Statistical stability for Lorenz-like attractors

José Ferreira Alves
(joint with Mohammad Soufi)
CMUP

Ergodic Theory and Dynamical Systems:
Perspectives and Prospects

April 17, 2012
Lorenz (1963) proposed a system of differential equations X in \mathbb{R}^3 having an attractor with sensitive dependence on the initial conditions.
A geometric model for Lorenz equations was introduced in the seventies by Guckenheimer and Williams.
The vector field X is linear in a neighborhood of the singularity $(0, 0, 0)$ whose eigenvalues satisfy

$$0 < -\lambda_3 < \lambda_1 < -\lambda_2,$$
There is a cross-section Σ intersecting the stable manifold of the singularity along a curve Γ.
Local behaviour

\[\tau(x, y, 1) = -\frac{1}{\lambda_1} \log |x| \]
\[\tau(x, y, 1) = -\frac{1}{\lambda_1} \log |x| + T_0, \]
The geometric model admits a **Lorenz-like attractor** Λ:

- Λ is an invariant set under the flow;
- there is an open neighborhood U of Λ such that

 $$\Lambda = \bigcap_{t>0} X_t(U);$$

- Λ contains a dense orbit;
- sensitive dependence on the initial conditions in U;
- Λ contains the singularity O.

Λ is a **singular-hyperbolic** attractor.
The geometric model admits a **Lorenz-like attractor** Λ:

- Λ is an invariant set under the flow;
- there is an open neighborhood U of Λ such that $$\Lambda = \bigcap_{t>0} X_t(U);$$
- Λ contains a dense orbit;
- sensitive dependence on the initial conditions in U;
- Λ contains the singularity O.

Λ is a **singular-hyperbolic** attractor.
The geometric model admits a **Lorenz-like attractor** Λ:
- Λ is an invariant set under the flow;
- there is an open neighborhood U of Λ such that
 $$\Lambda = \bigcap_{t>0} X_t(U);$$
- Λ contains a dense orbit;
- sensitive dependence on the initial conditions in U;
- Λ contains the singularity O.

Λ is a **singular-hyperbolic** attractor.
The geometric model admits a **Lorenz-like attractor** Λ:

- Λ is an invariant set under the flow;
- there is an open neighborhood U of Λ such that

$$
\Lambda = \bigcap_{t>0} X_t(U);
$$

- Λ contains a dense orbit;
- sensitive dependence on the initial conditions in U;
- Λ contains the singularity O.

Λ is a **singular-hyperbolic** attractor.
The attractor

The geometric model admits a **Lorenz-like attractor** \(\Lambda \):

- \(\Lambda \) is an invariant set under the flow;
- there is an open neighborhood \(U \) of \(\Lambda \) such that
 \[
 \Lambda = \bigcap_{t>0} X_t(U);
 \]
- \(\Lambda \) contains a dense orbit;
- sensitive dependence on the initial conditions in \(U \);
- \(\Lambda \) contains the singularity \(O \).

\(\Lambda \) is a **singular-hyperbolic** attractor.
The geometric model admits a **Lorenz-like attractor** Λ:

- Λ is an invariant set under the flow;
- there is an open neighborhood U of Λ such that
 \[
 \Lambda = \bigcap_{t>0} X_t(U);
 \]
- Λ contains a dense orbit;
- sensitive dependence on the initial conditions in U;
- Λ contains the singularity O.

Λ is a **singular-hyperbolic attractor**.
The geometric model admits a **Lorenz-like attractor** Λ:
- Λ is an invariant set under the flow;
- there is an open neighborhood U of Λ such that
 \[\Lambda = \bigcap_{t>0} X_t(U); \]
- Λ contains a dense orbit;
- sensitive dependence on the initial conditions in U;
- Λ contains the singularity O.

Λ is a **singular-hyperbolic** attractor.
The return map P admits a stable foliation \mathcal{F} on Σ with the properties:

- **invariant**: the image by P of a leaf ξ in Σ distinct from Γ is contained in another stable leaf;

- **contracting**: the diameter of $P^n(\xi)$ goes to zero when $n \to \infty$, uniformly over all leaves;

- it induces a map f on the quotient space $\Sigma/\mathcal{F} \sim [-1, 1] = I$.

The foliation \mathcal{F} is C^1-Hölder when the vector field X is C^2. Assuming the strong dissipative condition at the equilibrium

$$\frac{-\lambda_2}{\lambda_1} > \frac{-\lambda_3}{\lambda_1} + 2,$$

then \mathcal{F} is C^2, and the one-dimensional quotient map f is C^2 smooth away from the singularity.
Poincaré return map

The return map P admits a stable foliation \mathcal{F} on Σ with the properties:

- **invariant:** the image by P of a leaf ξ in Σ distinct from Γ is contained in another stable leaf;
- **contracting:** the diameter of $P^n(\xi)$ goes to zero when $n \to \infty$, uniformly over all leaves;
- it induces a map f on the quotient space $\Sigma/\mathcal{F} \sim [−1, 1] = I$.

The foliation \mathcal{F} is C^1-Hölder when the vector field X is C^2. Assuming the strong dissipative condition at the equilibrium

$$-\frac{\lambda_2}{\lambda_1} > -\frac{\lambda_3}{\lambda_1} + 2,$$

then \mathcal{F} is C^2, and the one-dimensional quotient map f is C^2 smooth away from the singularity.
The return map P admits a stable foliation \mathcal{F} on Σ with the properties:

- **invariant:** the image by P of a leaf ξ in Σ distinct from Γ is contained in another stable leaf;

- **contracting:** the diameter of $P^n(\xi)$ goes to zero when $n \to \infty$, uniformly over all leaves;

- it induces a map f on the quotient space $\Sigma/\mathcal{F} \sim [-1, 1] = I$.

The foliation \mathcal{F} is C^1-Hölder when the vector field X is C^2. Assuming the strong dissipative condition at the equilibrium

$$-\frac{\lambda_2}{\lambda_1} > -\frac{\lambda_3}{\lambda_1} + 2,$$

then \mathcal{F} is C^2, and the one-dimensional quotient map f is C^2 smooth away from the singularity.
The return map P admits a stable foliation \mathcal{F} on Σ with the properties:

- **invariant:** the image by P of a leaf ξ in Σ distinct from Γ is contained in another stable leaf;
- **contracting:** the diameter of $P^n(\xi)$ goes to zero when $n \to \infty$, uniformly over all leaves;
- it induces a map f on the quotient space $\Sigma/\mathcal{F} \sim [-1, 1] = I$.

The foliation \mathcal{F} is C^1-Hölder when the vector field X is C^2. Assuming the strong dissipative condition at the equilibrium

$$-\frac{\lambda_2}{\lambda_1} > -\frac{\lambda_3}{\lambda_1} + 2,$$

then \mathcal{F} is C^2, and the one-dimensional quotient map f is C^2 smooth away from the singularity.
The return map P admits a stable foliation \mathcal{F} on Σ with the properties:

- invariant: the image by P of a leaf ξ in Σ distinct from Γ is contained in another stable leaf;

- contracting: the diameter of $P^n(\xi)$ goes to zero when $n \to \infty$, uniformly over all leaves;

- it induces a map f on the quotient space $\Sigma/\mathcal{F} \sim [-1, 1] = I$.

The foliation \mathcal{F} is C^1-Hölder when the vector field X is C^2.

Assuming the strong dissipative condition at the equilibrium

$$-\frac{\lambda_2}{\lambda_1} > -\frac{\lambda_3}{\lambda_1} + 2,$$

then \mathcal{F} is C^2, and the one-dimensional quotient map f is C^2 smooth away from the singularity.
The return map P admits a stable foliation \mathcal{F} on Σ with the properties:

- **invariant**: the image by P of a leaf ξ in Σ distinct from Γ is contained in another stable leaf;
- **contracting**: the diameter of $P^n(\xi)$ goes to zero when $n \to \infty$, uniformly over all leaves;
- it induces a map f on the quotient space $\Sigma/\mathcal{F} \sim [-1, 1] = I$.

The foliation \mathcal{F} is C^1-Hölder when the vector field X is C^2.

Assuming the strong dissipative condition at the equilibrium

$$- \frac{\lambda_2}{\lambda_1} > - \frac{\lambda_3}{\lambda_1} + 2,$$

then \mathcal{F} is C^2, and the one-dimensional quotient map f is C^2 smooth away from the singularity.
The return map P admits a stable foliation \mathcal{F} on Σ with the properties:

- **invariant:** the image by P of a leaf ξ in Σ distinct from Γ is contained in another stable leaf;
- **contracting:** the diameter of $P^n(\xi)$ goes to zero when $n \to \infty$, uniformly over all leaves;
- it induces a map f on the quotient space $\Sigma/\mathcal{F} \sim [-1, 1] = I$.

The foliation \mathcal{F} is C^1-Hölder when the vector field X is C^2. Assuming the strong dissipative condition at the equilibrium

$$-\frac{\lambda_2}{\lambda_1} > -\frac{\lambda_3}{\lambda_1} + 2,$$

then \mathcal{F} is C^2, and the one-dimensional quotient map f is C^2 smooth away from the singularity.
Lorenz map

- f is discontinuous at $x = 0$ and
 \[\lim_{x \to 0^+} f(x) = -1, \quad \lim_{x \to 0^-} f(x) = 1; \]

- f is differentiable on $I \setminus \{0\}$ and
 \[f'(x) > \sqrt{2}, \quad \text{for all } x \in I \setminus \{0\}; \]

- the derivative tends to infinity near 0
 \[\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^-} f'(x) = +\infty. \]
Lorenz map

- f is discontinuous at $x = 0$ and
 \[
 \lim_{x \to 0^+} f(x) = -1, \quad \lim_{x \to 0^-} f(x) = 1;
 \]

- f is differentiable on $I \setminus \{0\}$ and
 \[
 f'(x) > \sqrt{2}, \quad \text{for all } x \in I \setminus \{0\};
 \]

- the derivative tends to infinity near 0
 \[
 \lim_{x \to 0^+} f'(x) = \lim_{x \to 0^-} f'(x) = +\infty.
 \]
Lorenz map

- f is discontinuous at $x = 0$ and
 \[
 \lim_{x \to 0^+} f(x) = -1, \quad \lim_{x \to 0^-} f(x) = 1;
 \]

- f is differentiable on $I \setminus \{0\}$ and
 \[
 f'(x) > \sqrt{2}, \quad \text{for all } x \in I \setminus \{0\};
 \]

- the derivative tends to infinity near 0

 \[
 \lim_{x \to 0^+} f'(x) = \lim_{x \to 0^-} f'(x) = +\infty.
 \]
Lorenz map

- f is discontinuous at $x = 0$ and
 \[\lim_{x \to 0^+} f(x) = -1, \quad \lim_{x \to 0^-} f(x) = 1; \]

- f is differentiable on $I \setminus \{0\}$ and
 \[f'(x) > \sqrt{2}, \quad \text{for all } x \in I \setminus \{0\}; \]

- the derivative tends to infinity near 0
 \[\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^-} f'(x) = +\infty. \]
There is a C^2 neighborhood U of X such that for each $Y \in U$
- U is a trapping region containing the cross-section Σ of Y;
- the maximal positively invariant subset $\Lambda_Y = \bigcap_{t \geq 0} Y^t(U)$ inside U is a Lorenz-like attractor;
- the first return Poincaré map P_Y on Σ admits a C^2 uniformly contracting foliation \mathcal{F}_Y.
- the induced one-dimensional quotient map $f_Y = P_Y / \mathcal{F}_Y$ is a C^2 Lorenz map;
- there exist (unique) SRB measures for the Lorenz map f_Y, the Poincaré map P_Y and the flow Y on U.

Theorem (Tucker)

For the classical parameter values, the Lorenz equations support a robust strange attractor.
Robustness

There is a C^2 neighborhood \mathcal{U} of X such that for each $Y \in \mathcal{U}$

- U is a trapping region containing the cross-section Σ of Y;
- the maximal positively invariant subset $\Lambda_Y = \bigcap_{t \geq 0} Y^t(U)$ inside U is a Lorenz-like attractor;
- the first return Poincaré map P_Y on Σ admits a C^2 uniformly contracting foliation \mathcal{F}_Y.
- the induced one-dimensional quotient map $f_Y = P_Y/\mathcal{F}_Y$ is a C^2 Lorenz map;
- there exist (unique) SRB measures for the Lorenz map f_Y, the Poincaré map P_Y and the flow Y on U.

Theorem (Tucker)

For the classical parameter values, the Lorenz equations support a robust strange attractor.
Robustness

There is a C^2 neighborhood \mathcal{U} of X such that for each $Y \in \mathcal{U}$

- U is a trapping region containing the cross-section Σ of Y;
- the maximal positively invariant subset $\Lambda_Y = \bigcap_{t \geq 0} Y^t(U)$ inside U is a Lorenz-like attractor;
- the first return Poincaré map P_Y on Σ admits a C^2 uniformly contracting foliation \mathcal{F}_Y.

- the induced one-dimensional quotient map $f_Y = P_Y/\mathcal{F}_Y$ is a C^2 Lorenz map;
- there exist (unique) SRB measures for the Lorenz map f_Y, the Poincaré map P_Y and the flow Y on U.

Theorem (Tucker)

For the classical parameter values, the Lorenz equations support a robust strange attractor.
Robustness

There is a C^2 neighborhood \mathcal{U} of X such that for each $Y \in \mathcal{U}$

- U is a trapping region containing the cross-section Σ of Y;
- the maximal positively invariant subset $\Lambda_Y = \cap_{t \geq 0} Y^t(U)$ inside U is a Lorenz-like attractor;
- the first return Poincaré map P_Y on Σ admits a C^2 uniformly contracting foliation \mathcal{F}_Y.
- the induced one-dimensional quotient map $f_Y = P_Y/\mathcal{F}_Y$ is a C^2 Lorenz map;
- there exist (unique) SRB measures for the Lorenz map f_Y, the Poincaré map P_Y and the flow Y on U.

Theorem (Tucker)

For the classical parameter values, the Lorenz equations support a robust strange attractor.
Robustness

There is a C^2 neighborhood \mathcal{U} of X such that for each $Y \in \mathcal{U}$

- \mathcal{U} is a trapping region containing the cross-section Σ of Y;
- the maximal positively invariant subset $\Lambda_Y = \cap_{t \geq 0} Y^t(\mathcal{U})$ inside \mathcal{U} is a Lorenz-like attractor;
- the first return Poincaré map P_Y on Σ admits a C^2 uniformly contracting foliation \mathcal{F}_Y.
- the induced one-dimensional quotient map $f_Y = P_Y/\mathcal{F}_Y$ is a C^2 Lorenz map;
- there exist (unique) SRB measures for the Lorenz map f_Y, the Poincaré map P_Y and the flow Y on \mathcal{U}.

Theorem (Tucker)

For the classical parameter values, the Lorenz equations support a robust strange attractor.
Robustness

There is a C^2 neighborhood \mathcal{U} of X such that for each $Y \in \mathcal{U}$

- U is a trapping region containing the cross-section Σ of Y;
- the maximal positively invariant subset $\Lambda_Y = \bigcap_{t \geq 0} Y^t(U)$ inside U is a Lorenz-like attractor;
- the first return Poincaré map P_Y on Σ admits a C^2 uniformly contracting foliation \mathcal{F}_Y.
- the induced one-dimensional quotient map $f_Y = P_Y / \mathcal{F}_Y$ is a C^2 Lorenz map;
- there exist (unique) SRB measures for the Lorenz map f_Y, the Poincaré map P_Y and the flow Y on U.

Theorem (Tucker)

For the classical parameter values, the Lorenz equations support a robust strange attractor.
SRB measures

Theorem

Each Lorenz map f_Y has a unique ergodic acip $\bar{\mu}_Y$ whose density wrt Lebesgue has bounded variation.

$\bar{\mu}$ is an SRB measure: for Lebesgue almost every $x \in I$

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(f^j(x)) = \int \varphi \, d\bar{\mu},$$

for any continuous function $\varphi : I \to \mathbb{R}$.

Theorem

Each Lorenz-like attractor Y supports a unique SRB measure μ_Y.
SRB measures

Theorem

Each Lorenz map f_Y has a unique ergodic acip $\bar{\mu}_Y$ whose density wrt Lebesgue has bounded variation.

$\bar{\mu}$ is an **SRB measure**: for Lebesgue almost every $x \in I$

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(f^j(x)) = \int \varphi \, d\bar{\mu},$$

for any continuous function $\varphi : I \to \mathbb{R}$.
SRB measures

Theorem

Each Lorenz map \(f_Y \) has a unique ergodic acip \(\bar{\mu}_Y \) whose density wrt Lebesgue has bounded variation. \(\bar{\mu} \) is an SRB measure: for Lebesgue almost every \(x \in I \)

\[
\lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(f^j(x)) = \int \varphi \, d\bar{\mu},
\]

for any continuous function \(\varphi : I \to \mathbb{R} \).

Theorem

Each Lorenz-like attractor \(Y \) supports a unique SRB measure \(\mu_Y \)
Statistical stability: continuous variation of the SRB measures with weak* topology as a function of the dynamical system.

Strong statistical stability: continuous variation of the densities of the SRB measures in the L^1-norm.

Theorem (Keller)
Lorenz maps are strongly statistically stable.

Theorem (A., Soufi)
Lorenz-like flows are statistically stable.
Statistical stability: continuous variation of the SRB measures with weak* topology as a function of the dynamical system.

Strong statistical stability: continuous variation of the densities of the SRB measures in the L^1-norm.

Theorem (Keller)

Lorenz maps are strongly statistically stable.

Theorem (A., Soufi)

Lorenz-like flows are statistically stable.
Statistical stability: continuous variation of the SRB measures with weak* topology as a function of the dynamical system.

Strong statistical stability: continuous variation of the densities of the SRB measures in the L^1-norm.

Theorem (Keller)

Lorenz maps are strongly statistically stable.

Theorem (A., Soufi)

Lorenz-like flows are statistically stable.
Statistical stability: continuous variation of the SRB measures with weak* topology as a function of the dynamical system.

Strong statistical stability: continuous variation of the densities of the SRB measures in the L^1-norm.

Theorem (Keller)

Lorenz maps are strongly statistically stable.

Theorem (A., Soufi)

Lorenz-like flows are statistically stable.
SRB measures for the Poincaré return maps

Given a bounded function $\phi : \Sigma \to \mathbb{R}$, define

$$\phi_+(x) := \sup_{y \in \xi(x)} \phi(y) \quad \text{and} \quad \phi_-(x) := \inf_{y \in \xi(x)} \phi(y),$$

where $\xi(x)$ is the leaf in foliation \mathcal{F} which contains x.

Lemma

Given any continuous function $\phi : \Sigma \to \mathbb{R}$ both limits

$$\lim_{n \to \infty} \int (\phi \circ P^n)_- d\bar{\mu} \quad \text{and} \quad \lim_{n \to \infty} \int (\phi \circ P^n)_+ d\bar{\mu}$$

exist and they coincide.
SRB measures for the Poincaré return maps

Given a bounded function \(\phi : \Sigma \to \mathbb{R} \), define

\[
\phi_+(x) := \sup_{y \in \xi(x)} \phi(y) \quad \text{and} \quad \phi_-(x) := \inf_{y \in \xi(x)} \phi(y),
\]

where \(\xi(x) \) is the leaf in foliation \(\mathcal{F} \) which contains \(x \).

Lemma

Given any continuous function \(\phi : \Sigma \to \mathbb{R} \) both limits

\[
\lim_{n \to \infty} \int (\phi \circ P^n)_- d\bar{\mu} \quad \text{and} \quad \lim_{n \to \infty} \int (\phi \circ P^n)_+ d\bar{\mu}
\]

exist and they coincide.
Corollary

There is a (unique) probability P-invariant measure $\tilde{\mu}$ on Σ such that

$$\int \phi \ d\tilde{\mu} = \lim_{n \to \infty} \int (\phi \circ P^n)_- d\tilde{\mu} = \lim_{n \to \infty} \int (\phi \circ P^n)_+ d\tilde{\mu},$$

for every continuous function $\phi : \Sigma \to \mathbb{R}$.

Theorem

The Lorenz-like attractor supports a unique SRB measure μ defined for any continuous function $\varphi : \tilde{U} \to \mathbb{R}$ as

$$\int \varphi \ d\mu = \frac{1}{\int \tau d\tilde{\mu}} \int \int_0^{\tau(x)} \varphi(X(x, t)) dt d\tilde{\mu}(x)$$
Corollary

There is a (unique) probability P-invariant measure $\tilde{\mu}$ on Σ such that

$$\int \phi \, d\tilde{\mu} = \lim_{n\to\infty} \int (\phi \circ P^n)_- \, d\tilde{\mu} = \lim_{n\to\infty} \int (\phi \circ P^n)_+ \, d\tilde{\mu},$$

for every continuous function $\phi : \Sigma \to \mathbb{R}$.

Theorem

The Lorenz-like attractor supports a unique SRB measure μ defined for any continuous function $\varphi : \tilde{U} \to \mathbb{R}$ as

$$\int \varphi \, d\mu = \frac{1}{\int \tau d\tilde{\mu}} \int_0^{\tau(x)} \varphi(X(x, t)) \, dt \, d\tilde{\mu}(x).$$
Proposition

If X_n is a sequence converging to X_0 in C^2 topology, then

$$\tilde{\mu}_n \rightarrow \tilde{\mu}_0 \quad \text{in weak}^* \text{ topology},$$

where $\tilde{\mu}_n = \tilde{\mu}_{X_n}$ for all $n \geq 0$.

We need to show that for any continuous $\varphi : \Sigma \rightarrow \mathbb{R}$ we have

$$\lim_{n \to \infty} \int \varphi d\tilde{\mu}_n = \int \varphi d\tilde{\mu}_0.$$

By definition

$$\lim_{n \to \infty} \int \varphi d\tilde{\mu}_n = \lim_{n \to \infty} \lim_{m \to \infty} \int \inf(\varphi \circ P^m_n) \, d\tilde{\mu}_n.$$
Proposition

If X_n is a sequence converging to X_0 in C^2 topology, then

$$\tilde{\mu}_n \rightarrow \tilde{\mu}_0 \quad \text{in weak}^* \text{ topology},$$

where $\tilde{\mu}_n = \tilde{\mu}_{X_n}$ for all $n \geq 0$.

We need to show that for any continuous $\varphi : \Sigma \rightarrow \mathbb{R}$ we have

$$\lim_{n \rightarrow \infty} \int \varphi d\tilde{\mu}_n = \int \varphi d\tilde{\mu}_0.$$

By definition

$$\lim_{n \rightarrow \infty} \int \varphi d\tilde{\mu}_n = \lim_{n \rightarrow \infty} \lim_{m \rightarrow \infty} \int \inf(\varphi \circ P^m_n) d\tilde{\mu}_n.$$
Proposition

If X_n is a sequence converging to X_0 in C^2 topology, then

$$\tilde{\mu}_n \to \tilde{\mu}_0 \quad \text{in weak* topology},$$

where $\tilde{\mu}_n = \tilde{\mu}_{X_n}$ for all $n \geq 0$.

We need to show that for any continuous $\varphi : \Sigma \to \mathbb{R}$ we have

$$\lim_{n \to \infty} \int \varphi d\tilde{\mu}_n = \int \varphi d\tilde{\mu}_0.$$

By definition

$$\lim_{n \to \infty} \int \varphi d\tilde{\mu}_n = \lim_{n \to \infty} \lim_{m \to \infty} \int \inf(\varphi \circ P^m_n) \ d\tilde{\mu}_n.$$
We have

\[
\left| \int \inf(\varphi \circ P_n^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_0 \right| \leq \\
\left| \int \inf(\varphi \circ P_n^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_n \right| \\
+ \left| \int \inf(\varphi \circ P_0^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_0 \right|.
\]

The second term tends to zero because

\[
\bar{\mu}_n \overset{\text{weak}^*}{\longrightarrow} \bar{\mu}_0.
\]

We are left to prove that the first term converges to zero when \(n \to \infty \).
We have

\[\left| \int \inf(\varphi \circ P_n^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_0 \right| \leq \]

\[\left| \int \inf(\varphi \circ P_n^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_n \right| \]

\[+ \left| \int \inf(\varphi \circ P_n^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_0 \right|. \]

The second term tends to zero because

\[\bar{\mu}_n \xrightarrow{weak^*} \bar{\mu}_0. \]

We are left to prove that the first term converges to zero when \(n \to \infty \).
We have

\[| \int \inf(\varphi \circ P^m_n) d\bar{\mu}_n - \int \inf(\varphi \circ P^m_0) d\bar{\mu}_0 | \leq \]

\[| \int \inf(\varphi \circ P^m_n) d\bar{\mu}_n - \int \inf(\varphi \circ P^m_0) d\bar{\mu}_n | + | \int \inf(\varphi \circ P^m_0) d\bar{\mu}_n - \int \inf(\varphi \circ P^m_0) d\bar{\mu}_0 |. \]

The second term tends to zero because

\[\bar{\mu}_n \xrightarrow{\text{weak}^*} \bar{\mu}_0. \]

We are left to prove that the first term converges to zero when \(n \to \infty \).
Letting $\lambda = \text{Lebesgue}$

\[
\left| \int \inf(\varphi \circ P_n^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_n \right|
\]

\[
= \left| \int \inf(\varphi \circ P_n^m) \frac{d\bar{\mu}_n}{d\lambda} d\lambda - \int \inf(\varphi \circ P_0^m) \frac{d\bar{\mu}_n}{d\lambda} d\lambda \right|
\]

\[
\leq \int \left| \inf(\varphi \circ P_n^m) - \inf(\varphi \circ P_0^m) \right| \left| \frac{d\bar{\mu}_n}{d\lambda} \right| d\lambda
\]

\[
\leq C \int \left| \inf(\varphi \circ P_n^m) - \inf(\varphi \circ P_0^m) \right| d\lambda
\]

The rate of the contraction of the stable foliation on the cross-section can be taken the same for all vector fields. So, the last expression can be made uniformly small.
Letting $\lambda = \text{Lebesgue}$

$$ | \int \inf(\varphi \circ P_n^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_n | $$

$$ = \left| \int \inf(\varphi \circ P_n^m) \frac{d\bar{\mu}_n}{d\lambda} d\lambda - \int \inf(\varphi \circ P_0^m) \frac{d\bar{\mu}_n}{d\lambda} d\lambda \right| $$

$$ \leq \int |\inf(\varphi \circ P_n^m) - \inf(\varphi \circ P_0^m)| \left| \frac{d\bar{\mu}_n}{d\lambda} \right| d\lambda $$

$$ \leq C \int |\inf(\varphi \circ P_n^m) - \inf(\varphi \circ P_0^m)| d\lambda $$

The rate of the contraction of the stable foliation on the cross-section can be taken the same for all vector fields. So, the last expression can be made uniformly small.
Let X_n be any sequence converging to X_0 in C^2 topology. Then

$$\mu_n \longrightarrow \mu_0,$$

in the weak* topology.

\[
\left| \int \varphi \ d\mu_n - \int \varphi \ d\mu_0 \right| \text{ is bounded by the sum of the terms}
\]

\[
\left| \frac{1}{\int \tau_n d\tilde{\mu}_n} - \frac{1}{\int \tau_0 d\tilde{\mu}_0} \right| \int_0^{\tau_0(x)} \int_0^{\tau_0(x)} |\varphi(X_0(x, t))| \, dt \, d\tilde{\mu}_0(x),
\]

and

\[
\left| \frac{1}{\int \tau_n d\tilde{\mu}_n} \int_0^{\tau_n(x)} \varphi(X_n(x, t)) \, dt \, d\tilde{\mu}_n - \int_0^{\tau_0(x)} \varphi(X_0(x, t)) \, dt \, d\tilde{\mu}_0 \right|.\]
Statistical stability for the flow

Theorem

Let X_n be any sequence converging to X_0 in C^2 topology. Then

$$
\mu_n \longrightarrow \mu_0, \quad \text{in the weak}^* \text{ topology}.
$$

$$
\left| \int \varphi \, d\mu_n - \int \varphi \, d\mu_0 \right| \text{ is bounded by the sum of the terms }
$$

$$
\left| \frac{1}{\int \tau_n \, d\tilde{\mu}_n} - \frac{1}{\int \tau_0 \, d\tilde{\mu}_0} \right| \int \int_0^{\tau_0(x)} |\varphi(X_0(x, t))| \, dt \, d\tilde{\mu}_0(x),
$$

and

$$
\left| \frac{1}{\int \tau_n \, d\tilde{\mu}_n} \int \int_0^{\tau_n(x)} \varphi(X_n(x, t)) \, dt \, d\tilde{\mu}_n - \int \int_0^{\tau_0(x)} \varphi(X_0(x, t)) \, dt \, d\tilde{\mu}_0 \right|.
$$
Theorem

Let X_n be any sequence converging to X_0 in C^2 topology. Then

$$\mu_n \longrightarrow \mu_0, \quad \text{in the weak}^* \text{ topology.}$$

$$\left| \int \varphi \ d\mu_n - \int \varphi \ d\mu_0 \right|$$

is bounded by the sum of the terms

$$\left| \frac{1}{\int \tau_n \ d\tilde{\mu}_n} - \frac{1}{\int \tau_0 d\tilde{\mu}_0} \right| \int_0^{\tau_0(x)} \int_0^{\tau_0(x)} |\varphi(X_0(x, t))| dtd\tilde{\mu}_0(x),$$

and

$$\frac{1}{\int \tau_n \ d\tilde{\mu}_n} \int_0^{\tau_n(x)} \varphi(X_n(x, t)) dtd\tilde{\mu}_n - \int_0^{\tau_0(x)} \varphi(X_0(x, t)) dtd\tilde{\mu}_0.$$
Statistical stability for the flow

Theorem

Let X_n be any sequence converging to X_0 in C^2 topology. Then

$$\mu_n \longrightarrow \mu_0, \quad \text{in the weak}^* \text{ topology.}$$

$$\left| \int \varphi \ d\mu_n - \int \varphi \ d\mu_0 \right|$$

is bounded by the sum of the terms

$$\left| \frac{1}{\int \tau_n \ d\tilde{\mu}_n} - \frac{1}{\int \tau_0 \ d\tilde{\mu}_0} \right| \int \int_0^{\tau_0(x)} \varphi(X_0(x, t)) \ dtd\tilde{\mu}_0(x),$$

and

$$\frac{1}{\int \tau_n \ d\tilde{\mu}_n} \left| \int \int_0^{\tau_n(x)} \varphi(X_n(x, t)) \ dtd\tilde{\mu}_n - \int \int_0^{\tau_0(x)} \varphi(X_0(x, t)) \ dtd\tilde{\mu}_0 \right|. $$
The statistical stability of the Poincaré return map and the fact that there are uniform constants \(a, a_0, b \) and \(b_0 \) such that

\[
b_0 - a_0 \log |x - c_n| \leq \tau_n(x, y, 1) \leq b - a \log |x - c_n|,
\]

where the \(c_n \) is the discontinuity point of the map \(f_{X_n} \), yield

Lemma

\[
\lim_{n \to +\infty} \int \tau_n \, d\tilde{\mu}_n = \int \tau_0 \, d\tilde{\mu}_0
\]

And defining

\[
h_n(x) = \int_0^{\tau_n(x)} \varphi(X_n(x, t)) \, dt, \quad \text{for } n \geq 0
\]

Lemma

\[
\lim_{n \to +\infty} \int h_n \, d\tilde{\mu}_n = \int h_0 \, d\tilde{\mu}_0.
\]
The statistical stability of the Poincaré return map and the fact that there are uniform constants a, a_0, b and b_0 such that

$$b_0 - a_0 \log |x - c_n| \leq \tau_n(x, y, 1) \leq b - a \log |x - c_n|,$$

where the c_n is the discontinuity point of the map f_{X_n}, yield

Lemma

$$\lim_{n \to +\infty} \int \tau_n \, d\tilde{\mu}_n = \int \tau_0 \, d\tilde{\mu}_0$$

And defining

$$h_n(x) = \int_0^{\tau_n(x)} \varphi(X_n(x, t)) \, dt, \quad \text{for } n \geq 0$$

Lemma

$$\lim_{n \to +\infty} \int h_n \, d\tilde{\mu}_n = \int h_0 \, d\tilde{\mu}_0.$$
The statistical stability of the Poincaré return map and the fact that there are uniform constants a, a_0, b and b_0 such that

\[b_0 - a_0 \log |x - c_n| \leq \tau_n(x, y, 1) \leq b - a \log |x - c_n|, \]

where the c_n is the discontinuity point of the map f_{X_n}, yield

Lemma

\[
\lim_{n \to +\infty} \int \tau_n \, d\tilde{\mu}_n = \int \tau_0 \, d\tilde{\mu}_0
\]

And defining

\[
h_n(x) = \int_0^{\tau_n(x)} \varphi(X_n(x, t)) \, dt, \quad \text{for } n \geq 0
\]

Lemma

\[
\lim_{n \to +\infty} \int h_n \, d\tilde{\mu}_n = \int h_0 \, d\tilde{\mu}_0.
\]
Replace the usual expanding condition $\lambda_3 + \lambda_1 > 0$ in the Lorenz-like attractor X by the **contracting condition**

$$\lambda_3 + \lambda_1 < 0.$$

There is a trapping region U for X_0 on which $\Lambda = \cap_{t \geq 0} X_0^t(U)$ is a singular-hyperbolic attractor attractor.

Λ is 2-dimensionally almost persistent in the C^3 topology: X is a 2-dimensional density point of the set of vector fields Y for which $\Lambda_Y = \cap_{t \geq 0} Y^t(U)$ is an attractor.
Rovella flow

Replace the usual expanding condition $\lambda_3 + \lambda_1 > 0$ in the Lorenz-like attractor X by the contracting condition

$$\lambda_3 + \lambda_1 < 0.$$

There is a trapping region U for X_0 on which $\Lambda = \cap_{t \geq 0} X_0^t(U)$ is a singular-hyperbolic attractor.

Λ is 2-dimensionally almost persistent in the C^3 topology: X is a 2-dimensional density point of the set of vector fields Y for which $\Lambda_Y = \cap_{t \geq 0} Y^t(U)$ is an attractor.
Replace the usual expanding condition \(\lambda_3 + \lambda_1 > 0 \) in the Lorenz-like attractor \(X \) by the contracting condition

\[
\lambda_3 + \lambda_1 < 0.
\]

There is a trapping region \(U \) for \(X_0 \) on which \(\Lambda = \cap_{t \geq 0} X_0^t(U) \) is a singular-hyperbolic attractor attractor.

\(\Lambda \) is 2-dimensionally almost persistent in the \(C^3 \) topology: \(X \) is a 2-dimensional density point of the set of vector fields \(Y \) for which \(\Lambda_Y = \cap_{t \geq 0} Y^t(U) \) is an attractor.
The quotient map $f_0 : I \setminus \{0\} \to I$ satisfies

- $\lim_{x \to 0^\pm} f_0(x) = \mp 1$;
- ± 1 are pre-periodic and repelling;
- f_0 is of class C^3 on $I \setminus \{0\}$ with negative Schwarzian derivative;

Figure: One-dimensional map
The quotient map $f_0 : I \setminus \{0\} \to I$ satisfies

- $\lim_{x \to 0^\pm} f_0(x) = \mp 1$;
- ± 1 are pre-periodic and repelling;
- f_0 is of class C^3 on $I \setminus \{0\}$ with negative Schwarzian derivative;

Figure: One-dimensional map
The quotient map \(f_0 : I \setminus \{0\} \to I \) satisfies

- \(\lim_{x \to 0^\pm} f_0(x) = \pm 1 \);
- \(\pm 1 \) are pre-periodic and repelling;
- \(f_0 \) is of class \(C^3 \) on \(I \setminus \{0\} \) with negative Schwarzian derivative;

Figure: One-dimensional map
The quotient map $f_0 : I \setminus \{0\} \to I$ satisfies

- $\lim_{x \to 0^\pm} f_0(x) = \mp 1$;
- ± 1 are pre-periodic and repelling;
- f_0 is of class C^3 on $I \setminus \{0\}$ with negative Schwarzian derivative;

Figure: One-dimensional map
Theorem (Rovella)

There is $E \subseteq [0, 1]$ with full density at 0 such that:

1. for all $a \in E$, f_a is of class C^3 on $x \in I \setminus \{0\}$ and satisfies
 \[K_2|x|^{s-1} \leq f_a'(x) \leq K_1|x|^{s-1}; \]

2. there exists $\lambda > 1$ such that for $a \in E$
 \[(f_a^n)'(\pm 1) > \lambda^n \quad \text{for all } n \geq 0; \]

3. there is $\alpha > 0$ such that for all $a \in E$
 \[|f_a^{n-1}(\pm 1)| > e^{-\alpha n} \quad \text{for all } n \geq 1 \]

Theorem (Metzger)

Each f_a admits an absolutely continuous invariant probability μ_a which is unique and ergodic.
Theorem (Rovella)

There is $E \subseteq [0,1]$ with full density at 0 such that:

1. for all $a \in E$, f_a is of class C^3 on $x \in I \setminus \{0\}$ and satisfies
 \[K_2|x|^{s-1} \leq f_a'(x) \leq K_1|x|^{s-1}; \]

2. there exists $\lambda > 1$ such that for $a \in E$
 \[(f_a^n)'(\pm 1) > \lambda^n \quad \text{for all } n \geq 0; \]

3. there is $\alpha > 0$ such that for all $a \in E$
 \[|f_a^{n-1}(\pm 1)| > e^{-\alpha n} \quad \text{for all } n \geq 1 \]

Theorem (Metzger)

Each f_a admits an absolutely continuous invariant probability μ_a which is unique and ergodic.
Assume f is nonuniformly expanding:

$$\exists c > 0 : \liminf_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \log(f'(f^i(x))) > c, \quad \text{Lebesgue a.e. } x$$

with slow recurrence to the critical set:

$$\forall \epsilon > 0 \exists \delta > 0 : \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} - \log d_\delta(f^i(x), \mathcal{C}) \leq \epsilon, \quad \text{Lebesgue a.e. } x$$

where d_δ is the δ-truncated distance is defined as

$$d_\delta(x, y) = \begin{cases} |x - y| & \text{if } |x - y| \leq \delta, \\ 1 & \text{if } |x - y| > \delta. \end{cases}$$
Assume f is nonuniformly expanding:

\[\exists c > 0 : \liminf_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \log(f'(f^i(x))) > c, \quad \text{Lebesgue a.e. } x \]

with slow recurrence to the critical set:

\[\forall \epsilon > 0 \ \exists \delta > 0 : \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} -\log d_\delta(f^i(x), C) \leq \epsilon, \quad \text{Lebesgue a.e. } x \]

where d_δ is the δ-truncated distance is defined as

\[
d_\delta(x, y) = \begin{cases}
|x - y| & \text{if } |x - y| \leq \delta, \\
1 & \text{if } |x - y| > \delta.
\end{cases}
\]
Assume f is nonuniformly expanding:

$$\exists c > 0 : \liminf_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \log(f'(f^i(x)))) > c, \text{ Lebesgue a.e. } x$$

with slow recurrence to the critical set:

$$\forall \epsilon > 0 \exists \delta > 0 : \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} -\log d_{\delta}(f^i(x), C) \leq \epsilon, \text{ Lebesgue a.e. } x$$

where d_{δ} is the δ-truncated distance is defined as

$$d_{\delta}(x, y) = \begin{cases} |x - y| & \text{if } |x - y| \leq \delta, \\ 1 & \text{if } |x - y| > \delta. \end{cases}$$
This allows us to introduce the expansion time

\[\mathcal{E}^f(x) = \min \left\{ N \geq 1 : \frac{1}{n} \sum_{i=0}^{n-1} \log f'(f^i(x)) > d, \forall n \geq N \right\} \]

the recurrence time

\[\mathcal{R}^f(x) = \min \left\{ N \geq 1 : \frac{1}{n} \sum_{i=0}^{n-1} -\log d_\delta(f^i(x), C) < \epsilon, \forall n \geq N \right\} \]

and the tail set at time \(n \)

\[\Gamma^f_n = \left\{ x \in I : \mathcal{E}^f(x) > n \text{ or } \mathcal{R}^f(x) > n \right\}. \]

Theorem (A.)

Assume there are \(C > 1 \) and \(\gamma > 1 \) such that \(|\Gamma^f_n| \leq Cn^{-\gamma} \) for all \(n \geq 1 \) and \(f \in \mathcal{F} \). Then, each \(f \in \mathcal{F} \) is strongly statistically stable.
This allows us to introduce the expansion time

$$\mathcal{E}^f(x) = \min \left\{ N \geq 1 : \frac{1}{n} \sum_{i=0}^{n-1} \log f'(f^i(x)) > d, \forall n \geq N \right\}$$

the recurrence time

$$\mathcal{R}^f(x) = \min \left\{ N \geq : \frac{1}{n} \sum_{i=0}^{n-1} - \log d_\delta(f^i(x), C) < \epsilon, \forall n \geq N \right\}$$

and the tail set at time n

$$\Gamma^f_n = \left\{ x \in I : \mathcal{E}^f(x) > n \text{ or } \mathcal{R}^f(x) > n \right\}.$$

Theorem (A.)

Assume there are $C > 1$ and $\gamma > 1$ such that $|\Gamma^f_n| \leq Cn^{-\gamma}$ for all $n \geq 1$ and $f \in F$. Then, each $f \in F$ is strongly statistically stable.
This allows us to introduce the **expansion time**

\[
\mathcal{E}^f(x) = \min \left\{ N \geq 1 : \frac{1}{n} \sum_{i=0}^{n-1} \log f'(f^i(x)) > d, \forall n \geq N \right\}
\]

the **recurrence time**

\[
\mathcal{R}^f(x) = \min \left\{ N \geq 1 : \frac{1}{n} \sum_{i=0}^{n-1} - \log d_\delta(f^i(x), C) < \epsilon, \forall n \geq N \right\}
\]

and the **tail set** at time \(n \)

\[
\Gamma^f_n = \left\{ x \in I : \mathcal{E}^f(x) > n \text{ or } \mathcal{R}^f(x) > n \right\}.
\]

Theorem (A.)

Assume there are \(C > 1 \) and \(\gamma > 1 \) such that \(|\Gamma^f_n| \leq Cn^{-\gamma} \) for all \(n \geq 1 \) and \(f \in F \). Then, each \(f \in F \) is strongly statistically stable.
This allows us to introduce the expansion time

\[\mathcal{E}^f(x) = \min \left\{ N \geq 1 : \frac{1}{n} \sum_{i=0}^{n-1} \log f'(f^i(x)) > d, \forall n \geq N \right\} \]

the recurrence time

\[\mathcal{R}^f(x) = \min \left\{ N \geq : \frac{1}{n} \sum_{i=0}^{n-1} - \log d_\delta(f^i(x), C) < \epsilon, \forall n \geq N \right\} \]

and the tail set at time \(n \)

\[\Gamma^f_n = \left\{ x \in I : \mathcal{E}^f(x) > n \ \text{or} \ \mathcal{R}^f(x) > n \right\} . \]

Theorem (A.)

Assume there are \(C > 1 \) and \(\gamma > 1 \) such that \(|\Gamma^f_n| \leq Cn^{-\gamma} \) for all \(n \geq 1 \) and \(f \in \mathbf{F} \). Then, each \(f \in \mathbf{F} \) is strongly statistically stable.
Theorem (A., Soufi)

Rovella maps are nonuniformly expanding with slow recurrence to the critical set. Moreover, there are $C, \tau > 0$ such that for all $n \in \mathbb{N}$ and $a \in E$,

$$\left| \Gamma_n \right| \leq Ce^{-\tau n}.$$
Theorem (A.,Soufi)

Rovella maps are nonuniformly expanding with slow recurrence to the critical set. Moreover, there are $C, \tau > 0$ such that for all $n \in \mathbb{N}$ and $a \in E$,

$$|\Gamma_n| \leq Ce^{-\tau n}.$$

Corollary

Rovella family is strongly statistically stable
Problems

1. Statistical (in)stability in the full set of parameters.
2. Statistical stability for Rovella flows.
Problems

1. Statistical (in)stability in the full set of parameters.
2. Statistical stability for Rovella flows.
Problems

1. Statistical (in)stability in the full set of parameters.
2. Statistical stability for Rovella flows.
Thank you!