Subtractive algorithms

Robbert Fokkink (TU Delft)

joint work with Cor Kraaikamp (TU Delft)
& Hitoshi Nakada (Keio)
The map

$$
\tau: \mathbf{x} = (x_1, x_2, \ldots, x_n) \mapsto \text{sort}(x_1, x_2 - x_1, \ldots, x_n - x_1)
$$

is defined on ordered n-tuples, all $x_i \geq 0$.

Note that $\mathbf{x}_\infty = \lim_{n \to \infty} \tau^n(\mathbf{x})$ exists. It is a fixed point of τ and therefore the first coordinate of \mathbf{x}_∞ is zero.

If all coordinates of \mathbf{x} are rationally independent then the second coordinate of \mathbf{x}_∞ is zero as well.
A pedestrian on a line

A pedestrian walks up and down on a line, taking steps of length x_1, \ldots, x_n, all rationally independent. Find the length of a minimal interval that enables an infinite walk that does not visit any point twice.

For instance, if there are only two steps x_1, x_2 then the length is $x_1 + x_2$ and the walk is an irrational rotation on the circle.
An algorithm to solve this problem

Sort the steps in increasing order $x_1 < x_2 < \cdots < x_n$. Let $I = [0, y]$ be a minimal interval. Partition it into $[0, y - x_1] \cup (y - x_1, y)$.

On the subinterval $[0, y - x_1]$ there is an infinite walk with steps $x_1, x_2 - x_1, \ldots, x_n - x_1$. This is the subtractive algorithm, proposed by Meester.

A pedestrian walks up and down on \(\mathbb{Z} \), taking integral steps of length \(p_1, \ldots, p_n \) such that gcd is one. Find the length of a maximal interval \(I \) such that the pedestrian cannot visit all points of \(I \).

For instance, if there are only two steps \(p_1, p_2 \) then the length is \(p_1 + p_2 - 2 \). Again the solution is by the subtraction operation.

Source: Tijdeman and Zamboni, Fine-Wilf words, Indag Math 2003
Does the subtraction terminate?

Consider Meester’s problem on a triple \((x_1, x_2, x_3)\). If \(x_3 > x_1 + x_2\) then steps of size \(x_3\) do not help. The minimal length is \(x_1 + x_2\) by irrational rotation.

For general \(n\)-tuples, Meester’s algorithm iterates

\[
\tau : x = (x_1, x_2, \ldots, x_n) \mapsto \text{sort}(x_1, x_2 - x_1, \ldots, x_n - x_1)
\]

until \(x_1 + x_2 < x_3\).

Question: does this algorithm terminate almost surely?
Answer: yes

source: for triples, Meester and Nowicki, Israel J 1989; general case: Kraaikamp and Meester, ETDS 1995
Equivalent question: is it true that $x_\infty = \lim_{n \to \infty} \tau^n(x)$ has third coordinate > 0 almost surely?

Observe that $\tau(x_1, x_2, \ldots, x_n) = \text{sort}(x_1, x_2 - x_1, \ldots, x_n - x_1)$ respects projective coordinates, which reduces the degrees of freedom by one. If we normalize the third coordinate to 1, then ordered triples can be depicted by the triangle $0 < x < y < 1$:

The algorithm terminates as soon as $\tau^n(x) \in L$.
In his monograph on continued fractions Schweiger generalizes τ and considers the **fully subtractive algorithm**:

$$\tau: (x_1, \ldots, x_a, \ldots, x_n) \mapsto \text{sort}(x_1, \ldots, x_a, x_{a+1} - x_a, \ldots, x_n - x_a)$$

Again, it is easy to show that x_∞ has first $a + 1$ coordinates equal to zero a.s. Schweiger presents two conjectures:

1. The $a + 2$ coordinate of x_∞ is positive a.s.
2. τ is ergodic, i.e, invariant sets are null sets or co-null sets.

1 is true and 2 is false, but conjecture 2 may be true if $n = a + 2$.

As always, accelerate the algorithm

\[\tau : (x_1, \ldots, x_a, \ldots, x_n) \mapsto \text{sort}(x_1, \ldots, x_a, x_{a+1} - k x_a, \ldots, x_n - k x_a) \]

with \(k = \left\lfloor \frac{x_{a+1}}{x_a} \right\rfloor \). Observe that the permutation on the coordinates is a ‘rifle shuffle’.

Lemma

All cylinders are full

Lemma

The set \(L = \{x_1 + \cdots + x_{a+1} < x_{a+2}\} \) is invariant.

The proof is by bounded distortion: in each iteration a positive fraction of \(U \), the complement of \(L \), enters \(L \).
A sketch of the principal cylinders for the algorithm on triples:

Points that never enter L are those that return infinitely often to the cylinder that is entirely contained in U.
Observe that \(\tau(x) = \text{sort}(x_1, x_2 - x_1, \ldots, x_n - x_1) \) is linear and has determinant 1.

Now we normalize the \(n^{th} \) coordinate to 1, so writing \(y = \tau(x) \), in normalized coordinates the map is \(T(x) = \frac{1}{y_n} y \), where \(y_n \) is the final coordinate of \(y \). Therefore \(DT(x) \) has determinant \(\left(\frac{1}{y_n} \right)^n \).

To bound distortion on an \(m \)-cylinder \(\Delta \) we have to bound \(y_n \) away from zero for all \(y = T^m(x) \) in that cylinder.
An principal cylinder $\Delta_{(k,\pi)}$ is given by the acceleration k and the rifle shuffle π. If $\pi(a) = n$ then $1 - x_a < x_a$. So y_n is bounded away from zero, since $y_n = x_a$.

More generally, an m-cylinder $\Delta_{(k_1,\pi_1)(k_2,\pi_2)\cdots(k_m,\pi_m)}$ has bounded distortion if $\pi_m(a) = n$. All elements that remain in U are contained in such m-cylinders for arbitrary large m.

Since cylinders are full, by bounded distortion any such m-cylinder loses a proportion to L. Therefore L is an absorbing set and points that remain in U have measure zero. This proves Schweiger’s first conjecture.
Now we know that x_∞ has a positive $a + 2$-nd coordinate x_{a+2}^∞ a.s. Define $f(x) = x_{a+2}^\infty$. Then f is τ-invariant and non-constant if $n > a + 2$ so τ is not ergodic.

The remaining case $n = a + 2$ is non-trivial.

Points in L zigzag down slowly. Is there a non-trivial invariant set?
Exotic invariant sets

The subset of triples x such that $x_\infty = 0$ is a Sierpinski triangle:

Such complex-dynamic like fractals occur in general subtractive maps. Nogeira and Schweiger have found a Cantor fan, which is known from the exponential family in complex dynamics, in the Poincaré algorithm

$$(x_1, x_2, x_3) \mapsto \text{sort}(x_1, x_2 - x_1, x_3 - x_2)$$

It is natural to consider for $b \leq a$

$$\tau: (x_1, \ldots, x_a, \ldots, x_n) \mapsto \text{sort}(x_1, \ldots, x_a, x_{a+1} - x_b, \ldots, x_n - x_b)$$

Again, it is easy to show that x_∞ has $a + 1$ coordinates that are equal to zero. Numerical experiments suggest that almost surely x_∞ has $2a - b + 1$ coordinates that are equal to zero.

Unfortunately, this τ admits no Markov partition. A proof for these numerical results seems difficult.
Thank you