Subtractive algorithms

Robbert Fokkink (TU Delft)

joint work with Cor Kraaikamp (TU Delft)
\& Hitoshi Nakada (Keio)

A subtractive algorithm

The map

$$
\tau: \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto \operatorname{sort}\left(x_{1}, x_{2}-x_{1}, \ldots, x_{n}-x_{1}\right)
$$

is defined on ordered n-tuples, all $x_{i} \geq 0$.
Note that $\mathbf{x}_{\infty}=\lim _{n \rightarrow \infty} \tau^{n}(\mathbf{x})$ exists. It is a fixed point of τ and therefore the first coordinate of \mathbf{x}_{∞} is zero.

If all coordinates of \mathbf{x} are rationally independent then the second coordinate of \mathbf{x}_{∞} is zero as well.

A pedestrian on a line

A pedestrian walks up and down on a line, taking steps of length x_{1}, \ldots, x_{n}, all rationally independent. Find the length of a minimal interval that enables an infinite walk that does not visit any point twice.

For instance, if there are only two steps x_{1}, x_{2} then the length is $x_{1}+x_{2}$ and the walk is an irrational rotation on the circle.

An algorithm to solve this problem

Sort the steps in increasing order $x_{1}<x_{2}<\cdots<x_{n}$. Let $I=[0, y]$ be a minimal interval. Partition it into $\left[0, y-x_{1}\right] \cup\left(y-x_{1}, y\right]$

On the subinterval $\left[0, y-x_{1}\right]$ there is an infinite walk with steps $x_{1}, x_{2}-x_{1}, \ldots, x_{n}-x_{1}$. This is the subtractive algorithm, proposed by Meester.

Source: Meester, Circle percolation, ETDS 1989.

A discrete pedestrian

A pedestrian walks up and down on \mathbb{Z}, taking integral steps of length p_{1}, \ldots, p_{n} such that gcd is one. Find the length of a maximal interval I such that the pedestrian cannot visit all points of l.

For instance, if there are only two steps p_{1}, p_{2} then the length is $p_{1}+p_{2}-2$. Again the solution is by the subtraction operation.

Source: Tijdeman and Zamboni, Fine-Wilf words, Indag Math 2003

Does the subtraction terminate?

Consider Meester's problem on a triple $\left(x_{1}, x_{2}, x_{3}\right)$. If $x_{3}>x_{1}+x_{2}$ then steps of size x_{3} do not help. The minimal length is $x_{1}+x_{2}$ by irrational rotation.

For general n-tuples, Meester's algorithm iterates

$$
\tau: \mathbf{x}=\left(x_{1}, x_{2} \ldots, x_{n}\right) \mapsto \operatorname{sort}\left(x_{1}, x_{2}-x_{1}, \ldots, x_{n}-x_{1}\right)
$$

until $x_{1}+x_{2}<x_{3}$.
Question: does this algorithm terminate almost surely? Answer: yes
source: for triples, Meester and Nowicki, Israel J 1989; general case: Kraaikamp and Meester, ETDS 1995

Projective coordinates

Equivalent question: is it true that $\mathbf{x}_{\infty}=\lim _{n \rightarrow \infty} \tau^{n}(\mathbf{x})$ has third coordinate >0 almost surely?
Observe that $\tau\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{sort}\left(x_{1}, x_{2}-x_{1}, \ldots, x_{n}-x_{1}\right)$ respects projective coordinates, which reduces the degrees of freedom by one. If we normalize the third coordinate to 1 , then ordered triples can be depicted by the triangle $0<x<y<1$:

The algorithm terminates as soon as $\tau^{n}(\mathbf{x}) \in L$.

Schweiger's algorithm

In his monograph on continued fractions Schweiger generalizes τ and considers the fully subtractive algorithm:
$\tau:\left(x_{1}, \ldots, x_{a}, \ldots, x_{n}\right) \mapsto \operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-x_{a}, \ldots, x_{n}-x_{a}\right)$
Again, it is easy to show that \mathbf{x}_{∞} has first $a+1$ coordinates equal to zero a.s. Schweiger presents two conjectures:

1 The $a+2$ coordinate of \mathbf{x}_{∞} is positive a.s.
2τ is ergodic, i.e, invariant sets are null sets or co-null sets.
1 is true and 2 is false, but conjecture 2 may be true if $n=a+2$.
source: Fokkink-Kraaikamp-Nakada, Israel J 2011.

Elementary properties

As always, accelerate the algorithm
$\tau:\left(x_{1}, \ldots, x_{a}, \ldots, x_{n}\right) \mapsto \operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-\mathbf{k} x_{a}, \ldots, x_{n}-\mathbf{k} x_{a}\right)$ with $\mathbf{k}=\left\lfloor\frac{x_{a+1}}{x_{a}}\right\rfloor$. Observe that the permutation on the coordinates is a 'rifle shuffle'.

Lemma

All cylinders are full

Lemma

The set $L=\left\{x_{1}+\cdots+x_{a+1}<x_{a+2}\right\}$ is invariant.
The proof is by bounded distortion: in each iteration a positive fraction of U, the complement of L, enters L.

Sketch of the partition

A sketch of the principal cylinders for the algorithm on triples:

Points that never enter L are those that return infinitely often to the cylinder that is entirely contained in U.

Bounded distortion

Observe that $\tau(\mathbf{x})=\operatorname{sort}\left(x_{1}, x_{2}-x_{1}, \ldots, x_{n}-x_{1}\right)$ is linear and has determinant 1.

Now we normalize the $n^{\text {th }}$ coordinate to 1 , so writing $\mathbf{y}=\tau(\mathbf{x})$, in normalized coordinates the map is $T(\mathbf{x})=\frac{1}{y_{n}} \mathbf{y}$, where y_{n} is the final coordinate of \mathbf{y}. Therefore $D T(\mathbf{x})$ has determinant $\left(\frac{1}{y_{n}}\right)^{n}$.
To bound distortion on an m-cylinder Δ we have to bound y_{n} away from zero for all $\mathbf{y}=T^{m}(\mathbf{x})$ in that cylinder.

First conjecture

An principal cylinder $\Delta_{(k, \pi)}$ is given by the acceleration k and the rifle shuffle π. If $\pi(a)=n$ then $1-x_{a}<x_{a}$. So y_{n} is bounded away from zero, since $y_{n}=x_{a}$.

More generally, an m-cylinder $\Delta_{\left(k_{1}, \pi_{1}\right)\left(k_{2}, \pi_{2}\right) \cdots\left(k_{m}, \pi_{m}\right)}$ has bounded distortion if $\pi_{m}(a)=n$. All elements that remain in U are contained in such m-cylinders for arbitrary large m.

Since cylinders are full, by bounded distortion any such m-cylinder loses a proportion to L. Therefore L is an absorbing set and points that remain in U have measure zero. This proves Schweiger's first conjecture

Second conjecture

Now we know that \mathbf{x}_{∞} has a positive a+2-nd coordinate x_{a+2}^{∞} a.s. Define $f(\mathbf{x})=x_{a+2}^{\infty}$. Then f is τ-invariant and non-constant if $n>a+2$ so τ is not ergodic.

The remaining case $n=a+2$ is non-trivial.

Points in L zigzag down slowly. Is there a non-trivial invariant set?

Exotic invariant sets

The subset of triples \mathbf{x} such that $\mathbf{x}_{\infty}=\mathbf{0}$ is a Sierpinski triangle:

Such complex-dynamic like fractals occur in general subtractive maps. Nogeira and Schweiger have found a Cantor fan, which is known from the exponential family in complex dynamics, in the Poincaré algorithm

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto \operatorname{sort}\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{2}\right)
$$

source: Schweiger, On the Parry-Daniels transform, 1981; Nogeira, Poincaré algorithm, Israel J, 1995

More general subtractive algorithms

It is natural to consider for $b \leq a$

$$
\tau:\left(x_{1}, \ldots, x_{a}, \ldots, x_{n}\right) \mapsto \operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-x_{b}, \ldots, x_{n}-x_{b}\right)
$$

Again, it is easy to show that \mathbf{x}_{∞} has $a+1$ coordinates that are equal to zero. Numerical experiments suggest that almost surely \mathbf{x}_{∞} has $2 a-b+1$ coordinates that are equal to zero.

Unfortunately, this τ admits no Markov partition. A proof for these numerical results seems difficult.
end

