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Problem set-up

@ N + 1 indistinguishable players;
@ players can be in a finite number of states i = 1,...d;

@ at any time each player knows only its state i(f) and the
number of players n;(t) in state j;
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Problem set-up

@ N + 1 indistinguishable players;

@ players can be in a finite number of states i = 1,...d;

@ at any time each player knows only its state i(f) and the
number of players n;(t) in state j;

@ each player can only control its switching rate o from one
state to another;
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Problem set-up

@ N + 1 indistinguishable players;

@ players can be in a finite number of states i = 1,...d;

@ at any time each player knows only its state i(f) and the
number of players n;(t) in state j;

@ each player can only control its switching rate o from one
state to another;

@ players follow (independent) controlled Markov chains with
transition rate Sj. i
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Optimization criterion

@ Each player chooses the switching rate in order to
minimize an expected payoff;

@ This payoff has a running cost c(/, #, ), where « is the
switching rate

@ and a terminal cost ¢/ (£);
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Optimization criterion

@ Each player chooses the switching rate in order to
minimize an expected payoff;

@ This payoff has a running cost c(/, #, ), where « is the
switching rate

@ and a terminal cost ¢/ (£);

more precisely

cost = E/ ,(\7),a(3))ds+¢im (n(,\,T)> : i
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Technical hypothesis

@ c(i,0,«) is uniformly convex and superlinear in «
@ ¢(i,0, ) and ¥/(6) are smooth in 6.
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@ Consider the case where N >> 1;

@ We suppose the mean-field hypothesis holds, i.e. the
fraction of players in each state j is given by a deterministic
function 6/(t);
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@ Consider the case where N >> 1;

@ We suppose the mean-field hypothesis holds, i.e. the
fraction of players in each state j is given by a deterministic
function 6/(t);

o if all players use the same Markovian control 5 = 3;(t), the
evolution of 9 is determined by

do’ ;
ar = 2P
J
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If 6 is given, the objective of each player is to minimize
T .
E| [ eli(s).bls).ali(s),s))as + ' D(o(T))|
t

where « is the switching rate.
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@ LetA;:RY — R be

1 i d
Nz=(z'-2,..,z

- Z').

@ The infinitesimal generator for finite state continuous time
Markov chain, with transition rate vj;, is
Alp) =D vl —¢') =vi- Djp.
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Notation

@ LetA;:RY — R be

1 i d
Nz=(z'-2,..,z

- Z').

@ The infinitesimal generator for finite state continuous time
Markov chain, with transition rate vj;, is

Alp) =D vl —¢') =vi- Djp.

j
@ We define the generalized Legendre transform of c is i
h(z,0,i)= min c(i,0, )+ iNiz

( ) e(®;)? ( 1) ZM] i

w
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Hamiltonian ODE

The value function is the unique solution to the following
Hamilton-Jacobi ordinary differential equation:
—d — p(Au,0, i)
at 145 Yy )

u(T) = 4'(6(T)).
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Hamiltonian ODE

The value function is the unique solution to the following
Hamilton-Jacobi ordinary differential equation:

—4 = h(Au,0,i),

u(T) = ¢'(6(T)).
Furthermore, the optimal control is given by

af = hy (AU, 0, 1).
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Mean-field equations

The mean-field equilibrium arises when all players use the
same optimal switching rate.
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Mean-field equations

The mean-field equilibrium arises when all players use the
same optimal switching rate.
This gives rise to the system

G0 =Y, 00a;(Aju,0,))

—2u' = h(Au, 0, ).
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Mean-field equations

The mean-field equilibrium arises when all players use the
same optimal switching rate.
This gives rise to the system

a0 =Y olak(Aju,0,))
—2u' = h(Au, 0, ).

together with the initial-terminal conditions

00) =6y  U(T)=/(6(T)). i
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@ from the ODE point of view these equations are
non-standard as some of the variables have initial
conditions whereas other variables have prescribed
terminal data;
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@ from the ODE point of view these equations are
non-standard as some of the variables have initial
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terminal data;

@ existence of solution is by no means obvious;
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@ from the ODE point of view these equations are
non-standard as some of the variables have initial
conditions whereas other variables have prescribed
terminal data;

@ existence of solution is by no means obvious;

@ uniqueness (in general) does not hold.
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Example

Set

Then

and, for j # i,
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Existence of mean-field equilibria

@ Fix 6 and consider the map ¢/(0) to be the solution of

d ; .
—au’ = h(A;u,6,i).
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Existence of mean-field equilibria

@ Fix 6 and consider the map ¢/(0) to be the solution of

d

—au == h(A,’U, 0, I)

@ given u consider the map ©(u) to be the solution to

fef—Zm (Aju, 0, /)
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Existence of mean-field equilibria

@ Fix 6 and consider the map ¢/(0) to be the solution of

d

—EU = h(A,’U, 0, I)

@ given u consider the map ©(u) to be the solution to

fef—Zm (Aju, 0, /)

@ Existence of mean-field equilibria can be proved under
very general conditions by showing the existence of a fixed '
point for © o U.
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Monotonicity hypothesis

We assume:

SO0 - 0w (6) — (G)) > 0

i
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Monotonicity hypothesis

We assume:
D0 = EW(6) ~v'(6) 2 0
and

0- (h(z,0) — h(z,0)) +§- (h(2.6) — h(.8)) < —]}6 - §].
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Monotonicity hypothesis

We assume:

SO0 - 0w (6) — (G)) > 0

and
0 - (h(z,0) — h(z,0)) + 8 - (h(2,0) — h(2,0)) < —~]|6 —8]]>.

Furthermore define ||v||; = infycr ||V + M.
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Monotonicity hypothesis
We assume:

D0 = 0)W'(0) - (@) > 0
and
0 - (h(z,0) — h(z,0)) + 8 - (h(2,0) — h(2,0)) < —~]|6 —8]]>.

Furthermore define ||v||; = infyxcr ||V + A1||. Then we suppose
that uniformly on || z||y < M there exists +; > 0 such that

h(z,0,i) — h(w,0,i)—a*(w,0,i) - Aij(z—w) < —i]|Ai(z — W)Hz.
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The last three hypothesis will be satisfied if h can be written as

h(Aiz,0,0) = h(Az, i) + f(6),
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The last three hypothesis will be satisfied if h can be written as
h(Aiz,0,1) = h(Az, i) + £ (6),

with A (locally) uniformly concave and f satisfying the
monotonicity hypothesis

((8) — £(6)) - (0 = 0) < —10 — B>,
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The last three hypothesis will be satisfied if h can be written as
h(Aiz,0,1) = h(Az, i) + £ (6),

with A (locally) uniformly concave and f satisfying the
monotonicity hypothesis

((8) — £(6)) - (0 = 0) < —10 — B>,

The previous property holds, for instance, if f is the gradient of
a convex function f(6) = V&(6). i
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Under the monotonicity hypothesis, the mean-field equations
have a unique solution (0, u).
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Lemma

Fix T > 0 and suppose that (0, u) and (8, &i) are solutions with
lullz, l@ll; < Con [T, T]
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Lemma

Fix T > 0 and suppose that (0, u) and (8, &i) are solutions with
lully, [1@ls < Con[-T, T]

Then there exists a constant C independent of T such that, for
allo <7< T, we have

[ 10 =0 + i - axs)las
T d = -
<c[ Sle-0-w-2)

< (0 - HDIP + I(u - DR
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@ The proof of the lemma follows the Lions-Lasry
monotonicity method.
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@ The proof of the lemma follows the Lions-Lasry
monotonicity method. The inequality in the lemma is
obtained by applying the monotonicity hypothesis to

i[(e-e).(u—a)].
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@ The proof of the lemma follows the Lions-Lasry
monotonicity method. The inequality in the lemma is
obtained by applying the monotonicity hypothesis to

i[(e-e).(u—a)].

@ Uniqueness follows trivially from the lemma.
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Let<u>:182uj.
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Contractive mean-field games

1 ,
Let (u) = Zj: u

We say that h is contractive if there exists M > 0 such that, if
lully > M, then

(AjuY <0V jimplies h(Aju,6,i) — (h(u,6,-)) <0,
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Contractive mean-field games

1 ,
Let (u) = Zj: u

We say that h is contractive if there exists M > 0 such that, if
lully > M, then

(AjuY <0V jimplies h(Aju,6,i) — (h(u,6,-)) <0,
and

(AjuY >0V jimplies h(Aju, 6, i) — (h(u,6,-)) > 0.
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A,-ujSOVj and A,-ujZOVj
1 2
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These conditions are natural if one observes that
(8,u) <0V and (A,u) >0V

implies _ _
2llully = u" — u”.
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Connection with conservation laws

These conditions are natural if one observes that
(8,u) <0V and (A,u) >0V
implies _ _
2llully = u" — u”.

So, if u is a smooth solution and ||u(t)||; is differentiable with
lu(t)|ls > M then

d
Sl > 0.
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Connection with conservation laws

These conditions are natural if one observes that
(8,u) <0V and (A,u) >0V
implies _ _
2llully = u" — u”.

So, if u is a smooth solution and ||u(t)||; is differentiable with
lu(t)|ls > M then

d
Sl > 0.

This implies the flow is backwards contractive with respect to
the || - ||; norm of the u component.
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Stationary solutions

A triplet (0, I, k) is called a stationary solution if
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Stationary solutions

Atriplet (0, U, ) is called a stationary solution if

Zjé?a,(ADG_) 0,
h(A;T,0,i) =K.
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Stationary solutions

Atriplet (0, U, ) is called a stationary solution if

h(A;T,0,i) =K.
If (A, T, x) is a stationary solution for the MFG equations, then

(6, — xt) solves the time dependent problem with appropriate
initial-terminal conditions.

Diogo Gomes on to mean-field games



N+1 player symmetric games
Discrete state, continuous time mean-field games Mean field dynamics

Single player point of view

Mean field equations

Uniqueness of solutions

Trend to equilibrium
A variational principle
Connection with conservation laws

Existence of stationary solutions

Suppose h is contractive.
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Existence of stationary solutions

Suppose h is contractive. Then

(a) For M large enough, the set {(u, ), ||\ulls < M} is invariant
backwards in time by the flow of the mean-field equations.
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Existence of stationary solutions

Suppose h is contractive. Then

(a) For M large enough, the set {(u, ), ||\ulls < M} is invariant
backwards in time by the flow of the mean-field equations.

(b) There exist a stationary solution.
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Suppose that monotonicity and contractivity hold.
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Connection with conservation laws

Suppose that monotonicity and contractivity hold.

(a) Suppose ||u(T)||y < M, where u is a solution, and M is
large enough. Then |u(t)||; < MYt € [0, T].
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Connection with conservation laws

Suppose that monotonicity and contractivity hold.

(a) Suppose ||u(T)||y < M, where u is a solution, and M is
large enough. Then |u(t)||; < MYt € [0, T].

(b) The stationary solution (0, u, k) is unique (up to the
addition of a constant to u).
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Suppose that monotonicity and contractivity hold.

(a) Suppose ||u(T)||y < M, where u is a solution, and M is
large enough. Then |u(t)||; < MYt € [0, T].

(b) The stationary solution (0, u, k) is unique (up to the
addition of a constant to u).

(c) Given T > 0, a vector 6y, and a terminal condition 1),
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Single player point of view

Mean field equations

Uniqueness of solutions

Trend to equilibrium

A variational principle

Connection with conservation laws

Suppose that monotonicity and contractivity hold.

(a) Suppose ||u(T)||y < M, where u is a solution, and M is
large enough. Then |u(t)||; < MYt € [0, T].

(b) The stationary solution (0, u, k) is unique (up to the
addition of a constant to u).

(c) Given T > 0, a vector 8y, and a terminal condition 1, let
(67, uT) be the solution with initial-terminal conditions
0T(~T) = 6o and u™/(T) = '(07(T)).

Diogo Gomes An introduction to mean-field games



N+1 player symmetric games
Discrete state, continuous time mean-field games Mean field dynamics

Single player point of view

Mean field equations

Uniqueness of solutions
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Connection with conservation laws

Suppose that monotonicity and contractivity hold.

(a) Suppose ||u(T)||y < M, where u is a solution, and M is
large enough. Then |u(t)||; < MYt € [0, T].

(b) The stationary solution (0, u, k) is unique (up to the
addition of a constant to u).

(c) Given T > 0, a vector 8y, and a terminal condition 1, let
(67, uT) be the solution with initial-terminal conditions
OT(=T)=6p and u™(T) = '(87(T)). As T = o0

07(0) — 8, |u’(0)— 1Tl — O, I

where (0, ) is the unique stationary solution.
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Discrete state, continuous time mean-field games Mean field dynamics

Single player point of view

Mean field equations

Uniqueness of solutions

Trend to equilibrium

A variational principle

Connection with conservation laws

We define
fr(s) = 1(67 = 6T) ()| + l(u" — &7 )(9)E,

and, for0 < < T,

T

Fr(r) = fr(s)ds.

—T
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Connection with conservation laws

We define
fr(s) = 1(67 = 6T) ()| + l(u" — &7 )(9)E,

and, for0 < < T,

Then
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Single player point of view

Mean field equations

Uniqueness of solutions

Trend to equilibrium

A variational principle

Connection with conservation laws

We define
fr(s) = 1(67 = 6T) ()| + l(u" — &7 )(9)E,

and, for0 < < T,

Fr(r) = [ r(s)ds
Then 1
Fr(r) < g(fT(T) + fr(=7))
Note that Fr(7) = fr(7) + fr(—7)
Fr(r) < 2 Fr(r)
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Discrete state, continuous time mean-field games Mean field dynamics

Single player point of view

Mean field equations

Uniqueness of solutions

Trend to equilibrium

A variational principle

Connection with conservation laws

From ’
Fr(r) < gFr(T),

it follows & In Fr(7) > 4. Therefore
InFr(7) —InFr(1) > (7 — 1)7,

foral0 <+ < T.
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Single player point of view

Mean field equations

Uniqueness of solutions

Trend to equilibrium

A variational principle

Connection with conservation laws

From
Fr(r) <

it follows < G InFr(1) > 4. Therefore
InFr(7) —InFr(1) > (7 — 1)7,
forall 0 < 7 < T. From this we get

Fr(T
/fT Jos = Fr(1) < S0 L 0 when T o,
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Discrete state, continuous time mean-field games Mean field dynamics

Single player point of view

Mean field equations

Uniqueness of solutions

Trend to equilibrium

A variational principle

Connection with conservation laws

From
Fr(r) <

it follows < G InFr(1) > 4. Therefore
InFr(7) —InFr(1) > (7 — 1)7,
forall 0 < 7 < T. From this we get

Fr(T
/fT Jos = Fr(1) < S0 L 0 when T o,

because F has sub-exponential growth in T.
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Potential mean-field games

We say the mean-field game is potential if h has the form
h(z,0,i) = h(z,i) + f'(6) (1)

where f(-,0) = VyF(0) for some convex function F(6).
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Let H: R?? — R be given by

H(u,0) =Y 6'h(Aju, i) + F(6)

]

—0-h(A.u,-)+ F(0)

eld games
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Discrete state, continuous time mean-field games Mean field dynamics

Single player point of view

Mean field equations

Uniqueness of solutions

Trend to equilibrium

A variational principle

Connection with conservation laws

Let H: R?? — R be given by

H(u,0) =Y 6'h(Aju, i) + F(6)

]

—0-h(A.u,-)+ F(0)

A direct computation shows the mean-field equations can be

written as .
OH _ i
ouw ’
OH _ _ iy
5o = —U.
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Single player point of view

Mean field equations

Uniqueness of solutions
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A variational principle

Connection with conservation laws

Let H: R?? — R be given by

H(u,0) =Y 6'h(Aju, i) + F(6)

]

—0-h(A.u,-)+ F(0)

A direct computation shows the mean-field equations can be
written as

OH __ pj
ou =0
oH _
00 — u.

This means the flow associated to the mean-field game is
Hamiltonian.
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Connection with conservation laws

Given a convex function G(p) we define the Legendre
transform as
G'(q) = sgp —q-p— G(p).
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N+1 player symmetric games
Discrete state, continuous time mean-field games Mean field dynamics

Single player point of view

Mean field equations

Uniqueness of solutions

Trend to equilibrium

A variational principle

Connection with conservation laws

Given a convex function G(p) we define the Legendre
transform as
G'(q) = sgp —q-p— G(p).

If G is strictly convex and the previous supremum is achieved,
then g = —V G(p), or equivalently p = —VG*(q).

Diogo Gomes An introduction to mean-field games



N+1 player symmetric games
Discrete state, continuous time mean-field games Mean field dynamics

Single player point of view

Mean field equations

Uniqueness of solutions

Trend to equilibrium

A variational principle

Connection with conservation laws

If the function F is strictly convex in 6 then the Hamiltonian H is
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Discrete state, continuous time mean-field games Mean field dynamics

Single player point of view

Mean field equations

Uniqueness of solutions

Trend to equilibrium

A variational principle

Connection with conservation laws

If the function F is strictly convex in 6 then the Hamiltonian H is
strictly convex in 6. This allow us to consider the Legendre
transform

L(u,u)=sup—u-0— H(u,9)
0

—sup—(u+h)-0— F(0) = F*(u+ h(A.u,-)).
0
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Single player point of view

Mean field equations

Uniqueness of solutions
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A variational principle

Connection with conservation laws

If the function F is strictly convex in 6 then the Hamiltonian H is
strictly convex in 6. This allow us to consider the Legendre
transform

L(u,u) =sup—u-6— H(u,0)
0
—sup—(u+h)-0— F(0) = F*(u+ h(A.u,-)).
0

From this we conclude that any solution is a critical point of the
functional

/T F*(i+ h(A.u, ))ds.
0
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Uniqueness of solutions
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A variational principle

Connection with conservation laws

This variational problem has to be complemented by suitable
boundary conditions. The initial-terminal value problem
corresponds to
0o = —VF*((0) + h(A.u(0),)),
u(T) = (-, —=VF*(U(T) + h(A.u(T),))).
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Single player point of view

Mean field equations

Uniqueness of solutions

Trend to equilibrium

A variational principle

Connection with conservation laws

This variational problem has to be complemented by suitable
boundary conditions. The initial-terminal value problem
corresponds to

0o = —VF*(u(0) + h(A.u(0),-)),
u(T) = (-, ~VF*(u(T) + h(A.u(T),))).
Another important boundary condition arises in planning
problems. In this case the objective is to find a terminal cost

u(T) which steers a initial probability distribution 6 into a
terminal probability distribution #7. Hence we have the following

0o = —VF*(u(0) + h(A.u(0),-)),
07 = —VF*(U(T) + h(A.u(T),-)).

Diogo Gomes An introduction to mean-field games



N+1 player symmetric games
Discrete state, continuous time mean-field games Mean field dynamics

Single player point of view

Mean field equations

Uniqueness of solutions

Trend to equilibrium

A variational principle

Connection with conservation laws

The master equation

Let

9(u,60,i) = 0ai(Aju,6,)).
]
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The master equation
Let
g(u,6,1i) ZH’ (Aju,b,j).
Consider the PDE, called the master equation,

ou’
0k

—‘Lu'(e t) = h(U, 9, ) +ZgU9k)

ot (6.1),
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The master equation
Let
g(u,6,1i) ZH’ (Aju,b,j).
Consider the PDE, called the master equation,

ou’
0k

—‘Lu'(e t) = h(U, 9, ) +ZgU9k)

ot (6.1),

together with the terminal condition

U6, T) ='(6).
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Single player point of view

Mean field equations

Uniqueness of solutions

Trend to equilibrium

A variational principle

Connection with conservation laws

Suppose U is a solution.Let 6 and u be such that

Q the first equation of the mean-field game is satisfied, i.e.
46" = g(U'(6(t), 1), 6. 1);
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Connection with conservation laws

Theorem
Suppose U is a solution.Let 6 and u be such that
@ the first equation of the mean-field game is satisfied, i.e.
&0 = a(U'(6(1),1),6,1);
Q 6(0) = o,
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Single player point of view

Mean field equations

Uniqueness of solutions

Trend to equilibrium

A variational principle

Connection with conservation laws

Suppose U is a solution.Let 6 and u be such that
@ the first equation of the mean-field game is satisfied, i.e.
&0 = a(U'(6(1),1),6,1);
@ 9(0) = bp;
Q uU(t) = U(a(1),1).
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Single player point of view

Mean field equations

Uniqueness of solutions

Trend to equilibrium

A variational principle

Connection with conservation laws

Suppose U is a solution.Let 6§ and u be such that
@ the first equation of the mean-field game is satisfied, i.e.
G0 =g(U'(0(t), 1),0,1);
Q 0(0) =bo;
Q ui(t) = U'(4(1), 1)
Then u satisfies the second equation of the mean-field game,

ie. —2u' = h(Au,0,i) as well as the terminal condition

u(T) = 4'(6(T)).
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Single player point of view
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Uniqueness of solutions
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A variational principle

Connection with conservation laws

Suppose U is a solution.Let 6§ and u be such that

Q the first equation of the mean-field game is satisfied, i.e.

&0 = a(U'(6(1),1),6,1);

o 9(0) = 0o,

Q uU(t) = U(a(1),1).

Then u satisfies the second equation of the mean-field game,
i.e. —Su' = h(Au,0,i) as well as the terminal condition
u'(T)='(6(T)). Therefore, u is the value function associated
to 6, and so it determines a Nash equilibria for the MFG.
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A Hamilton Jacobi equation for potential MFG

For potential mean field games the master equation can be
further simplified if we suppose that the terminal condition is
given by a gradient

U'(0,T)=VaVr(i,0).
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A Hamilton Jacobi equation for potential MFG

For potential mean field games the master equation can be
further simplified if we suppose that the terminal condition is
given by a gradient

U'(0,T)=VaVr(i,0).
In this case let ¥ be a solution of the PDE

—% = H(VeV,0),

W, T) = Vr().
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A Hamilton Jacobi equation for potential MFG

For potential mean field games the master equation can be
further simplified if we suppose that the terminal condition is
given by a gradient

U'(0,T)=VaVr(i,0).
In this case let ¥ be a solution of the PDE

—%F =H(Vyv,0),
W0, T)=Vr(0).

: I
Then a direct calculation can show that U'(6,t) = V,W(6,t) is
a solution of the master equation.
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Continuous state models

Continuous state mean-field models
A new variational structure
Evans-Aronsson’s problem

Mean field problems - continuous space and time

In continuous space and time a wide class of mean field
equations has the form

N(u) = £(9)
L*(6) =0,

where N is a nonlinear operator and L* is the adjoint of the
linearization of N, and f is a monotone increasing function of 6.
The function v : Q x [0, T] — R is supposed to be sufficiently
regular, and @ is a (probability) measure.
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Continuous state models Continuous state mean-field models

A new variational structure

Evans-Aronsson’s problem

An important example is

N(u) = —ut + H(Dxu, x) — %Au
to which corresponds

L*(6) = 6; — div(DpH6) — %Ae,

and f(0) = Iné.
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Continuous state models Continuous state mean-field models

A new variational structure
Evans-Aronsson’s problem

Controlled diffusions

Suppose we know a the distribution of players in R” given by a
probability measure 6(t, -). The objective of an individual
reference player is to minimize

.
Vo) = E [ (Lo, 0)ds + o(x(T))).
t
among all diffusions

ax = vdt + th !ﬁ
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Continuous state models Continuous state mean-field models

A new variational structure

Evans-Aronsson’s problem

Then V/(x, t) solves
— Vi + H(DxV, x,0) = %AV,

and the optimal drift v is

v =—DpH(DxV,x,8).
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Continuous state models Continuous state mean-field models

A new variational structure

Evans-Aronsson’s problem

If all the population acts according to the optimal strategy then

0; — div(DpHY) = %AQ.
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Continuous state mean-field models

A new variational structure

Evans-Aronsson’s problem

@ Suppose that f(z) = g’~'(z), for some convex increasing
function g.
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Continuous state models
Continuous state mean-field models

A new variational structure

Evans-Aronsson’s problem

@ Suppose that f(z) = g’~'(z), for some convex increasing
function g.

@ We consider the variational problem

/0 ' /Q g(N(u)).
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Continuous state models
Continuous state mean-field models

A new variational structure

Evans-Aronsson’s problem

@ Suppose that f(z) = g’~'(z), for some convex increasing
function g.

@ We consider the variational problem

/0 ' /Q g(N(u)).

@ A simple computation shows that sufficiently smooth
critical points of this functional are indeed solutions of the
mean field equations, for

0 = g'(N(u)).
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Continuous state models
Continuous state mean-field models

A new variational structure

Evans-Aronsson’s problem

For instance, in the example we have the variational problem

T
/ / equrH(Du,X)f%Audth' (2)
0 JQ
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Continuous state mean-field models

A new variational structure

Evans-Aronsson’s problem

@ For convex nonlinear operators N this variational
formulation yields in many instances uniqueness results for
smooth solutions to the mean-field equations.
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Continuous state mean-field models

A new variational structure

Evans-Aronsson’s problem

@ For convex nonlinear operators N this variational
formulation yields in many instances uniqueness results for
smooth solutions to the mean-field equations.

@ Existence issues are more delicate as these functionals
not coercive and thus delicate a-priori estimates or explicit
formulas are required.

Diogo Gomes on to mean-field games



Continuous state models
Continuous state mean-field models

A new variational structure

Evans-Aronsson’s problem

The Evans-Aronsson variational problem is
min/ eh(Dux)—;Augy.
Td

The lack of coercivity of this functional is the key technical
problem.
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Continuous state mean-field models
A new variational structure
Evans-Aronsson’s problem

Key results

Existence and uniqueness of smooth solutions for:

@ H(p,x) = 'P“" + V(x), through explicit solutions;
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Continuous state models
Continuous state mean-field models

A new variational structure
Evans-Aronsson’s problem

Key results

Existence and uniqueness of smooth solutions for:

@ H(p,x) = 'P“" + V(x), through explicit solutions;

@ a wide class of Hamiltonians if d = 2, through a-priori
bounds.

Diogo Gomes An introduction to mean-field games



Continuous state models

Continuous state mean-field models
A new variational structure
Evans-Aronsson’s problem

Hopf-Cole type transform

Let u and v be periodic solutions to

P-+Duf?
%AU#—#:—V(X) —u—v
—Iav4 P2 L v(x) —u—v.

Then u is a minimizer.
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Continuous state mean-field models
A new variational structure
Evans-Aronsson’s problem

Note such solutions do exist and are smooth as we have the
a-priori bound:

sup |Du| + |Dv| < C.
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Continuous state models
Continuous state mean-field models

A new variational structure
Evans-Aronsson’s problem

General case, dimension independent bounds

Set m = ezAu+H(x.DU=X Here ) is such that m is a probability
measure.
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Continuous state models
Continuous state mean-field models

A new variational structure
Evans-Aronsson’s problem

General case, dimension independent bounds

Set m = ezAu+H(x.DU=X Here ) is such that m is a probability
measure.

/ IDInm|? < C,
Td

and
H(x, Duym < C.
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Continuous state mean-field models
A new variational structure
Evans-Aronsson’s problem

Theorem

/ \ADuPm < C
Td

lvVm|y < C

2%
() =0
/ |D?ul?m < C,

and
/Hzm <C.
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Continuous state mean-field models
A new variational structure
Evans-Aronsson’s problem

In dimension 2 the previous bounds yield

/ ID2ul? < C.
Td

which it is then enough to prove existence of smooth solutions
by the continuation method.
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

Problem set-up - review

@ N + 1 indistinguishable players;
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N + 1 player games

Problem set-up - review

@ N + 1 indistinguishable players;
@ players can be in a finite number of states i = 1,...d;
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

Problem set-up - review

@ N + 1 indistinguishable players;
@ players can be in a finite number of states i = 1,...d;

@ at any time each player knows only its state i(f) and the
number of players n;(t) in state j;
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Single player point of view
Nash symmetric equilibrium

N + 1 player games

Problem set-up - review

@ N + 1 indistinguishable players;
@ players can be in a finite number of states i = 1,...d;

@ at any time each player knows only its state i(f) and the
number of players n;(t) in state j;

@ each player can only control its switching rate o from one
state to another;
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

Problem set-up - review

@ N + 1 indistinguishable players;

@ players can be in a finite number of states i = 1,...d;

@ at any time each player knows only its state i(f) and the
number of players n;(t) in state j;

@ each player can only control its switching rate o from one
state to another;

@ players follow (independent) controlled Markov chains with
transition rate Sj. i
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

Optimization criterion - review

@ Each player chooses the switching rate in order to
minimize an expected payoff;
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N + 1 player games

Optimization criterion - review

@ Each player chooses the switching rate in order to
minimize an expected payoff;

@ This payoff has a running cost c(/, #, ), where « is the
switching rate
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

Optimization criterion - review

@ Each player chooses the switching rate in order to
minimize an expected payoff;

@ This payoff has a running cost c(/, #, ), where « is the
switching rate

e and a terminal cost ¢/ (§);
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N + 1 player dynamics
Single player point of view

N + 1 player games

Nash symmetric equilibrium

Optimization criterion - review

@ Each player chooses the switching rate in order to
minimize an expected payoff;

@ This payoff has a running cost c(/, #, ), where « is the
switching rate

@ and a terminal cost ¢’ ({);

more precisely

cost = E/tTc(i(s), nfvs),a(s))dsthi(r) (nSVT)> .
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

@ The reference player switches from state i to state j
according to a switching Markovian rate «a;i(n, t)
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

@ The reference player switches from state i to state j
according to a switching Markovian rate «a;i(n, t)

@ All remaining players follow a controlled Markov process K;
with transition rates from state k to state j given by

B = Bki(n, t).
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

Let e, be the k — th vector of the canonical basis of R9, and let
€k = € — €.
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

Let ex be the k — th vector of the canonical basis of R?, and let
€k = € — €.

From the symmetry and independence of transitions
assumption, for k # j, we have

P(nm, =N+ eillny = n, iy = i) = ’yg:;(j(t).h + o(h),
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N + 1 player dynamics

N+ 1 player games Single player point of view

Nash symmetric equilibrium

Let ex be the k — th vector of the canonical basis of R?, and let
€k = € — €.

From the symmetry and independence of transitions
assumption, for k # j, we have

P(nm, =N+ eillny = n, iy = i) = ’yg:;(j(t).h + o(h),

where _
72:;(/(1‘) = Mk Pii(N + e, t).
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

Let ex be the k — th vector of the canonical basis of R?, and let
€k = € — €.

From the symmetry and independence of transitions
assumption, for k # j, we have

P(nm, =N+ eillny = n, iy = i) = ’yg:;(j(t).h + o(h),

where _

V511 = MBii(n + €ix, 1).
The term n + ey instead of n, follows from the fact that from the
point of view of a player which is in state k, and is distinct from
the reference player, the number of other players in any state is
givenby n+ g — ex = N + ej.
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

Control problem from a player’s point of view

@ Fix a reference player, and suppose the remaining N
players use a transition rate j;
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

Control problem from a player’s point of view

@ Fix a reference player, and suppose the remaining N
players use a transition rate g;

@ Then the process n(t) is a Markov process with rate v k](t)
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

Control problem from a player’s point of view

@ Fix a reference player, and suppose the remaining N
players use a transition rate g;

@ Then the process n(t) is a Markov process with rate v k](t)
@ The reference player wants to

Up(t, B, ) = B [ / 6 (1. 7. 0(s)) ds + v (';VT)] ,

where the expectation is conditioned on i = i,n; = n. Ui

Diogo Gomes An introduction to mean-field games



N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

Hamilton-Jacobi ODE

Fix an admissible control 5.
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

Hamilton-Jacobi ODE

Fix an admissible control 5. Consider the system of ODE’s
indexed by i and n given by

dy] ni i i ,
S (r) - >R Depep() = 2h(0) 4 (Arenlt), 7o) -
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

Hamilton-Jacobi ODE

Fix an admissible control 5. Consider the system of ODE’s
indexed by i and n given by

dy] ni i i ,
S (r) - >R Depep() = 2h(0) 4 (Arenlt), 7o) -

where
h(p.6. i) = min [c(i,6, o) + ap]
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

Hamilton-Jacobi ODE

Fix an admissible control 5. Consider the system of ODE’s
indexed by i and n given by

deoh, ni i i n.
(= 20 (e, (0 () + (Bien(). 5+1) -
y)
where
h(p,0,i) = m>|g [e(i,8,a) + ap],
and
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

A verification theorem

The previous terminal value problem for ©!, has a unique
solution.
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Single player point of view
Nash symmetric equilibrium

N + 1 player games

A verification theorem

Theorem

The previous terminal value problem for ©!, has a unique
solution. This solution is the value function for the reference
player,
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

A verification theorem

Theorem

The previous terminal value problem for ©!, has a unique
solution. This solution is the value function for the reference
player, and

&(8)(in, 1) = " (Bign(t), 1.1)

is an optimal strategy.
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

A verification theorem

Theorem

The previous terminal value problem for ©!, has a unique
solution. This solution is the value function for the reference
player, and

&(8)(in, 1) = " (Bign(t), 1.1)

is an optimal strategy.
Furthermore ¢}, is bounded uniformly in (.
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N + 1 player dynamics
Single player point of view
Nash symmetric equilibrium

N + 1 player games

Note that o* depends on 3. We say that g is a symmetric Nash
equilibrium if oy = 3.

There exists a unique Nash equilibrium 5.
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N + 1 player dynamics

N+ 1 player games Single player point of view

Nash symmetric equilibrium

A necessary condition for a control 3 to be a Nash equilibrium is

5/(/(’7 t) = a (AkUn(tL ,3), N’ ) .
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N + 1 player dynamics

N+ 1 player games Single player point of view

Nash symmetric equilibrium

Hence this gives rise to the system of nonlinear differential
equations
duj, nig i i n..
- dt = Zryk/ (Un-i—ejk - Un) + h <A[Un, N’ I) )
k.
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N + 1 player dynamics

N+ 1 player games Single player point of view

Nash symmetric equilibrium

Hence this gives rise to the system of nonlinear differential
equations
duj, nig i i n..
- dt = Zryk/ (Un-i—ejk - Un) + h <A[Un, N’ I) )
k.

with terminal condition
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N + 1 player dynamics

N+ 1 player games Single player point of view

Nash symmetric equilibrium

Hence this gives rise to the system of nonlinear differential
equations
duj, nig i i n..
- dt = Zryk/ (Un-i—ejk - Un) + h <A[Un, N’ I) )
k.

with terminal condition

where 7,2.” are given by

ni i Ifi
’Yk/ — nkOé/* AkUrH_el-k, 7N 5 k . ‘[
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Convergence as N — oo

Outline

@ Convergence as N —
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Convergence as N — oo

Mean-field requations - review

Gt =33 0a}(Bju.0,j)
—2u' = h(Au,0,1).
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Convergence as N — oo

Master equation - review

Recall the master equation

ou’
o0k

0,t) = h(UG/+ZgU9k) (0,1),

where
9(u,,i) Ze/ (Aju,6,)).
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Convergence as N — oo

Master equation - review

Recall the master equation

ou'’ ou’
——¢ (0.1) = h(U.0. 1) +Zg (U.0.K) 55 (0,1),
where
9(u,,i) Ze/ (Aju,6,)).
together with the terminal condmon
U6, T) = 4'(6). Y
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Convergence as N — oo

Consistency

Let U be a smooth solution to the mean-field master equation.
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Convergence as N — oo

Consistency

Let U be a smooth solution to the mean-field master equation.
Set iy, = U'(§)-
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Convergence as N — oo

Consistency

Let U be a smooth solution to the mean-field master equation.
Set i}, = U'(f)-Then
dljli, n,ic~i &l ~ N
- dt = nykj (Un+ejk - Un) + h (AiUn, Nv I) + EN
k.j
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Convergence as N — oo

Consistency

Let U be a smooth solution to the mean-field master equation.
Set i}, = U'(f)-Then
dljli, n,ic~i &l ~ N
- dt = nykj (Un+ejk - Un) + h (AiUn, Nv I) + EN
k.j

where Ey — 0as N — cc.
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Convergence as N — oo

Stability of controls

We have

Ao ] < G+ CNmaxuh 0, (1) — (D)o
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Convergence as N — oo

Gradient estimates

Lemma

Let ul,(t) be a solution. Then there exists C > 0 and T* > 0
such that, forO < T < T*, we have

2C

i i
_ < ——
ma U 0, (1) — Uh(Blloe < =7

forall0 <t<T.
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Convergence as N — oo

There exists a constant C, independent of N, for which, if
T < T*, satisfies p= TC < 1, then

& ]

< _
Vn(t) + Wi(t) < 5 —oN

forall't € [0, T],
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Convergence as N — oo

There exists a constant C, independent of N, for which, if
T < T*, satisfies p= TC < 1, then
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Convergence as N — oo

Theorem

There exists a constant C, independent of N, for which, if
T < T*, satisfies p= TC < 1, then

and
Wh(t) =E [

.
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Convergence as N — oo

Suppose T < T*. There exists Cy > 0 such that

Va(t) < /ot Ci(Va(s) + Wi(s))ds + ,C\;
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Convergence as N — oo

Lemma

Suppose T < T*. There exists Cy > 0 such that

(t) < /ot Ci(Va(s) + Wi(s))ds + ,C\;

Lemma

Suppose T < T*. There exists C> > 0 such that

C

t)</ Ca(Vi(s) + Wa(s))ds + <.
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Convergence as N — oo

Adding both inequalities from previous Lemmas:

T C
W(1) + Vi(t) < c/o (Vals) + Wi(s))ds + 1
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Convergence as N — oo

Adding both inequalities from previous Lemmas:

T C
W(1) + Vi(t) < c/o (Vals) + Wi(s))ds + 1

Suppose p = TC < 1.
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Convergence as N — oo

Adding both inequalities from previous Lemmas:

T C
W(1) + Vi(t) < c/ (Vals) + Wi(s))ds + 1
0
Suppose p = TC < 1.
Set
Wi+ V= Jmax Wi(t) + Vn(1),
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Convergence as N — oo

Adding both inequalities from previous Lemmas:

T C
W(1) + Vi(t) < c/ (Vals) + Wi(s))ds + 1
0
Suppose p = TC < 1.
Set
Wi+ V= Jmax Wi(t) + Vn(1),

then c

Wn + Vn < p(Wn + VN)+N7

i

which proves the Theorem
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More about continuous state models

Outline

e More about continuous state models
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