Subtractive algorithms

Robbert Fokkink (TU Delft)

joint work with Cor Kraaikamp (TU Delft) & Hitoshi Nakada (Keio)

個 と く ヨ と く ヨ と

æ

The map

$$\tau \colon \mathbf{x} = (x_1, x_2, \dots, x_n) \mapsto \texttt{sort}(x_1, x_2 - x_1, \dots, x_n - x_1)$$

is defined on ordered *n*-tuples, all $x_i \ge 0$.

Note that $\mathbf{x}_{\infty} = \lim_{n \to \infty} \tau^n(\mathbf{x})$ exists. It is a fixed point of τ and therefore the first coordinate of \mathbf{x}_{∞} is zero.

If all coordinates of x are rationally independent then the second coordinate of x_∞ is zero as well.

A pedestrian walks up and down on a line, taking steps of length x_1, \ldots, x_n , all rationally independent. Find the length of a minimal interval that enables an infinite walk that does not visit any point twice.

For instance, if there are only two steps x_1, x_2 then the length is $x_1 + x_2$ and the walk is an irrational rotation on the circle.

Sort the steps in increasing order $x_1 < x_2 < \cdots < x_n$. Let I = [0, y] be a minimal interval. Partition it into $[0, y - x_1] \cup (y - x_1, y]$

On the subinterval $[0, y - x_1]$ there is an infinite walk with steps $x_1, x_2 - x_1, \ldots, x_n - x_1$. This is the subtractive algorithm, proposed by Meester.

Source: Meester, Circle percolation, ETDS 1989.

・ 同 ト ・ ヨ ト ・ ヨ ト

A pedestrian walks up and down on \mathbb{Z} , taking integral steps of length p_1, \ldots, p_n such that gcd is one. Find the length of a maximal interval I such that the pedestrian cannot visit all points of I.

For instance, if there are only two steps p_1, p_2 then the length is $p_1 + p_2 - 2$. Again the solution is by the subtraction operation.

Source: Tijdeman and Zamboni, Fine-Wilf words, Indag Math 2003

u

Consider Meester's problem on a triple (x_1, x_2, x_3) . If $x_3 > x_1 + x_2$ then steps of size x_3 do not help. The minimal length is $x_1 + x_2$ by irrational rotation.

For general *n*-tuples, Meester's algorithm iterates

$$au : \mathbf{x} = (x_1, x_2 \dots, x_n) \mapsto \texttt{sort}(x_1, x_2 - x_1, \dots, x_n - x_1)$$

ntil $x_1 + x_2 < x_3$.

Question: does this algorithm terminate almost surely? **Answer**: yes

source: for triples, Meester and Nowicki, Israel J 1989; general case: Kraaikamp and Meester, ETDS 1995

向下 イヨト イヨト

Projective coordinates

Equivalent question: is it true that $\mathbf{x}_{\infty} = \lim_{n \to \infty} \tau^n(\mathbf{x})$ has third coordinate > 0 almost surely?

Observe that $\tau(x_1, x_2, \ldots, x_n) = \text{sort}(x_1, x_2 - x_1, \ldots, x_n - x_1)$ respects projective coordinates, which reduces the degrees of freedom by one. If we normalize the third coordinate to 1, then ordered triples can be depicted by the triangle 0 < x < y < 1:

The algorithm terminates as soon as $\tau^n(\mathbf{x}) \in L$.

In his monograph on continued fractions Schweiger generalizes τ and considers the **fully subtractive algorithm**:

 $\tau \colon (x_1, \ldots, x_a, \ldots, x_n) \mapsto \texttt{sort}(x_1, \ldots, x_a, x_{a+1} - x_a, \ldots, x_n - x_a)$

Again, it is easy to show that \mathbf{x}_{∞} has first a + 1 coordinates equal to zero a.s. Schweiger presents two conjectures:

1 The
$$a + 2$$
 coordinate of \mathbf{x}_{∞} is positive a.s.

2 τ is ergodic, i.e, invariant sets are null sets or co-null sets. 1 is true and 2 is false, but conjecture 2 may be true if n = a + 2. source: Fokkink-Kraaikamp-Nakada, Israel J 2011.

・日・ ・ ヨ ・ ・ ヨ ・

Elementary properties

As always, accelerate the algorithm

$$\tau \colon (x_1, \ldots, x_a, \ldots, x_n) \mapsto \texttt{sort}(x_1, \ldots, x_a, x_{a+1} - \mathbf{k} x_a, \ldots, x_n - \mathbf{k} x_a)$$

with $\mathbf{k} = \lfloor \frac{x_{a+1}}{x_a} \rfloor$. Observe that the permutation on the coordinates is a 'rifle shuffle'.

Lemma

All cylinders are full

Lemma

The set $L = \{x_1 + \cdots + x_{a+1} < x_{a+2}\}$ is invariant.

The proof is by bounded distortion: in each iteration a positive fraction of U, the complement of L, enters L.

・回 ・ ・ ヨ ・ ・ ヨ ・

A sketch of the principal cylinders for the algorithm on triples:

Points that never enter L are those that return infinitely often to the cylinder that is entirely contained in U.

Observe that $\tau(\mathbf{x}) = \operatorname{sort}(x_1, x_2 - x_1, \dots, x_n - x_1)$ is linear and has determinant 1.

Now we normalize the n^{th} coordinate to 1, so writing $\mathbf{y} = \tau(\mathbf{x})$, in normalized coordinates the map is $T(\mathbf{x}) = \frac{1}{y_n}\mathbf{y}$, where y_n is the final coordinate of \mathbf{y} . Therefore $DT(\mathbf{x})$ has determinant $\left(\frac{1}{y_n}\right)^n$.

To bound distortion on an *m*-cylinder Δ we have to bound y_n away from zero for all $\mathbf{y} = T^m(\mathbf{x})$ in that cylinder.

向下 イヨト イヨト

An principal cylinder $\Delta_{(k,\pi)}$ is given by the acceleration k and the rifle shuffle π . If $\pi(a) = n$ then $1 - x_a < x_a$. So y_n is bounded away from zero, since $y_n = x_a$.

More generally, an *m*-cylinder $\Delta_{(k_1,\pi_1)(k_2,\pi_2)\cdots(k_m,\pi_m)}$ has bounded distortion if $\pi_m(a) = n$. All elements that remain in *U* are contained in such *m*-cylinders for arbitrary large *m*.

Since cylinders are full, by bounded distortion any such *m*-cylinder loses a proportion to L. Therefore L is an absorbing set and points that remain in U have measure zero. This proves Schweiger's first conjecture

・ 同 ト ・ ヨ ト ・ ヨ ト

Now we know that \mathbf{x}_{∞} has a positive a + 2-nd coordinate x_{a+2}^{∞} a.s. Define $f(\mathbf{x}) = x_{a+2}^{\infty}$. Then f is τ -invariant and non-constant if n > a + 2 so τ is not ergodic.

The remaining case n = a + 2 is non-trivial.

Points in L zigzag down slowly. Is there a non-trivial invariant set?

Exotic invariant sets

The subset of triples **x** such that $\mathbf{x}_{\infty} = \mathbf{0}$ is a Sierpinski triangle:

Such complex-dynamic like fractals occur in general subtractive maps. Nogeira and Schweiger have found a Cantor fan, which is known from the exponential family in complex dynamics, in the Poincaré algorithm

$$(x_1, x_2, x_3) \mapsto \texttt{sort}(x_1, x_2 - x_1, x_3 - x_2)$$

source: Schweiger, On the Parry-Daniels transform, 1981; Nogeira, Poincaré algorithm, Israel J, 1995 - 🚊 🛶 🦉 🖉 🖓

It is natural to consider for $b \leq a$

 $\tau \colon (x_1, \ldots, x_a, \ldots, x_n) \mapsto \texttt{sort}(x_1, \ldots, x_a, x_{a+1} - x_{b}, \ldots, x_n - x_{b})$

Again, it is easy to show that \mathbf{x}_{∞} has a + 1 coordinates that are equal to zero. Numerical experiments suggest that almost surely \mathbf{x}_{∞} has 2a - b + 1 coordinates that are equal to zero.

Unfortunately, this τ admits no Markov partition. A proof for these numerical results seems difficult.

回 と く ヨ と く ヨ と

・ロ・・(四・・)を注・・(注・・)注