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Introduction



Objective

To prove a characterization of the topological support of the law of

the solution of a stochastic wave equation in spatial dimension
d=3.

Definition For a random vector X — M, the topological support is
the smallest closed F C M such that (P o X_l) (F)>o.
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Definition For a random vector X — M, the topological support is
the smallest closed F C M such that (P o X_l) (F)>o.

» What type of solution? Random field solution
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The description of the support is an important ingredient to study
irreducibility of the corresponding semigroups, and therefore of the
uniqueness of invariant measure.



Main result

Approximation in probability and in Holder norm of a stochastic
wave equation by smoothing the driving noise.
(Wong—Zakai's type Theorem).

References

» For the method: Aida—Kusuoka—Stroock, 1993; Millet-S.-S.,
1994; Bally-Millet-S.-S., 1995; Gyongy—Nualart-S.-S, 1997;
Millet-S.-S, 2000...

» For the background on the wave equation: Dalang 1999;
Dalang-S.-S, 2009; Dalang—Quer-Sardanyons, 2011; ...



Plan of the work
» Vanishing initial conditions (joint work with F. Delgado)

» Non null initial conditions (work in progress with F. Delgado)
Why we draw such a distinction?

This question is related to
> stationarity of the solution,

» choice of the stochastic integral in the formulation of (1).



Discussion on The Model



Stochastic wave equation in spatial dimension d = 3
{ (22— 8) u(t, %) = o (u(t, ) Mz, %) + b(u(t, x)),
u u

t€[0,T], x € R3.

Interpretation in mild form
u(t, x) = [G(t) * vo](x) + gt ([G (1) * uo](x))
t [ ] 6t sx - yotuts,y)mias. )
0o JRr3
+ / [G(t—s,-) = b(u(s,-))] (x)ds, (1)
0

G(t) = ﬁat(dx).



The noise
{M(p), ¢ € C§°(R*)} Gaussian process

> E(M(¢)) =0,

> E(M(e)M(¥)) = [y ds [gs n(d€)Feo(s)Fi(s)(£),
 non-negative tempered symmetric measure on R3.

In non-rigorous terms

E(M(t,x)M(s,y)) = 6(t — s)f(x — ),

f=Fu.



M as a cylindrical Wiener process

H is the completion of the Schwartz space S(R3) of test functions
with the semi-inner product

(o = [ ) FAFIE).

The process Bi(p) = M(1[g q¢) is a cylindrical Wiener process:
Gaussian, zero mean and

E(M:(p)Ms(p) = min(s, t) {0, ¥)n.
In particular, for any CONS (¢;)jen C S(R3),
(W# = Bt(ej)7 t €0, T])jGN

defines a sequence of independent standard Brownian motions.



Dalang’s integral as an i.d. 1t6 integral

Theorem (Dalang—Quer-Sardanyons, 2011)
Let g € Py (integrands admissible for the Dalang’s integral).
Then g € L?(Q x [0, T]; H) and

/ /R3 s,y)M(ds, dy) = Z/ ), &) W/ (ds).

JEN

Example
Let {Z(t,x),(t,x) € [0, T] x R3} be predictable, with spatially
homogeneous covariance and

sup E()Z(t,x)?) < oo.
(t,x)€[0, T]xR3

Then

{g(t,x) := G(t,dx)Z(t,x),(t,x) € [0, T] x R3} € Po



The stochastic wave equation
u(t, x) = [G(t) * vl (x) + % ([G(t) * o] (x))

+§;Amu—awwdwa»qmmwﬂ

JEN
+/0 G(t —s,-) = b(u(s, ))(x)ds, (2)

t€[0,T], x € R3.

We are interested in random field solutions
{u(t,x), (t.x) € [0, T] x R3}.



Background: Dalang, EJP 1999
Hypotheses:
> Ug, Vo vanish,
» 0,b: R — R Lipschitz continuous,
» [(dx) = |x|Pdx, 3 €]0,2].
Theorem There exists a unique random field solution to (2).
This is an adapted process {u(t, x), (t,x) € [0, T] x R3} satisfying
(2) for any (t,x) € [0, T] x R3.
The solution is L?-continuous and bounded in LP:

sup E(lu(t,x)|P) < 0.
(t,x)€[0, T]xR3



Support Theorem



Sample path properties of the wave equation

Notation
» For to € [0, T], K C R3 compact, p €]0, 1],

1gllpt0,k == sup_ [g(t,x)|
(t,x)€[to, TIXK

+ sup |g(t,X)—g(t,X)|

(e, @Rl Tixk (|t =+ [x = X[)¢’
t#t,x#£X

» C([to, T] x K) is the space of real functions g such that
18150,k < 00
Theorem (Dalang-S.-S., 2009)
Almost surely, the sample paths of the random field solution of (2)
belong to the space C*([to, T] X K) with p € }O, # [



Support theorem (null initial conditions)
For t €]0, T], set H, := L?([0, t]; H). Let

oh(t, x) = <G(t —x = o), h>Ht

t e s his )(x
+ /0 ds[G(t — s,-) + b(®"(s, ))](x),

hGHT,

Theorem (Delgado-S.-S., 2011)
Let u = {u(t,x),(t,x) € [to, T] x K}, to > 0, be the random field

solution to (2). Fix p € ]0, % { Then the topological support of

the law of u in the space CP([ty, T] x K) is the closure in
C?([to, T] x K) of the set of functions {®" h € H1}.



A method to prove the support theorem

Part |
Assume that there exist:

> fliHTHCp([to,T]XK),
> w':Q —Hr,

such that for every € > 0,

Tim P {Ju— & (W) o i > €} = 0.

Then supp(Po u™t) C & (HT).

Remarks

- This follows from Portmanteau’s theorem.

- The closure refers to the Holder norm || - || .4,k -
- &(wn) = oW,



Part 1l
Assume that:
» there exists a mapping & : Hr — CP([to, T] x K),

» for any h € H, there exists a sequence T/ : Q — Q such
that Po (TH ! < P,
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p7t07K > 6} = 0'

Then supp(Po u™!) D & (HT).

This follows from Girsanov's theorem.
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» the following convergence holds
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Then supp(Po u™!) D & (HT).
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Next: Choices for w", &1, &, T,’,’.



Choice for w"

Let A = |5, CEDT]. For 1< <, let

S22 TIW (A g, (E), tE 27T, T,

0, te 0,27 T,

01 €]0, ool.
For j > n, put Wj” =0. Set

w(t,x) = > W (t)ei(x).
JEN

Remark:
M(ds) =3 ;cn Wj(ds) ~ w"(s)ds.



Choice for &1, &

&1,& 1 L2 ([0, T}, H) — C#([to, T] x K)
&1(h) = &(h) = o".

Choice for T/

Thw)=w—w"+h.

For the rigorous setting: abstract Wiener space associated with
{W/,j e N},



Approximation result

X(t,x) = /t [ 6(t = s.x = y)(A+ B)X(s.))M(ds,dy)
G(t — -, x —*)D(X(-, %)), hyn

t

/ G(t —s,x — y)b(X(s,y))dsdy,
R3

&uxr=4i@Gﬁ—ax—ﬁﬂ&@yDMMa@)

+<G(t— X — %) B(Xn(+y %)), w)p,
G(t — -, x —*)D(Xn(+, %)), h),

/ G(t — 5, x — y)b(Xn(s, y))dsdy.
R?)



With an appropriate choice of the coefficients A, B, D, b:
1. A=D=0, B:=o;
2. A=—-B=D =g,

the two convergences follow from the next

Theorem
The coefficients are Lipschitz. Suppose also that

Fix to > 0 and a compact set K C R3. Then for any p € }0, # [
A >0,
nlL”;oP(HXn — Xllp,to.c > A) = 0.



Local LP(2) convergence
Prove that for a sequence L,(T) T Q,

. p _
nlrgoE <HXn - XHp,tO,K ]‘Ln(T)) =0.

(Similar idea as in Millet— S.-S (2000) for 2-d wave equation).

Choice of the localization

1
Ln(t) =< sup sup 2" Wi(A)] < a2m2n?
1<j<no<i<[neT-1-1]+

Property
1
WL e el < Cr2™2|t — t]3.

Lemma For a > (21In 2)% and 0, + 61 + 3 >0,

lim P(L(T)) = 0.

n—oo



Ingredients
For any 61 €]0, 0], 62 € ]0, # [

> Local LP(2) estimates of increments

st 9], < <

n>1

e}O,#[.

» Pointwise convergence

Pt +|x—x|)",

Tim [(Xa(t,%) — X(£,30) 1,0 llo = 0, p € [1,00).

To obtain the convergence in probability, 82 — 61 + % > 0, thus

oo,

91€:|O, 2



A few technical details



Increments in space

Notation

©np(t,x,X) = ]E(

Xa(t:3) = Xa(£.9)| 11,0 ).

t€[to, T],x,x € K,p€[l,00].

Proposition (a simplified version)

agp

t
@ww&msch+v—ﬂ2+/¢wwu&m
0
t 1/2
+yx—;<\a1§/ ds[go,,’p(s,xj)} ],
0

with limp—oo £, =0, a1 € [0, (2 — B) A 1)[, a2 €]0, (2 — B)[.



Lemma (Gronwall’s type) u, b and k are nonnegative continuous
functions in J = [a, 5], p >0, p# 1, a> 0. Suppose that

t t

u(t)<a —I—/ b(s)u(s)ds +/ k(s)uP(s)ds, te .

u(t) <exp (/,j b(S)ds>
[;-%quk@)ap<_aljbﬁﬁh)d%é7

for t € [, 31), where G =1 — p and [31 is choosen so that the
expression beween [...] is positive in the subinterval [o, £1)
(B =3 ifg>0).

D. Bainov, P. Simenov: Integral Inequalities and Applications.

Then



Where ()% does come from?

4
E (|Xn(tax) - Xn(tv)_()|p1L,,(t)) < CZ R,i,(t,X,)_(),
i=1

RY(t,x,%) =

n

“(

Zn(s,y) = A(Xn(say))an(s)-

/0 [ 16(t=5.x =) = 6(t = 5.3 = )| Z,(5.)M(ds. )

|




Apply Burkholder's inequality and Plancherel’s identity:

RY(t (
t
< CE(
0

© ts — s, x—du) — — s, X —du u—v
R (/O d /R3XR3[G(t X —du) — G(t—5,% — du)]f(u—v)
x[G(t — s,x — dv)) — G(t — 5, % — dv)]Zn(s, u) Zn(s, v))P'?

G(t—s,x—y)—G(t—s,x—y)]

R3
% Zn(s, y)M(ds, dy)’p>

2 >P/2

H

dsH [G(t — 5,5 — %) — G(t — 5,% — )] Zo(s, *)

t
:/ ds/ [FAZ,AZ, + ZyAZ,AF + Z,Zy N3],
R3xR3

(+) f(x) = Ix|I77, B €]0,2[.



Conp(t,x,Xx) < f, (correction stochastic integrals)
+x—x|% (2,Z,A%F)
t
+/ ds(pnp(s,x,x)) (FAZ,AZ))
0
]1/2

t
+!x—$<|“15/ ds[gomp(s,x,)_() (Z,AZ,AF)
0

Stationarity



Comparison with d =2

» Different approach to G(t — s,x — dy) — G(t — s,x — dy)
(method from Dalang-S.-S., 2009).

» The approximation of

Z/"'Wl'(ds) by Z/ W/ (s)ds
j>1 j>1
is much more difficult.

» smoother approximations of the noise (parameter 6;),
» combination of the two processes: approximation and
localization.
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