Dynamics and Voronoi regions

$$F(x) = x + \gamma - Vor(x)$$

Random and constant inputs

Dynamics and Voronoi regions

- Let $\mathbb{R}^d = \bigcup V_i$ be a (finite) partition of the affine space, and t_i vectors in \mathbb{R}^d Define F(x) = x + t, where $t = t_i$, whenever $x \in V_i$.
 - We will consider mostly the Error Diffusion generated by
 - ullet a polytope $\operatorname{conv}\{c_i\}=\mathcal{P}\subset\mathbb{R}^d$ with
 - the partition defined by the Voronoi regions of the corners c_i , $\bar{V}_i = \{y: ||y c_i||_2 \le ||y c_j||_2, \forall j\}$ and
 - the translations defined by a point $\gamma \in \mathcal{P}^{\circ}$, $t_i = \gamma c_i$,
 - ho $\gamma = \sum \gamma_i c_i, \gamma_i > 0, \sum \gamma_i = 1.$
 - $F(x) = x + \gamma c_i$, whenever $x \in V_i$ (with some tie-breaking rules).
- lacktriangle The polytope ${\mathcal P}$ will be a (full dimensional) simplex $\Delta(c_i)$ with d+1 corners c_0,\ldots,c_d .
- The point (input) γ will be constant.

Frequencies for a constant input system in a simplex

When $\mathcal P$ is a simplex for any x we have $\frac{\#\{n < N : \operatorname{Vor}(F_{\gamma}^n(x)) = c_i\}}{N} \to_N \gamma_i$

$$0 \leftarrow \frac{F_{\gamma}^{N}(x) - x}{N} = \frac{1}{N} \sum_{n < N} (\gamma - \text{Vor}(F^{n}(x)))$$

$$= \gamma - \sum_{i=0}^{d} \frac{n_{i}}{N} c_{i} = \sum_{i=0}^{d} \gamma_{i} c_{i} - \sum_{i=0}^{d} \frac{n_{i}}{N} c_{i}$$

$$= \sum_{i=0}^{d} (\gamma_{i} - \frac{n_{i}}{N}) c_{i}$$

$$\frac{n_{i}}{N} \rightarrow \gamma_{i} \quad n_{i} = \#\{n : \text{Vor}(x_{n}) = c_{i}\}$$

by the uniqueness of baricentric coordinates.

Constant Input, Obtuse Triangle

Constant Input, Obtuse Triangle

Acuteness (simplex)

- 1. Supporting planes: each Voronoi region V_i lies inside a halfspace parallel to the face opposite to c_i
- 2. Facewise: the outward normal vectors to the faces form obtuse angles
- 3. Edgewise: the edges form acute angles
- 4. Inverted cones: The inverted vertex cone fits inside its (dual) Voronoi cone.
- 5. Center inside: The center of the simplex lies inside the simplex.

 $(1) \equiv (2) \Rightarrow (3) \equiv (4). (5) \text{ neither implies nor is implied by } (1) \dots (4)$

Structure of the Invariant Set (simplex with constant input)

- The minimal absorbing set \mathcal{Q} of F_{γ} with fixed $\gamma \in \mathcal{P}^0$ is a tile with respect to the lattice $L = \{\sum_{i,j} n_{ij} (c_i c_j), n_{ij} \in \mathbb{Z}\}.$
- This is a
 - **Solution** Theorem for \mathcal{P} non-obtuse triangle.
 - **Theorem** for \mathcal{P} an acute simplex with typical (ergodic) input.
 - Work in progress for general (obtuse) triangle.
 - Work in progress for acute simplices with general input.
 - Conjecture for general simplices with general input.
 - Unknown for general polytopes with all the corners on some lattice.
- Tiles
 - $Q \subset \mathbb{R}^d$ is a tile with respect to the lattice $L = \mathbb{Z}(w_1,\ldots,w_d) = \{\sum_{i=1}^d n_i w_i, n_i \in \mathbb{Z}\}, \, w_i \in \mathbb{R}^d$, independent, if the map $T: Q \times L \to \mathbb{R}^d, \quad T(q,w) = q+w \text{ is 1-1 and onto.}$
 - The points c_i generate a lattice $L = \sum m_i c_i$, with $m_i \in \mathbb{Z}$, $\sum m_i = 0$. This is the lattice $L(c_1 c_0, \dots, c_d c_0)$.

Structure of the Invariant Set (simplex with constant input)

- Let V_i be any partition of \mathbb{R}^d , c_i be a collection of d+1 independent points and $t_i=\gamma-c_i$ with some fixed point γ .
 - Define $F(x) = x + t_i = x + \gamma c_i$ for $x \in V_i$.
- If F admits a bounded invariant set Q which is a tile for the lattice $L(\{c_i-c_0\})$ then
 - For any subset of indices $0 \in I \subset \{0, 1, ..., d\}$ the set $Q_I = \bigcup_{i \in I} (Q \cap V_i)$ is a tile for the lattice
 - $L_I = L(c_i c_0, \dots, c_j \gamma), \quad i \in I, \quad j \not\in I$
- $ightharpoonup \operatorname{Vol}(Q_I) = |\det(L_I)| = \operatorname{Vol}(Q) \cdot \sum_{\beta \in I} \gamma_i$, where $\operatorname{Vol}(Q) = |\det(L)|$.
- Weaker version:
 - ullet If Q+L is onto \mathbb{R}^d then Q_I+L_I is onto \mathbb{R}^d
 - If Q + L is 1-1 the $Q_I + L_I$ is 1-1.

Acute simplex with ergodic input

- Define $\mathcal O$ as a point equidistant to all the vertices.
- Define $w_i = \mathcal{O} + \gamma c_i$ and $\mathcal{R} = \Delta(w_i)$
- lacksquare Define $u_i = \mathcal{O} + \gamma c_i + \sum_j (c_i c_j)$ and $\mathcal{B} = \Delta(u_i)$
- We have w_i lies on the i-th face of \mathcal{B} .
- We have $u_i \in V_i$
- There are no other points in $\mathcal B$ equivalent to $\mathcal R^\circ$.
- lacksquare $F(\mathcal{B})\subset\mathcal{B}.$ Moreover \mathcal{B} absorbs everything.

Structure of the Invariant Set (simplex with constant input)

- Let V_i be any partition of \mathbb{R}^d , c_i be a collection of d+1 independent points and $t_i=\gamma-c_i$ with some fixed point γ .
 - Define $F(x) = x + t_i = x + \gamma c_i$ for $x \in V_i$.
- If F admits a bounded invariant set Q which is a tile for the lattice $L(\{c_i-c_0\})$ then
 - For any subset of indices $0 \in I \subset \{0, 1, ..., d\}$ the set $Q_I = \bigcup_{i \in I} (Q \cap V_i)$ is a tile for the lattice
 - $L_I = L(c_i c_0, \dots, c_j \gamma), \quad i \in I, \quad j \not\in I$
- $ightharpoonup \operatorname{Vol}(Q_I) = |\det(L_I)| = \operatorname{Vol}(Q) \cdot \sum_{\beta \in I} \gamma_i$, where $\operatorname{Vol}(Q) = |\det(L)|$.
- Weaker version:
 - If Q+L is onto \mathbb{R}^d then Q_I+L_I is onto \mathbb{R}^d
 - If Q + L is 1-1 the $Q_I + L_I$ is 1-1.

Tiles, Equilateral Triangle

Sub-Tiles, Equilateral Triangle

Multi-Tiles, Equilateral Triangle

Sub-Tiles, Right Triangle

Multi-Tiles, Right Triangle

Tiles, Obtuse Triangle

Sub-Tiles, Obtuse Triangle

Multi-Tiles, Obtuse Triangle

Subtiles

- lacksquare If the set Q and the lattice L are onto $\mathbb{R}^d \subset Q + L$ AND
- $\forall q \in Q \forall N \exists n^+, n^- \geq N \exists q^+, q^- \in Q_I \quad F^{n^+}(q) = q^+, F^{n^-}(q^-) = q \text{ then }$
- lacksquare $Q_I + L_I$ is onto \mathbb{R}^d .
 - If the Q and the lattice L are 1-1 to $\mathbb{R}^d \supset Q + L$ AND
- \blacktriangleright $\forall N \geq 0 F^N(Q_I) \subset Q$ then
- lacksquare $Q_I + L_I$ are 1-1 in \mathbb{R}^d .
 - Pepresent any point in \mathbb{R}^d as a sum $q + \sum n_i(c_i c_0)$, using the assumption drive q into Q_I , and then manipulate the summation and obtain the representation of x in terms of $Q_I + L_I$.
 - If Q_I+L_I is not 1-1 then we have some $q_I,q_I'\in Q_I$ with $q_I-q_I'\in L_I$. This element of L_I has a non zero components $c_j-\gamma$, with $\sum_{j\not\in I} n_j>0$. Take $Q\ni q=F^N(q_I')$ and consider $q-q_I$, both in Q. Manipulate the sums and get $q-q_I\in L$ implying $q=q_I$. Manipulate again and obtain N=0, that is $q_I=q_I'$.