Half integral weight modular forms

Ariel Pacetti

Universidad de Buenos Aires

Explicit Methods for Modular Forms
March 20, 2013
Motivation

What is a half integral modular form?
Motivation

What is a half integral modular form? We can consider two classical examples:

1. The Dedekind eta function $\eta(z) = e^{\pi iz} \prod_{n=1}^{\infty} (1 - e^{2\pi inz})$. It is known that $\eta(z)^24 = \Delta(z)$, a weight 12 cusp form, so $\eta(z)$ should be of weight $1/2$. Actually, $\eta(z)$ turns out to be of weight $1/2$ but with a character of order 24.
Motivation

What is a half integral modular form? We can consider two classical examples:

- The Dedekind eta function

\[\eta(z) = e^{\frac{\pi i z}{12}} \prod_{n=1}^{\infty} (1 - e^{2\pi inz}). \]
What is a half integral modular form? We can consider two classical examples:

- The Dedekind eta function

\[\eta(z) = e^{\frac{\pi i z}{12}} \prod_{n=1}^{\infty} (1 - e^{2\pi i nz}). \]

It is well know that \(\eta(z)^{24} = \Delta(z) \) a weight 12 cusp form, so \(\eta \) “should be” of weight 1/2.
Motivation

What is a half integral modular form? We can consider two classical examples:

- The Dedekind eta function

\[\eta(z) = e^{\frac{\pi i z}{12}} \prod_{n=1}^{\infty} (1 - e^{2\pi i n z}). \]

It is well known that \(\eta(z)^{24} = \Delta(z) \) a weight 12 cusp form, so \(\eta \) “should be” of weight 1/2.

Actually \(\eta \) turns out to be weight 1/2 but with a character of order 24.
The classical theta function

\[\theta(z) = \sum_{n=-\infty}^{\infty} e^{2\pi in^{2}z}. \]
Motivation

- The classical theta function

\[\theta(z) = \sum_{n=-\infty}^{\infty} e^{2\pi i n^2 z}. \]

It is not hard to see that if \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4) \), then

\[\left(\frac{\theta(\gamma z)}{\theta(z)} \right)^2 = \left(\frac{-1}{d} \right) (cz + d). \]
The classical theta function

\[\theta(z) = \sum_{n=-\infty}^{\infty} e^{2\pi in^2z}. \]

It is not hard to see that if \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4) \), then

\[\left(\frac{\theta(\gamma z)}{\theta(z)} \right)^2 = \left(\frac{-1}{d} \right) (cz + d). \]

So \(\theta(z)^2 \in \mathcal{M}_1(\Gamma_0(4), \chi_{-1}) \).
We consider the factor of automorphy \(J(\gamma, z) = \frac{\theta(\gamma z)}{\theta(z)} \).
We consider the factor of automorphy $J(\gamma, z) = \frac{\theta(\gamma z)}{\theta(z)}$. Let k be an odd positive integer, N a positive integer and ψ a character modulo N.
We consider the factor of automorphy $J(\gamma, z) = \frac{\theta(\gamma z)}{\theta(z)}$. Let k be an odd positive integer, N a positive integer and ψ a character modulo N.

Definition

A modular form of weight $k/2$, level $4N$ and character ψ is an holomorphic function $f : \mathcal{H} \rightarrow \mathbb{C}$ such that

$$f(\gamma z) = J(\gamma, z) \psi(d) f(z) \quad \forall \gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma_0(4N).$$
We consider the factor of automorphy \(J(\gamma, z) = \frac{\theta(\gamma z)}{\theta(z)} \). Let \(k \) be an odd positive integer, \(N \) a positive integer and \(\psi \) a character modulo \(N \).

Definition

A modular form of weight \(k/2 \), level \(4N \) and character \(\psi \) is an holomorphic function \(f : \mathcal{H} \to \mathbb{C} \) such that

\[
 f(\gamma z) = J(\gamma, z)^k \psi(d) f(z) \quad \forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4N)
\]
We consider the factor of automorphy $J(\gamma, z) = \frac{\theta(\gamma z)}{\theta(z)}$. Let k be an odd positive integer, N a positive integer and ψ a character modulo N.

Definition

A modular form of weight $k/2$, level $4N$ and character ψ is an holomorphic function $f : \mathcal{H} \to \mathbb{C}$ such that

- $f(\gamma z) = J(\gamma, z)^k \psi(d) f(z)$ \quad \forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4N)$
- $f(z)$ is holomorphic at the cusps.
We consider the factor of automorphy \(J(\gamma, z) = \frac{\theta(\gamma z)}{\theta(z)} \). Let \(k \) be an odd positive integer, \(N \) a positive integer and \(\psi \) a character modulo \(N \).

Definition

A modular form of weight \(k/2 \), level \(4N \) and character \(\psi \) is an holomorphic function \(f : \mathbb{H} \to \mathbb{C} \) such that

- \(f(\gamma z) = J(\gamma, z)^k \psi(d)f(z) \quad \forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4N) \)
- \(f(z) \) is holomorphic at the cusps.

We denote by \(M_{k/2}(4N, \psi) \) the space of such forms and \(S_{k/2}(4N, \psi) \) the subspace of cuspidal ones.
Hecke operators

Via a double coset action, one can define Hecke operators $\{T_n\}_{n \geq 1}$ acting on $S_{k/2}(4N, \psi)$. They satisfy the properties:
Hecke operators

Via a double coset action, one can define Hecke operators \(\{ T_n \}_{n \geq 1} \) acting on \(S_{k/2}(4N, \psi) \). They satisfy the properties:

1. \(T_n = 0 \) if \(n \) is not a square.
Hecke operators

Via a double coset action, one can define Hecke operators \(\{ T_n \}_{n \geq 1} \) acting on \(S_{k/2}(4N, \psi) \). They satisfy the properties:

1. \(T_n = 0 \) if \(n \) is not a square.
2. If \((n : 4N) = 1 \), \(T_n^2 \) is self adjoint for an inner product.
Hecke operators

Via a double coset action, one can define Hecke operators \(\{ T_n \}_{n \geq 1} \) acting on \(S_{k/2}(4N, \psi) \). They satisfy the properties:

1. \(T_n = 0 \) if \(n \) is not a square.
2. If \((n : 4N) = 1\), \(T_n^2 \) is self adjoint for an inner product.
3. \(T_{n^2} T_{m^2} = T_{m^2} T_{n^2} \).
Hecke operators

Via a double coset action, one can define Hecke operators \(\{ T_n \}_{n \geq 1} \) acting on \(S_{k/2}(4N, \psi) \). They satisfy the properties:

1. \(T_n = 0 \) if \(n \) is not a square.
2. If \((n : 4N) = 1\), \(T_n^2 \) is self adjoint for an inner product.
3. \(T_n^2 T_m^2 = T_m^2 T_n^2 \).
4. If terms of q-expansion, let \(\omega = \frac{k-1}{2} \), then \(T_p^2 \) acts like

\[
a_{p^2 n} + \psi(n) \left(\frac{-1}{p} \right)^\omega \left(\frac{n}{p} \right) p^{\omega-1} a_n + \psi(p^2) p^{k-1} a_{n/p^2}.
\]
Hecke operators

Via a double coset action, one can define Hecke operators $\{T_n\}_{n \geq 1}$ acting on $S_{k/2}(4N, \psi)$. They satisfy the properties:

1. $T_n = 0$ if n is not a square.
2. If $(n : 4N) = 1$, T_{n^2} is self adjoint for an inner product.
3. $T_{n^2} T_{m^2} = T_{m^2} T_{n^2}$.
4. If terms of q-expansion, let $\omega = \frac{k-1}{2}$, then T_{p^2} acts like

$$a_{p^2n} + \psi(n) \left(\frac{-1}{p} \right) \omega \left(\frac{n}{p} \right) p^{\omega-1} a_n + \psi(p^2) p^{k-1} a_{n/p^2}.$$

Hence there exists a basis of eigenforms for the Hecke operators prime to $4N$.
Shimura’s Theorem

Theorem (Shimura)

For each square-free positive integer \(n \), there exists a \(\mathbb{T}_0 \)-linear map

\[
\text{Shim}_n : S_{k/2}(4N, \psi) \rightarrow M_{k-1}(2N, \psi^2). \]

\(^1\)The actual level may be smaller
Shimura’s Theorem

Theorem (Shimura)

For each square-free positive integer \(n \), there exists a \(\mathbb{T}_0 \)-linear map

\[
\text{Shim}_n : S_{k/2}(4N, \psi) \to M_{k-1}(2N, \psi^2). \]

Furthermore, if \(f \in S_{k/2}(4N, \psi) \) is an eigenform for all the Hecke operators with eigenvalues \(\lambda_n \), then \(\text{Shim}_n(f) \) is (up to a constant) given by

\[
\prod_p (1 - \lambda_p p^{-s} + \psi(p^2) p^{k-2-2s})^{-1}.
\]

\(^1\)The actual level may be smaller
Shimura’s Theorem

Theorem (Shimura)

For each square-free positive integer n, there exists a \mathbb{T}_0-linear map

$$\text{Shim}_n : S_{k/2}(4N, \psi) \rightarrow M_{k-1}(2N, \psi^2).$$

Furthermore, if $f \in S_{k/2}(4N, \psi)$ is an eigenform for all the Hecke operators with eigenvalues λ_n, then $\text{Shim}_n(f)$ is (up to a constant) given by

$$\prod_p (1 - \lambda_p p^{-s} + \psi(p^2) p^{k-2-2s})^{-1}.$$

What information encode the non-square Fourier coefficients?

1The actual level may be smaller
Waldspurger’s theorem

Let \(f \in S_{k/2}(4N, \psi) \), \(F = \text{Shim}(f) \in S_{k-1}(2N, \psi^2) \) eigenforms.
Waldspurger’s theorem

Let $f \in S_{k/2}(4N, \psi)$, $F = \operatorname{Shim}(f) \in S_{k-1}(2N, \psi^2)$ eigenforms.

Theorem (Waldspurger)

Let n_1, n_2 be square free positive integers such that $n_1/n_2 \in (\mathbb{Q}_p^\times)^2$ for all $p | 4N$.

If we fixed n_1, for all n_2 as above $a_{2n_1} = \kappa L(F, \psi - 10 \chi_{n_2}, k - 1/2)$ where $\psi_0(n) = \psi(n)(-1/n)$ and χ_{n_2} is the quadratic character corresponding to the field $\mathbb{Q}[\sqrt{n}]$.

Ariel Pacetti
Half integral weight modular forms
Waldspurger’s theorem

Let \(f \in S_{k/2}(4N, \psi) \), \(F = \text{Shim}(f) \in S_{k-1}(2N, \psi^2) \) eigenforms.

Theorem (Waldspurger)

Let \(n_1, n_2 \) be square free positive integers such that \(n_1/n_2 \in (\mathbb{Q}_p^\times)^2 \) for all \(p \mid 4N \). Then

\[
a_{n_1}^2 L(F, \psi_0^{-1} \chi_{n_2}, \omega) \psi\left(\frac{n_2}{n_1}\right) n_2^{k/2-1} = a_{n_2}^2 L(F, \psi_0^{-1} \chi_{n_1}, \omega) n_1^{k/2-1}
\]

where \(\psi_0(n) = \psi(n) \left(\frac{-1}{n}\right)^\omega \), \(\chi_n \) is the quadratic character corresponding to the field \(\mathbb{Q}[\sqrt{n}] \).
Waldspurger’s theorem

Let $f \in S_{k/2}(4N, \psi)$, $F = \text{Shim}(f) \in S_{k-1}(2N, \psi^2)$ eigenforms.

Theorem (Waldspurger)

Let n_1, n_2 be square free positive integers such that $n_1/n_2 \in (\mathbb{Q}_p^\times)^2$ for all $p \mid 4N$. Then

$$a_{n_1}^2 L(F, \psi_0^{-1}\chi_{n_2}, \omega)\psi\left(\frac{n_2}{n_1}\right)n_2^{k/2-1} = a_{n_2}^2 L(F, \psi_0^{-1}\chi_{n_1}, \omega)n_1^{k/2-1}$$

where $\psi_0(n) = \psi(n)\left(\frac{-1}{n}\right)^\omega$, χ_n is the quadratic character corresponding to the field $\mathbb{Q}[\sqrt{n}]$

If we fixed n_1, for all n as above
Let $f \in S_{k/2}(4N, \psi)$, $F = \text{Shim}(f) \in S_{k-1}(2N, \psi^2)$ eigenforms.

Theorem (Waldspurger)

Let n_1, n_2 be square free positive integers such that $n_1/n_2 \in (\mathbb{Q}_p^\times)^2$ for all $p | 4N$. Then

$$a_{n_1}^2 L(F, \psi_0^{-1} \chi_{n_2}, \omega) \psi \left(\frac{n_2}{n_1} \right) n_2^{k/2-1} = a_{n_2}^2 L(F, \psi_0^{-1} \chi_{n_1}, \omega) n_1^{k/2-1}$$

where $\psi_0(n) = \psi(n) \left(\frac{-1}{n} \right)^\omega$, χ_n is the quadratic character corresponding to the field $\mathbb{Q}[\sqrt{n}]$.

If we fixed n_1, for all n as above

$$a_n^2 = \kappa L(F, \psi_0^{-1} \chi_n, \frac{k-1}{2}) \psi(n) n^{k/2-1}$$

where κ is a global constant.
Definition: \(n \in \mathbb{N} \) is called a *congruent number* if it is the area of a right triangle with rational sides.
Definition: $n \in \mathbb{N}$ is called a *congruent number* if it is the area of a right triangle with rational sides.

Theorem (Tunnell)

If $n \in \mathbb{N}$ is odd, (assuming BSD) it is a congruent number iff

$$\# \{ (x, y, z) \in \mathbb{Z}^3 : n = 2x^2 + y^2 + 32z^2 \} = \frac{1}{2} \# \{ (x, y, z) \in \mathbb{Z}^3 : n = 2x^2 + y^2 + 8z^2 \}$$

For even n, iff

$$\# \{ (x, y, z) \in \mathbb{Z}^3 : n/2 = 4x^2 + y^2 + 32z^2 \} = \frac{1}{2} \# \{ (x, y, z) \in \mathbb{Z}^3 : n/2 = 4x^2 + y^2 + 8z^2 \}.$$
Definition: $n \in \mathbb{N}$ is called a congruent number if it is the area of a right triangle with rational sides.

Theorem (Tunnell)

If $n \in \mathbb{N}$ is odd, (assuming BSD) it is a congruent number iff

$$ \#\{(x, y, z) \in \mathbb{Z}^3 : n = 2x^2 + y^2 + 32z^2\} = \frac{1}{2} \#\{(x, y, z) \in \mathbb{Z}^3 : n = 2x^2 + y^2 + 8z^2\} $$

For even n, iff

$$ \#\{(x, y, z) \in \mathbb{Z}^3 : n/2 = 4x^2 + y^2 + 32z^2\} = \frac{1}{2} \#\{(x, y, z) \in \mathbb{Z}^3 : n/2 = 4x^2 + y^2 + 8z^2\}.$$
What we would like to do:

1. Given $F \in S_k^2(N,1)$, construct preimages under Shim.
2. Give an explicit constant in Waldspurger Theorem.
3. Generalize this to Hilbert modular forms.

For simplicity we will consider the case of weight $k = 2$ (where modular forms correspond with elliptic curves).
What we would like to do:

1. Given $F \in S_{2k}(N, 1)$, construct preimages under Shim.
What we would like to do:

1. Given $F \in S_{2k}(N, 1)$, construct preimages under Shim.
2. Give an explicit constant in Waldspurger Theorem.
Preimages

What we would like to do:

1. Given $F \in S_{2k}(N, 1)$, construct preimages under Shim.
2. Give an explicit constant in Waldspurger Theorem.
3. Generalize this to Hilbert modular forms.
Preimages

What we would like to do:

1. Given $F \in S_{2k}(N, 1)$, construct preimages under Shim.
2. Give an explicit constant in Waldspurger Theorem.
3. Generalize this to Hilbert modular forms.

For simplicity we will consider the case of weight $k = 2$ (where modular forms correspond with elliptic curves).
Let B be a quaternion algebra over \mathbb{Q} ramified at ∞.
Quaternionic modular forms

Let B be a quaternion algebra over \mathbb{Q} ramified at ∞. Let $R \subset B$ be an Eichler order of level N.

Let $\mathcal{J}(R)$ be the set of left R-ideals and let $\{[a_1], \ldots, [a_n]\}$ be ideal classes representatives.
Let B be a quaternion algebra over \mathbb{Q} ramified at ∞. Let $R \subset B$ be an Eichler order of level N.

Let $\mathcal{J}(R)$ be the set of left R-ideals and let $\{[a_1], \ldots, [a_n]\}$ be ideal classes representatives. Let $M(R)$ be the \mathbb{C}-v.s. spanned by these representatives.
Quaternions

Let B be a quaternion algebra over \mathbb{Q} ramified at ∞. Let $R \subset B$ be an Eichler order of level N.

Let $\mathcal{J}(R)$ be the set of left R-ideals and let $\{[a_1], \ldots, [a_n]\}$ be ideal classes representatives. Let $M(R)$ be the \mathbb{C}-v.s. spanned by these representatives. Consider the inner product given by

$$\langle [a_i], [a_j] \rangle = \begin{cases} 0 & \text{if } i \neq j, \\ \frac{1}{2} \#R_r(a_i) & \text{if } i = j. \end{cases}$$
Let B be a quaternion algebra over \mathbb{Q} ramified at ∞. Let $R \subset B$ be an Eichler order of level N.

Let $\mathcal{J}(R)$ be the set of left R-ideals and let $\{[a_1], \ldots, [a_n]\}$ be ideal classes representatives. Let $M(R)$ be the \mathbb{C}-v.s. spanned by these representatives. Consider the inner product given by

$$\langle [a_i], [a_j] \rangle = \begin{cases} 0 & \text{if } i \neq j, \\ \frac{1}{2} \# R_r(a_i) \times & \text{if } i = j. \end{cases}$$

Given $m \in \mathbb{N}$ and $a \in \mathcal{J}(R)$, let

$$t_m(a) = \{b \in \mathcal{J}(R) : b \subset a, [a : b] = m^2\}.$$
For $m \in \mathbb{N}$, the Hecke operators $T_m : M(R) \rightarrow M(R)$ is

$$T_m([a]) = \sum_{b \in t_m(a)} \frac{[b]}{\langle b, b \rangle}.$$
For $m \in \mathbb{N}$, the Hecke operators $T_m : M(R) \to M(R)$ is

$$T_m([a]) = \sum_{b \in t_m(a)} \frac{[b]}{\langle b, b \rangle}.$$

Proposition

The Hecke operators satisfy:

- are self adjoint (all of them).
- commute with each other.

Let $e_0 = \sum_{i=1}^{n} \langle a_i, a_i \rangle [a_i]$. It is an eigenvector for the Hecke operators. Denote by $S(R)$ its orthogonal complement.
Hecke operators

For $m \in \mathbb{N}$, the Hecke operators $T_m : M(R) \to M(R)$ is

$$T_m([a]) = \sum_{b \in t_m(a)} \frac{[b]}{\langle b, b \rangle}.$$

Proposition

The Hecke operators satisfy:

1. are self adjoint (all of them).
For \(m \in \mathbb{N} \), the Hecke operators \(T_m : M(R) \to M(R) \) is

\[
T_m([a]) = \sum_{b \in t_m(a)} \frac{[b]}{\langle b, b \rangle}.
\]

Proposition

The Hecke operators satisfy:

1. are self adjoint (all of them).
2. commute with each other.
For $m \in \mathbb{N}$, the Hecke operators $T_m : M(R) \to M(R)$ is

$$T_m([a]) = \sum_{b \in t_m(a)} \frac{[b]}{\langle b, b \rangle}.$$

Proposition

The Hecke operators satisfy:

1. *are self adjoint (all of them).*
2. *commute with each other.*

Let $e_0 = \sum_{i=1}^{n} \frac{1}{\langle a_i, a_i \rangle} [a_i].$
For $m \in \mathbb{N}$, the Hecke operators $T_m : M(R) \to M(R)$ is

$$T_m([a]) = \sum_{b \in t_m(a)} \frac{[b]}{\langle b, b \rangle}.$$

Proposition

The Hecke operators satisfy:

1. are self adjoint (all of them).
2. commute with each other.

Let $e_0 = \sum_{i=1}^{n} \frac{1}{\langle a_i, a_i \rangle} [a_i]$. It is an eigenvector for the Hecke operators. Denote by $S(R)$ its orthogonal complement.
Theorem (Eichler)

There is a natural map of \mathbb{T}_0-modules $S(R) \times S(R) \to S_2(N)$.
Theorem (Eichler)

There is a natural map of \mathbb{T}_0-modules $S(R) \times S(R) \rightarrow S_2(N)$.

Moreover,

- If N has valuation 1 at p, the new subspace lies in the image.
Theorem (Eichler)

There is a natural map of \mathbb{T}_0-modules $S(R) \times S(R) \to S_2(N)$.

Moreover,

- If N has valuation 1 at p, the new subspace lies in the image.
- In general, considering other orders, any weight 2 form which has a non-principal series prime is in the image (J-L).
Basis problem

Theorem (Eichler)

There is a natural map of \mathbb{T}_0-*modules* $S(R) \times S(R) \to S_2(N)$.

Moreover,

- If N has valuation 1 at p, the new subspace lies in the image.
- In general, considering other orders, any weight 2 form which has a non-principal series prime is in the image (J-L).
- We get a map

$$S(R) \to S_2(N) \quad \text{Shim} \quad S_3^{+}(4N)$$

Ariel Pacetti

Half integral weight modular forms
Theorem (Eichler)

There is a natural map of \mathbb{T}_0-modules $S(R) \times S(R) \rightarrow S_2(N)$.

Moreover,

- If N has valuation 1 at p, the new subspace lies in the image.
- In general, considering other orders, any weight 2 form which has a non-principal series prime is in the image (J-L).
- We get a map

$$S(R) \rightarrow S_2(N) \xrightarrow{\text{Shim}} S^+_{3/2}(4N)$$
Theorem (Eichler)

There is a natural map of \mathbb{T}_0-modules $S(R) \times S(R) \to S_2(N)$.

Moreover,

- If N has valuation 1 at p, the new subspace lies in the image.
- In general, considering other orders, any weight 2 form which has a non-principal series prime is in the image (J-L).
- We get a map

\[
\begin{align*}
S(R) & \twoheadrightarrow S_2(N) \\
S_3^{+}(4N) & \hookrightarrow S_2(N)
\end{align*}
\]
In B, the quadratic form $\Delta(x) = \text{Tr}(x)^2 - 4N(x)$ is a quadratic negative definite form invariant under translation, hence a form in B/\mathbb{Q}.
In B, the quadratic form $\Delta(x) = \text{Tr}(x)^2 - 4\mathcal{N}(x)$ is a quadratic negative definite form invariant under translation, hence a form in B/\mathbb{Q}.

If $a \in \mathcal{J}(R)$, and $d \in \mathbb{N}$, let

$$a_d(a) = \# \{ [x] \in R_r(a)/\mathbb{Z} : \Delta(x) = -d \}.$$
Ternary forms

In B, the quadratic form $\Delta(x) = \text{Tr}(x)^2 - 4\mathcal{N}(x)$ is a quadratic negative definite form invariant under translation, hence a form in B/\mathbb{Q}.

If $a \in \mathcal{J}(R)$, and $d \in \mathbb{N}$, let

$$a_d(a) = \# \{ [x] \in R_r(a)/\mathbb{Z} : \Delta(x) = -d \}.$$

For $d \in \mathbb{N}_0$, let $e_d \in M(R)$ be given by

$$e_d = \sum_{i=1}^{n} \frac{a_d(a_i)}{\langle a_i, a_i \rangle} [a_i].$$
Let \(\Theta : M(R) \rightarrow M_{3/2}(4N(R), \chi_R) \) be given by

\[
\Theta(v)(z) = \sum_{d \geq 0} \langle v, e_d \rangle q^d.
\]
Let \(\Theta : M(R) \to M_{3/2}(4N(R), \chi_R) \) be given by

\[
\Theta(v)(z) = \sum_{d \geq 0} \langle v, e_d \rangle q^d.
\]

Theorem (P., Tornaríá)

The map \(\Theta \) is \(\mathbb{T}_0 \)-linear.
Let $\Theta : M(R) \to M_{3/2}(4N(R), \chi_R)$ be given by

$$\Theta(v)(z) = \sum_{d \geq 0} \langle v, e_d \rangle q^d.$$

Theorem (P., Tornaríá)

The map Θ is \mathbb{T}_0-linear.

Furthermore,
Let $\Theta : M(R) \to M_{3/2}(4N(R), \chi_R)$ be given by

$$\Theta(v)(z) = \sum_{d \geq 0} \langle v, e_d \rangle q^d.$$

Theorem (P., Tornaríá)

The map Θ is \mathbb{T}_0-linear.

Furthermore,

- The image lies in the Kohnen space.
Let $\Theta : M(R) \rightarrow M_{3/2}(4N(R), \chi_R)$ be given by

$$\Theta(v)(z) = \sum_{d \geq 0} \langle v, e_d \rangle q^d.$$

Theorem (P., Tornaríá)

The map Θ is \mathbb{T}_0-linear.

Furthermore,

- The image lies in the Kohnen space.
- $\Theta(v)$ is cuspidal iff v is cuspidal.
Let $\Theta : M(R) \to M_{3/2}(4N(R), \chi_R)$ be given by

$$\Theta(v)(z) = \sum_{d \geq 0} \langle v, e_d \rangle q^d.$$

Theorem (P., Tornaría)

The map Θ is T_0-linear.

Furthermore,

- The image lies in the Kohnen space.
- $\Theta(v)$ is cuspidal iff v is cuspidal.

$$S(R) \xrightarrow{\Theta} S_{3/2}(4N) \xrightarrow{\text{Shim}} S_2(N)$$
Here are some questions:

- Given $F \in S_2(N)$, how to choose R such that $\Theta(v_F)$ is non-zero?
- Do we have an explicit formula relating the coefficients to central values of twisted L-series?
- It should be the case that for all fundamental discriminants d in some residue classes, the following formula should hold:

 $$L(F, 1) L(F, d, 1) = \star <F, F> \sqrt{|d| a_{F, O}(d)} 2 \langle v_F, v_F \rangle.$$

 Done by Gross if $N = p$.

 Done by Böcherer and Schulze-Pillot if N is odd and squarefree.

 Done by P. and Tornaría if $N = p^2$.

Ariel Pacetti

Half integral weight modular forms
Here are some questions:

- Given $F \in S_2(N)$, how to choose R such that $\Theta(v_F)$ is non-zero?
Questions

Here are some questions:

- Given $F \in S_2(N)$, how to chose R such that $\Theta(v_F)$ is non-zero?
- Do we have an explicit formula relating the coefficients to central values of twisted L-series?
Questions

Here are some questions:

- Given $F \in S_2(N)$, how to chose R such that $\Theta(v_F)$ is non-zero?
- Do we have an explicit formula relating the coefficients to central values of twisted L-series?

It should be the case that for all fundamental discriminants d in some residue classes, the following formula should hold

$$L(F, 1)L(F, d, 1) = \ast \frac{<F, F > a_F, o(d)^2}{\sqrt{|d|} \langle v_F, v_F \rangle}.$$
Questions

Here are some questions:

- Given $F \in S_2(N)$, how to chose R such that $\Theta(v_F)$ is non-zero?
- Do we have an explicit formula relating the coefficients to central values of twisted L-series?

It should be the case that for all fundamental discriminants d in some residue classes, the following formula should hold

$$L(F, 1)L(F, d, 1) = \star \frac{<F, F> a_F, o(d)^2}{\sqrt{|d|}\langle v_F, v_F \rangle}.$$

- Done by Gross if $N = p$.
Questions

Here are some questions:

- Given $F \in S_2(N)$, how to chose R such that $\Theta(v_F)$ is non-zero?
- Do we have an explicit formula relating the coefficients to central values of twisted L-series?

It should be the case that for all fundamental discriminants d in some residue classes, the following formula should hold

$$L(F, 1)L(F, d, 1) = \star \frac{\langle F, F \rangle a_F}{\sqrt{|d|}} \frac{o(d)^2}{\langle v_F, v_F \rangle}.$$

- Done by Gross if $N = p$.
- Done by Böcherer and Schulze-Pillot if N is odd and square free.
Here are some questions:

- Given $F \in S_2(N)$, how to choose R such that $\Theta(v_F)$ is non-zero?
- Do we have an explicit formula relating the coefficients to central values of twisted L-series?

It should be the case that for all fundamental discriminants d in some residue classes, the following formula should hold

$$L(F, 1)L(F, d, 1) = \ast \frac{\langle F, F \rangle a_F, o(d)^2}{\sqrt{|d|} \langle v_F, v_F \rangle}.$$

- Done by Gross if $N = p$.
- Done by Böcherer and Schulze-Pillot if N is odd and square free.
- Done by P. and Tornaría if $N = p^2$.
Let F be a totally real number field, and $a = \{\tau : F \hookrightarrow \mathbb{R}\}$.
Hilbert modular forms

Let F be a totally real number field, and $a = \{ \tau : F \hookrightarrow \mathbb{R} \}$. $\text{GL}_2^+(F)$ acts on \mathbb{H}^a component-wise.
Hilbert modular forms

Let F be a totally real number field, and $\mathfrak{a} = \{\tau : F \hookrightarrow \mathbb{R}\}$. $\text{GL}_2^+(F)$ acts on $\mathcal{H}^\mathfrak{a}$ component-wise. If $\alpha \in \text{GL}_2^+(F)$, define the factor of automorphy

$$j(\alpha, z) = \prod_{\tau \in \mathfrak{a}} j(\tau(\alpha), z_\tau).$$
Let F be a totally real number field, and $a = \{ \tau : F \rightarrow \mathbb{R} \}$.

GL$_2^+(F)$ acts on \mathcal{H}^a component-wise. If $\alpha \in$ GL$_2^+(F)$, define the factor of automorphy

$$j(\alpha, z) = \prod_{\tau \in a} j(\tau(\alpha), z_\tau).$$

Let \mathcal{O}_F denotes the ring of integers of F. If r, n are ideals, let

$$\Gamma(r, n) = \left\{ \alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2^+(F) : \det(\alpha) \in \mathcal{O}_F^\times \text{ and } a, d \in \mathcal{O}_F, b \in r^{-1}, c \in rn \right\}.$$
Hilbert modular forms

Let F be a totally real number field, and $a = \{\tau : F \hookrightarrow \mathbb{R}\}$. $GL_2^+(F)$ acts on \mathcal{H}^a component-wise. If $\alpha \in GL_2^+(F)$, define the factor of automorphy

$$j(\alpha, z) = \prod_{\tau \in a} j(\tau(\alpha), z_\tau).$$

Let \mathcal{O}_F denote the ring of integers of F. If r, n are ideals, let

$$\Gamma(r, n) = \left\{\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2^+(F) : \det(\alpha) \in \mathcal{O}_F^\times \text{ and }\right. \left. a, d \in \mathcal{O}_F, b \in r^{-1}, c \in rn\right\}.$$

Let $\{b_1, \ldots, b_r\}$ be representatives for the narrow class group.
Let F be a totally real number field, and $a = \{ \tau : F \hookrightarrow \mathbb{R} \}$. $GL_2^+(F)$ acts on \mathfrak{H}^a component-wise. If $\alpha \in GL_2^+(F)$, define the factor of automorphy

$$j(\alpha, z) = \prod_{\tau \in a} j(\tau(\alpha), z_\tau).$$

Let \mathcal{O}_F denotes the ring of integers of F. If r, n are ideals, let

$$\Gamma(r, n) = \{ \alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2^+(F) : \det(\alpha) \in \mathcal{O}_F^\times \text{ and } a, d \in \mathcal{O}_F, b \in r^{-1}, c \in rn \}. $$

Let $\{b_1, \ldots, b_r\}$ be representatives for the narrow class group. Define

$$M_2(n) = \bigoplus_{i=1}^{r} M_2(\Gamma(b_i, n)) \quad S_2(n) = \bigoplus_{i=1}^{r} S_2(\Gamma(b_i, n)).$$
Main properties

- The forms have q-expansions indexed by integral ideals.
Main properties

- The forms have q-expansions indexed by integral ideals.
- There are Hecke operators indexed by integral ideals (satisfying the same properties).
Main properties

- The forms have q-expansions indexed by integral ideals.
- There are Hecke operators indexed by integral ideals (satisfying the same properties).
- The action can be given in terms of q-expansion.
Main properties

- The forms have q-expansions indexed by integral ideals.
- There are Hecke operators indexed by integral ideals (satisfying the same properties).
- The action can be given in terms of q-expansion.
- There is a theory of new subspaces.
Let

\[\theta(z) = \sum_{\xi \in \mathcal{O}_F} \left(\prod_{\tau \in \mathfrak{a}} e^{\pi i \tau(\xi)^2 z} \right), \]
Let
\[\theta(z) = \sum_{\xi \in \mathcal{O}_F} \left(\prod_{\tau \in \mathfrak{a}} e^{\pi i \tau(\xi)^2 z_{\tau}} \right), \]
and define the factor of automorphy for \(\gamma \in GL_2^+(F) \),
\[J(\gamma, z) = \left(\frac{\theta(\gamma z)}{\theta(z)} \right) j(\gamma, z). \]
Let
\[\theta(z) = \sum_{\xi \in \mathcal{O}_F} \left(\prod_{\tau \in \mathfrak{a}} e^{\pi i \tau(\xi)^2 z \tau} \right), \]
and define the factor of automorphy for \(\gamma \in \text{GL}_2^+(F) \),
\[J(\gamma, z) = \left(\frac{\theta(\gamma z)}{\theta(z)} \right) j(\gamma, z). \]

For \(n \) an integral ideal in \(\mathcal{O}_F \), let
\[\tilde{\Gamma}[2^{-1}\delta, n] = \Gamma[2^{-1}\delta, n] \cap \text{SL}_2(F). \]
Definition

If ψ is a Hecke character of conductor n, a Hilbert modular form of parallel weight $3/2$, level $4n$ and character ψ, is a holomorphic function f on \mathfrak{H} satisfying:

$$f(\gamma z) = \psi(d)J(\gamma, z)f(z) \quad \forall \gamma \in \tilde{\Gamma}[2^{-1}\delta, 4n].$$
Definition

If ψ is a Hecke character of conductor n, a Hilbert modular form of parallel weight $3/2$, level $4n$ and character ψ, is a holomorphic function f on \mathcal{H}^a satisfying:

$$f(\gamma z) = \psi(d)J(\gamma, z)f(z) \quad \forall \gamma \in \tilde{\Gamma}[2^{-1}\delta, 4n].$$

We denote by $M_{3/2}(4n, \psi)$ the v.s. of such forms, and by $S_{3/2}(4n, \psi)$ the cuspidal ones.
Definition

If ψ is a Hecke character of conductor n, a Hilbert modular form of parallel weight $3/2$, level $4n$ and character ψ, is a holomorphic function f on \mathfrak{H}^a satisfying:

$$f(\gamma z) = \psi(d) J(\gamma, z) f(z) \quad \forall \gamma \in \tilde{\Gamma}[2^{-1}\delta, 4n].$$

We denote by $M_{3/2}(4n, \psi)$ the v.s. of such forms, and by $S_{3/2}(4n, \psi)$ the cuspidal ones.

- The theory is more involved, and there is a Fourier expansion attached to each ideal in the narrow class group.
Half integral weight HMF

Definition

If ψ is a Hecke character of conductor n, a Hilbert modular form of parallel weight $3/2$, level $4n$ and character ψ, is a holomorphic function f on \mathfrak{H}^a satisfying:

$$f(\gamma z) = \psi(d)J(\gamma, z)f(z) \quad \forall \gamma \in \tilde{\Gamma}[2^{-1}\delta, 4n].$$

We denote by $M_{3/2}(4n, \psi)$ the v.s. of such forms, and by $S_{3/2}(4n, \psi)$ the cuspidal ones.

- The theory is more involved, and there is a Fourier expansion attached to each ideal in the narrow class group.
- There is a theory of Hecke operators as in the classical case.
Definition

If ψ is a Hecke character of conductor n, a Hilbert modular form of parallel weight $3/2$, level $4n$ and character ψ, is a holomorphic function f on \mathfrak{H} satisfying:

$$f(\gamma z) = \psi(d) J(\gamma, z) f(z) \quad \forall \gamma \in \tilde{\Gamma}[2^{-1}\delta, 4n].$$

We denote by $M_{3/2}(4n, \psi)$ the v.s. of such forms, and by $S_{3/2}(4n, \psi)$ the cuspidal ones.

- The theory is more involved, and there is a Fourier expansion attached to each ideal in the narrow class group.
- There is a theory of Hecke operators as in the classical case.
- There is a formula relating the Hecke operators with the Fourier expansion at different ideals.
Shimura map for HMF

Theorem (Shimura)

For each \(\xi \in F^+ \), there exists a \(\mathbb{T}_0 \) linear map

\[
\text{Shim}_\xi : M_{3/2}(4n, \psi) \to M_2(2n, \psi^2).
\]
Theorem (Shimura)

For each $\xi \in F^+$, there exists a T_0 linear map

$$\text{Shim}_\xi : M_{3/2}(4n, \psi) \to M_2(2n, \psi^2).$$

As before, the image can be given in terms of eigenvalues.

How do we compute preimages?
Theorem (Shimura)

For each $\xi \in F^+$, there exists a \mathbb{T}_0 linear map

$$\text{Shim}_\xi : M_{3/2}(4n, \psi) \rightarrow M_2(2n, \psi^2).$$

As before, the image can be given in terms of eigenvalues.

How do we compute preimages? \leadsto use quaternionic forms.
We have to make some small adjustments to the classical picture.
Quaternionic HMF

We have to make some small adjustments to the classical picture.

- Take B/F a quaternion algebra ramified at least all the infinite places, and R an Eichler order in it.
We have to make some small adjustments to the classical picture.

- Take B/F a quaternion algebra ramified at least all the infinite places, and R an Eichler order in it.

- Let $M(R)$ be the \mathbb{C}-v.s. spanned by class ideal representatives with the inner product

$$\langle [a_i], [a_j] \rangle = \begin{cases}
0 & \text{if } i \neq j, \\
[R_r(a_i) \times : \mathcal{O}_F^\times] & \text{if } i = j.
\end{cases}$$
We have to make some small adjustments to the classical picture.

- Take B/F a quaternion algebra ramified at least all the infinite places, and R an Eichler order in it.

- Let $M(R)$ be the \mathbb{C}-v.s. spanned by class ideal representatives with the inner product

$$\langle [a_i], [a_j] \rangle = \begin{cases} 0 & \text{if } i \neq j, \\ [R_r(a_i)^\times : \mathcal{O}_F^\times] & \text{if } i = j. \end{cases}$$

- Define the Hecke operators in the same way as before.
We have to make some small adjustments to the classical picture.

- Take B/F a quaternion algebra ramified at least all the infinite places, and R an Eichler order in it.
- Let $M(R)$ be the \mathbb{C}-v.s. spanned by class ideal representatives with the inner product

$$
\langle [a_i], [a_j] \rangle = \begin{cases}
0 & \text{if } i \neq j, \\
[R_r(a_i)^\times : \mathcal{O}_F^\times] & \text{if } i = j.
\end{cases}
$$

- Define the Hecke operators in the same way as before.
- They commute, and the adjoint of T_p is $p^{-1} T_p$.

Theorem (J-L, Hida)

There is a natural map of \mathbb{T}_0-modules $S(R) \times S(R) \rightarrow S_2(N)$.

The same remarks as in the classical case apply.
Theorem (J-L,Hida)

There is a natural map of \mathbb{T}_0-modules $S(R) \times S(R) \rightarrow S_2(N)$.

The same remarks as in the classical case apply.

Let $\Theta : M(R) \rightarrow M_{3/2}(4\mathfrak{n}(R), \chi_R)$ be given by

$$\Theta(v)(z) = \sum_{\xi \in \mathcal{O}_F^+} \langle v, e_\xi \rangle q^\xi.$$

Theorem (Sirolli)

The map Θ is \mathbb{T}_0-invariant. Furthermore, the image lies in the Kohnen space. $\Theta(v)$ is cuspidal iff v is cuspidal.
Theorem (J-L, Hida)

There is a natural map of \mathbb{T}_0-modules $S(R) \times S(R) \to S_2(N)$.

The same remarks as in the classical case apply.

Let $\Theta : M(R) \to M_{3/2}(4\mathfrak{H}(R), \chi_R)$ be given by

$$\Theta(v)(z) = \sum_{\xi \in O_F^+} \langle v, e_\xi \rangle q^\xi.$$

Theorem (Sirolli)

The map Θ is \mathbb{T}_0-invariant.
Theorem (J-L,Hida)

There is a natural map of \mathbb{T}_0-*modules* $S(R) \times S(R) \to S_2(N)$.

The same remarks as in the classical case apply.

Let $\Theta : M(R) \to M_{3/2}(4\mathfrak{N}(R), \chi_R)$ be given by

$$\Theta(v)(z) = \sum_{\xi \in \mathcal{O}^+_F} \langle v, e_\xi \rangle q^\xi.$$

Theorem (Sirolli)

The map Θ *is* \mathbb{T}_0-*invariant.*

Furthermore,

- The image lies in the Kohnen space.
Theorem (J-L,Hida)

There is a natural map of \mathbb{T}_0-modules $S(R) \times S(R) \to S_2(N)$.

The same remarks as in the classical case apply.

Let $\Theta : M(R) \to M_{3/2}(4\mathfrak{N}(R), \chi_R)$ be given by

$$\Theta(v)(z) = \sum_{\xi \in O_F^+} \langle v, e_\xi \rangle q^\xi.$$

Theorem (Sirolli)

The map Θ is \mathbb{T}_0-invariant.

Furthermore,

- The image lies in the Kohnen space.
- $\Theta(v)$ is cuspidal iff v is cuspidal.
General picture

\[S(R) \xrightarrow{\Theta} S_{3/2}^+(4n) \xrightarrow{\text{Shim}_\xi} S_2(n) \]
Let $F = \mathbb{Q}(\sqrt{5})$, $\omega = \frac{1+\sqrt{5}}{2}$, and consider the elliptic curve

$$E : y^2 + xy + \omega y = x^3 - (1 + \omega)x^2.$$

This curve has conductor $n = (5 + 2\omega)$ (an ideal of norm 31).

- Let B/F be the quaternion algebra ramified at the two infinite primes, and R an Eichler order of level n.
- The space $M_2(R)$ has dimension 2 (done by Lassina). The element $v = [R] - [a]$ is a Hecke eigenvector.
- If we compute $\theta(v)$, we get a form whose q-expansion is “similar” to Tunnell result.
- There are 5 non-trivial zero coefficients with trace up to 100, and the twists of the original curve by this discriminants all have rank 2.