSLLSLLS

L L L LS S S
x

V (x)

Substitution :

– R is partitioned into segments of two kinds: long and short
– the external potential admits two forms: VL(x) and VS(x)
– Ω = the closure of all the shifts of the Fibonacci word

. . . , LSL,LS
∣∣∣LS,L, LS, LSL,LSLLS, . . .

Warwick, 16–20 April 2012 Frenkel-Kontorova of Fibonacci type 9/13
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Existence of rotation number

Notations: Ω is the compact set of Fibonacci words. Ω is compact
minimal and uniquely ergodic. Each ω ∈ Ω gives a quasi-periodic
potential Vω(x).
As before, the total energy per site is

Eω(x, y) = W (y − x) + Vω(x), W ′′(x) < −α < 0

Theorem (Gambaudo, Guiraud, Petite, 2006): We fixe an
environment ω ∈ Ω.

- Any minimizing configuration in the Aubry sense has a rotation
number

ρ = lim
m−n→+∞

xm − xn
m− n

- Any rotation number is achieved

Question:
What about minimizing configurations in the Mather sense?
What plays the role of T1 × R in the periodic case?

Warwick, 16–20 April 2012 Frenkel-Kontorova of Fibonacci type 10/13
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The space of quasi-periodic environments

Extension of Ω:

q0
' q1

' q2
' q3

' q4
'0

q−1
' q5

'

−s '
L L LS LS S

q−1 q0 q1 q2 q3
0q−2 q 4

−s
L L LS LS S

– the origin does not play any role. We consider the set of all shifts

Ω = Ω× R/ ∼ ⇔

{
different parametrizations but

same sequence of impurities

– Ω is a suspension over Ω built with a return map of length L or S
– In the periodic case L = S and Ω = T1

– In the quasi-periodic case Ω plays the role of T1
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Mather measures

A global potential V : Recall (Ω, {φt}) denotes the minimal Fibonacci
flow

Vω(x) = V ◦ φx(ω)

Eω(x, y) = W (y − x) + Vω(x)

= L(φx(ω), y − x)

L(ω, v) = W (v) + V (ω)

S

L

V S( x)

V L( x)

Ω=Ω X ℝ/∼
Ω

ℝ

Minimizing measures in the Mather sense:
– There is no way we can define an equivalent Euler-Lagrange map ΦEL
– In the periodic case: ΦEL(x, v) = (x+ v, . . .), x ∈ T1, v ∈ R
– A measure µ is holonomic if∫

f(ω) dµ(ω, v) =

∫
f ◦ φv(ω) dµ(ω, v), ∀ f ∈ C0(Ω)

– A measure µmin is minimizing in the Mather sense if

µmin = arg min
{∫

Ω×R
L(ω, v) dµ(ω, v) : µ is holonomic

}
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Mather measures
A global potential V : Recall (Ω, {φt}) denotes the minimal Fibonacci
flow

Vω(x) = V ◦ φx(ω)

Eω(x, y) = W (y − x) + Vω(x)

= L(φx(ω), y − x)

L(ω, v) = W (v) + V (ω)

S

L

V S( x)

V L( x)

Ω=Ω X ℝ/∼
Ω

ℝ
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III. A few results in Aubry-Mather theory

Mather set: M := ∪{Supp(µ) : holonomic minimizing} ⊂ Ω× R

Results:
– Optimal segments {xk}k (minimizing E(x0, . . . , xn)) have uniform
bounded gaps

∃ C s.t. {xk}nk=0 is optimal ⇒ |xk+1 − xk| < C

– The Mather set is compact and non empty
– The lowest mean energy can be computed using either minimizing
configurations or minimizing measures (L(ω, v) = W (v) + V (ω))

Ē = lim
n→+∞

min
ω,x0,...,xn

1

n
Eω(x0, . . . , xn)

= min
µ holonomic

∫
L(ω, v) dµ(ω, v) =

∫
Ldµmin

– If M̃ denotes the projection of the Mather set on Ω, then M̃ has a non
empty intersection with any orbit of length long enough of the Fibonacci
flow.
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