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Motivation

Printing with discrete colors

Shops with hard to switch machines

"Fair" representative selection

Coding

Analog to digital (or continuous to discrete) conversion

Similar problems: Chairman Assignment Problem, Car Pool Problem, Σ∆ modulators,
game theory, control theory.
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Online greedy algorithm, an example

We want to print yellow or red output dots to mimic the orange input.

Orange is γ = (0.2, 0.8).

First we print pure red output c2 = (0, 1) and we get the error
E = γ − c2 = (0.2,−0.2).

Next input is γ again and we get the modified input x = E + γ = (0.4, 0.6).

We print red c2 again. New error is E = x− c2 = (0.4,−0.4).

We apply the input again x = E + γ = (0.6, 0.4).

Now we print yellow output c1 = (1, 0). E = x− c1 = (−0.4, 0.4).

We apply γ again, we get x = E + γ = (−0.2, 1.2), and we will print red.
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Online greedy algorithm

Consider a cumulative error at time t:

E(0) = 0, E(T ) =

T−1
∑

t=0

(γ(t)− c(t)), E(T ) = E(T − 1) + γ(T − 1)− c(T − 1)

Find the way to to choose the outputs c(t) in order to minimize the maximal error.

min sup
T

||E(T )||

Online: decide about the output corners without knowing the future inputs

Greedy: decide right now how to make ||E(T )|| is minimal.
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Dynamics and Voronoi regions

Error E(t+ 1) = E(t) + γ(t)− c(t)

Modified input x(t) = E(t) + γ(t):

x(t+ 1) = E(t+ 1) + γ(t+ 1) = E(t) + γ(t)− c(t) + γ(t+ 1)

= x(t)− c(t) + γ(t+ 1)

The corner c closest to x is called its Voronoi corner c = Vor(x).
This defines a time dependent dynamical system:

Fγ(x) = x−Vor(x) + γ

with the corresponding system in the error space:

Gγ(e) = e+ γ − Vor(e+ γ)
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F and G

Fγ(x) = x+ ti = x+ γ − ci if x ∈ Vi

Gγ(e) = e+ γ − ci

ci = Vor(x) = Vor(e+ γ)
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Piecewise translations

In general:

R
d is partitioned into Vi.

For each Vi there is a vector ti

Each x ∈ R
d we define

F (x) = x+ ti if x ∈ Vi

In particular

Given a polytope with corners ci: P = conv({ci}) define the (Voronoï) partition
Vi = {y : ||y − ci|| ≤ ||y − cj ||}

Given an "input" γ ∈ P define ti = γ − ci

Fγ(x) = x+ ti = x+ γ − ci if x ∈ Vi Gγ(e) = e+ γ −Vor(e+ γ)
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Is Error Diffusion any good?

E(t+ 1) = E(t) + γ(t)− c(t)

Choose c(t) to minimize the norm of E(t+ 1), i.e. closest to E(t) + γ(t) in the norm.

Main concern:

Is E bounded ?

Theorem

Adler, Kitchens, Martens, Pugh, Shub, Tresser

I case of the Error Diffusion on Polytopes YES,
for any given P the Error Diffusion algorithm produces the errors E that are (u.c.s)
bounded in the Euclidean norm.

What is the nature of the MINIMAL ABSORBING INVARIANT SET ?
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Is Error Diffusion any good?

In the case of CAP it is the best.

For any algorithm the maximal error in CAP can be of order log(dimension)

E ≥ H(d) =
∑

1<k≤d
1
k

For Error Diffusion the maximal error in CAP is at most H(d).
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Random and constant inputs
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Dynamics of F on the simplex
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Structure of the Invariant Set (any input)

Q is invariant if Fγ(Q) ⊂ Q for any γ, or P(Q) =
⋃

i ((P − ci) + (Q ∩ Vi)) ⊂ Q.

Adler, Kitchens, Martens, Pugh, Shub, Tresser say that for any compact set of initial
inputs there is a (pre-)compact invariant region.

There exists a unique non-empty minimal invariant region.

Polytope itself is in this region P ⊂ Q

The corners of Voronoi regions are there X ⊂ Q

In particular the size of Q may depend also on the shape (angles) and not only on
dimension and diameter.

Topological correctness: Qo =
(

Q
)o

Q = (Qo)

Convexity: Any invariant region can be convexified Voronoi-wise,
convQ =

⋃

i conv(Q ∩ Vi) and remains invariant.

Both P and X can be reached from any point in finite number of steps.

Tie-breaks on medians do not matter:
⋃

n≥m

(

P
)n

(A) =
⋃

n≥m

(

Po4
)n

(A) .
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Structure of the Invariant Set (any input)

In each Voronoi region there is at least one extreme point of a (bounded) invariant set.

The faces of the invariant regions contains regions invariant for the faces.

In dimension two there always are invariant sets which are combinatorially equivalent
(with sides parallel) to the original polytope.

There are examples when they cannot be similar to the original polytope.

In dimension three and higher there are polytopes (simplices) with no combinatorially
equivalent (no simplicial) invarian regions.
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CAP revisited

An algorithm is any function from sequences of inputs to the the sequences of outputs
compatible with the problem.

Lower bound L: for every algorithm there exists an input sequences producing at least
this error.

Upper bound U : there is an algorithm such that any input sequence produces at most
such error.

Tight bound B: for any given algorithm we take the supremum of the error over the
inputs and then take the infimum over the algorithms.

supL = B = inf U .

For CAP B = H(d) =
∑

1<k≤d
1
k

, and is realized by the Error Diffusion algorithm.

L ≥ H(d) for any algorithm by the example: Start with (1, 1, 1, . . . , 1)/d, then when
the corner is picked up for output (say the first corner) supply (0, 1, . . . , 1)/(d− 1) and
continue in such a nasty way.
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CAP revisited

U ≤ H(d) for Error Diffusion. Proof: for any given time t0 and output c0 renumber the
outputs by the order they appear in the most recent past, assigning the time tk of such
appearance. Let ej(tk) be the error at coordinate j just after time tk. If k < j then
tk > tj and ej(tj) ≤ ej(tl) ≤ ej(tk) ≤ ej(t1) as long as j ≥ l ≥ k ≥ 1 (after last time
the output was used the error can only grow).

Let x(tk) be the modified input at time tk. By greediness xj(tk) ≤ xk(tk), for all j, so
also for j < k. For k > j we have xj(tk) = ej(tk)

1 =
∑

j xj(tk) ≤ kxk(tk) +
∑

j>k ej(tk). But then
ek(tk) = xk(tk)− 1 ≥ (1−

∑

j>k ej(tk))/k − 1

−1/k ≤ (
∑

j>k ej(tk))/k(k − 1) + ek(tk)/(k − 1) ≤

(
∑

j>k ej(t1))/k(k − 1) + ek(t1)/(k − 1), 1 ≤ k ≤ n. Sum up over k.

−H(d) ≤
∑

k>0

∑

j>k ej(t1)/k(k − 1) +
∑

k>0 ek(t1)/(k − 1) = · · · = · · · =
∑

j>0 ej(t1) = −e0(t1)
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Structure of the Invariant Set (simplex with constant input)

The minimal absorbing set Q of Fγ with fixed γ ∈ P0 is a tile with respect to the lattice
L = {

∑

i,j nij(ci − cj) , nij ∈ Z}.

Each union of the (Voronoï) parts of this tile is also a tile (w.r. to an explicit lattice).

This is a

Theorem for P non-obtuse triangle.

Theorem for P an acute simplex with typical (ergodic) input.

Work in progress for general (obtuse) triangle.

Work in progress for acute simplices with general input.

Conjecture for general simplices with general input.

Unknown for general polytopes with all the corners on some lattice.

Q ⊂ R
d is a tile with respect to the lattice L = Z(w1, . . . , wd) = {

∑d
i=1 niwi, ni ∈ Z},

wi ∈ R
d, independent, if the map

T : Q× L→ R
d, T (q, w) = q + w is 1-1 and onto.
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Frequencies for a constant input system in a simplex

When P is a simplex for any x we have #{n<N :Vor(Fγ(x))=ci}

N
→N γi

0 ←
FN
γ (x)− x

N
=

1

N

∑

n<N

(γ − Vor(Fn(x)))

= γ −
d

∑

i=0

ni

N
ci =

d
∑

i=0

γici −
d

∑

i=0

ni

N
ci

=

d
∑

i=0

(γi −
ni

N
)ci

ni

N
→ γi ni = #{n : Vor(xn) = ci}

by the uniqueness of baricentric coordinates.
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Multi-tiles (acute simplices)

For any subset I ⊂ {1, . . . , d} define a lattice
LI = L(ci − c0, . . . , cj − γ), i ∈ I, j 6∈ I

For any Q define QI = Q ∩
⋃

I Vi

Theorem

If an invariant absorbing set Q is a tile for the lattice L = L{1,...,d} then
QI = Q ∩

⋃

i∈I Vi is a tile for LI with
|QI | = |det(LI)| =

∑

I γi|det(L)| =
∑

I γi|Q|.

If T : Q× L was 1-1 then TI : QI × LI is 1-1a

If T : Q× L was onto then TI : QI × LI is ontob.

asome restrictions apply
bsome restrictions apply (again)
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