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Odd hyperelliptic curves

A hyperelliptic curve C of genus n ≥ 1 over Q with a marked rational
Weierstrass point O has an affine equation of the form

y2 = x2n+1 + c2x2n−1 + c3x2n−2 + . . .+ c2n+1 = f (x) (1)

with rational coefficients cm. (The point O lies above x = ∞, and
f (x) is separable.)

Such curves are called odd hyperelliptic curves.

The change of variable x ′ = u2x , y ′ = u2n+1y results in a change in
the coefficients: c ′m = u2mcm. Hence we may assume all coefficients
are integers.

These integers are unique if we assume further that, for every prime p,
the integral coefficients cm are not all divisible by p2m. In this case
we say the coefficients are indivisible.
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Heights of minimal equations

We assume now that the odd hyperelliptic curve C is given by its
unique equation with indivisible integral coefficients.

The discriminant of f (x) is a polynomial D(c2, c3, . . . , c2n+1) of
weighted homogeneous degree 2n(2n + 1) in the coefficients cm,
where cm has degree m.

We define the discriminant ∆ of the curve C by the formula

∆(C ) := 42nD(c2, c3, . . . , c2n+1),

and the (naive) height H of the curve C by

H(C ) := max{|ck |2n(2n+1)/k}2n+1
k=2 .

We include the expression 2n(2n + 1) in the definition so that the
weighted homogeneous degree of H and ∆ are the same.

The height H(C ) gives a concrete way to enumerate all odd hyper-
elliptic curves over Q of a fixed genus: for any real number X > 0
there are clearly only finitely many curves with H(C ) < X .
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Genus one

The discriminant and height for odd hyperelliptic curves extend nat-
urally the classical notions in the case of elliptic curves (which is the
case n = 1):

Any elliptic curve E over Q is given by a unique equation of the
form y2 = x3 + c2x + c3, where c2, c3 ∈ Z and for all primes p:
p6 - c3 whenever p4 | c2.

The discriminant is then defined by the formula

∆(E ) := 24(−4c3
2 − 27c2

3 ),

and the naive height by

H(E ) := max{|c2|3, |c3|2}.
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The average size of the 2-Selmer group

Recall that the 2-Selmer group S2(J) of the Jacobian J = Jac(C ) of
C is a finite subgroup of the Galois cohomology group H1(Q, J[2]),
which is defined by local conditions and fits into an exact sequence

0→ J(Q)/2J(Q)→ S2(J)→XJ [2]→ 0,

where XJ denotes the Tate-Shafarevich group of J over Q.

Then our main theorem is

Theorem 1 (joint w/Dick Gross). When all odd hyperelliptic
curves of any fixed genus n ≥ 1 over Q are ordered by height, the
average size of the 2-Selmer groups of their Jacobians is equal to 3.

We actually prove something stronger, namely:

Theorem 1’ (joint w/Dick Gross). When all odd hyperelliptic
curves of any fixed genus n ≥ 1 in any family defined by finitely
many conguence conditions are ordered by height, the average size
of the 2-Selmer groups of their Jacobians is equal to 3.
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The case of genus n = 1: elliptic curves

The fact that the average size of the 2-Selmer group is 3 for elliptic
curves was proven last year in joint work with Arul Shankar.

To get a hold of 2-Selmer groups of elliptic curves, we used a cor-
respondence between 2-Selmer elements and integral binary quartic
forms, which was first introduced and used in the original computa-
tions of Birch and Swinnerton-Dyer.

The 2-Selmer group of E can be thought of as the group of locally
soluble 2-coverings of E .

A 2-covering of E is a genus one curve C that fits into a commutative
diagram

E
[2] // E

C

∼=/C

OO

/Q

??�������

The 2-covering C is called soluble if it has a rational point; locally
soluble if it has a Qp-point for all p and an R-point.
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How do binary quartics come in?

{soluble 2-coverings} ∼= E (Q)/2E (Q);

{locally soluble 2-coverings} ∼= S (2)(E ).

Lemma. (Cassels) If C is a locally soluble 2-covering of E , then
C has a positive rational divisor of degree 2 (i.e., it has a degree 2
map to P1).

Proof: We have a natural map C × C → E , via (x , y) 7→ x + y .
The inverse image of O is a set of linearly equivalent divisors, giving
a map to a curve Z of genus 0 over Q. If (x , y) is in this inverse
image, then x and y are defined over the same field.

Now C has an R-point and Qp-point for every p, implying that Z
has an R-point and Qp-point for every p. So Z ∼= P1 /Q ⇒ C is a
double cover of P1/Q. �
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Four points in P1

So if C is a locally soluble 2-covering of E , then it is a double cover
of P1, ramified at 4 points.

This gives a binary quartic form over Q,
well-defined up to GL2(Q)-equivalence.

To prove the main theorem, about the average size of the 2-Selmer
group of elliptic curves being 3:

Given an elliptic curve EA,B : y2 = x3 + Ax + B with
indivisible coefficients, choose an integral binary quartic form
f for each element of S (2)(EA,B), such that

y2 = f (x) gives the desired 2-covering over Q;
the SL2-invariants (I (f ), J(f )) of the binary quartic form agree
with the invariants (A,B) of the elliptic curve (at least away
from 2 and 3);

Count these SL2(Z)-equivalence classes of integral binary
quartic forms having bounded height via geometry-of-numbers
arguments. The binary quartic forms corresponding to
2-Selmer elements are defined by infinitely many congruence
conditions, so a sieve has to be performed.
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How to generalize to higher genus?

The key algebraic ingredient in the proof was the parametrization of
2-Selmer elements of elliptic curves by binary quartic forms.

The analogues of binary quartic forms for higher descent on elliptic
curves have been studied by Cassels, Cremona–Fisher–Stoll, and
Fisher. For further generalizations, see also Wei Ho’s talk later this
week.

What is the analogue of binary quartic forms for odd hyperelliptic
curves of higher genus?

First try: binary (2n + 2)-ic forms! This doesn’t work. (Such forms
basically give even hyperelliptic curves, not (2-Selmer) homogeneous
spaces for the Jacobians of odd hyperelliptic curves.)
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How to generalize to higher genus? (cont’d)

Note that SL2 (or rather PSL2) may be thought of as SO3; this is
because when SL2 acts on binary quadratic forms ax2 + bxy + cy2,
it fixes the discriminant A0 = b2 − 4ac (a ternary quadratic form!).

Consider the action of SO3 on the space of all ternary quadratic
forms (i.e., on the symmetric square of its standard representation).
This representation is six-dimensional. However, it is not irreducible,
since the quadratic form A0 is fixed!

The complementary 5-dimensional representation is irreducible, and
indeed this is the representation on binary quartic forms (when view-
ing the group as SL2 rather than SO3).
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since the quadratic form A0 is fixed!

The complementary 5-dimensional representation is irreducible, and
indeed this is the representation on binary quartic forms (when view-
ing the group as SL2 rather than SO3).
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How to generalize to higher genus? (cont’d)

In general, let us consider the split quadratic form

A =


1

1

. .
.

1
1

 .

in 2n + 1 variables.

Let SO2n+1 denote the orthogonal group of this quadratic form, and
consider its action on the symmetric square of its standard repre-
sentation W . The quadratic form A is again fixed, and the comple-
mentary representation V (of dimension n(2n + 3)) is irreducible.

The elements B of V (quadratic forms in 2n + 1 variables, modulo
translation by A) yield the desired generalization of binary quartic
forms.
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Invariant theory and Fano varieties of pencils of quadrics

The action of SO2n+1 on V has 2n independent invariants, given by
the coefficients of the polynomial f (x) given by

f (x) = (−1)n det(xA− B) = x2n+1 + c2x2n−1 + · · ·+ c2n+1.

(We say B is nondegenerate if Disc(f ) 6=0, which we always assume.)

Meanwhile, on the geometric side, we may associate to the element
B in V (Q) a pencil of quadrics in projective space P(W ⊕ Q) =
P2n+1: two quadrics generating this pencil are

A′ = A⊕ 0 and B ′ = B ⊕ z2.

The discriminant locus Disc(xA′ − yB ′) of this pencil is a homoge-
neous polynomial g(x , y) of degree 2n+2 satisfying g(1, 0) = 0 and
g(x , 1) = f (x).

The Fano variety FB of maximal linear isotropic subspaces of the
base locus is smooth of dimension n over Q, and forms [a principal
homogeneous space for] the Jacobian J of the curve C : y2 = f (x)
(Donagi, others).
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Fano varieties associated to elements of V

Which homogeneous spaces arise over a non–algebraically closed
field like Q?

They are all of order 2.

In fact, we prove that there is an injective map from the set of orbits
of SO2n+1(Q) on V (Q) having characteristic polynomial f (x) to the
set of elements in the Galois cohomology group H1(Q, J[2]). So this
is a good place to look for 2-Selmer elements of J!

Let us say that B is locally soluble if the associated Fano variety FB

has points over Qv for all places v . Then we prove:

Theorem. Let C : y2 = f (x) be an odd hyperelliptic curve of
genus n. Then the classes in the 2-Selmer group of the Jacobian
J of C over Q correspond bijectively to the SO2n+1(Q)-orbits of
locally soluble elements inV (Q)having characteristic polynomial f (x).

When n = 1, this recovers the classical correspondence of Birch and
Swinnerton-Dyer between 2-Selmer elements of elliptic curves and
locally soluble binary quartic forms over Q.
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How to construct an orbit in V (Q) from a 2-Selmer
element

Given an odd hyperelliptic curve C : y2 = f (x) of genus n over Q
with Jacobian J, define the Q-algebra L := Q[x ]/(f (x)), and let β
denote the image of x in L.

We use (L∗/L∗2)N≡1 to denote the kernel of the norm map from
L∗/L∗2 to Q∗/Q∗2.

Theorem (Schaefer). There is a natural isomorphism

H1(Q, J[2]) ∼= (L∗/L∗2)N≡1.
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How to construct an orbit in V (Q) from a 2-Selmer
element (cont’d)

Given an element of α ∈ (L∗/L∗2)N≡1
∼= H1(Q, J[2]),

we can con-
struct a pencil of quadrics on P(L) ∼= P2n generated by

Aα = Tr(αλ2/f ′(β)) and Bα = Tr(αβλ2/f ′(β))

leading to a pencil of quadrics on P(L⊕Q) ∼= P2n+1 generated by
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How to construct an orbit in V (Q) from a 2-Selmer
element (cont’d)

If Fα is a trivial principal homogeneous space over Qp,

so it has a Qp-
rational point, then this Qp-point corresponds to an n-dimensional
subspace Y in (L⊕Q)⊗Qp which is isotropic for both A′α and B ′α
when viewed as quadrics over Qp. The projection X of Y is isotropic
for Aα and has dimension n over Qp.

Hence Aα defines a split quadratic space over Qp. If this is true for
all p, then Aα defines a split quadratic space over Q.

Therefore, by a simultaneous rational change of basis on Aα and Bα,
we can make Aα equal to A and then the resulting Bα yields the
desired element of V (Q) whose orbit corresponds to the 2-Selmer
class α.

This gives an explicit correspondence between 2-Selmer classes of
the Jacobian J of C : y2 = f (x) and locally soluble SO2n+1(Q)-
orbits on V (Q) having characteristic polynomial f (x).
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Integral theory

We have seen that if f (x) ∈ Z[x ] is a polynomial of degree 2n + 1
with nonzero discriminant, then the 2-Selmer elements of the Ja-
cobian J of C : y2 = f (x) can be represented as locally soluble
SO2n+1(Q)-orbits on V (Q) having characteristic polynomial f (x).

In each such orbit corresponding to a 2-Selmer element, can we
always find an integral point, i.e., a locally soluble SO2n+1(Z)-orbit
on V (Z) with characteristic polynomial f (x)?

Yes! (except possibly at the prime 2)

Proof involves classifying integral orbits in terms of suitable ideal
classes in the order Z[x ]/(f (x)), and then playing with Newton poly-
gons to produce such integral orbits locally from local points.
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Counting integral orbits of bounded height

Once we know the existence of integral orbits, we can count how
many there are up to bounded height using geometry-of-numbers
arguments.

Namely, we construct suitable fundamental domains for the action
of SO2n+1(Z) on V (R), and enumerate the number lattice points
in these regions having bounded invariants.

The primary obstacle in this counting, as in representations encoun-
tered previously, is that the fundamental region in which one has
to count points is not compact but instead has a rather complex
system of cusps going off to infinity. A priori, it could be difficult
to obtain exact counts of points of bounded height in the cusps
of these fundamental regions. We show however that, for all n,
most of the integer points in the cusps are points corresponding to
the identity element of the 2-Selmer group; meanwhile, most of the
points in the main bodies of these fundamental regions correspond
to non-identity elements.
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Sieve

We are interested in counting not all integral orbits, but only those
which are locally soluble, and we only want to count one integral
orbit for each locally soluble rational orbit.

The orbits we wish to count are determined by infinitely many con-
gruence conditions, and a sieve is required to obtain a correct asymp-
totic count of exactly those points.

In the end, we find that the average occurring in Theorem 1 arises
naturally as the sum of two contributions. One comes from the main
body of the fundamental region, which corresponds to the average
number of non-identity elements in the 2-Selmer group and which
we show is given by the Tamagawa number (= 2) of the group
SO(W ) over Q. The other comes from the cusp of the fundamental
region,which counts the average number (= 1) of identity elements
in the 2-Selmer group.

The sum 2 + 1 = 3 then gives us the average size of the 2-Selmer
group, as stated in Theorem 1.
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body of the fundamental region, which corresponds to the average
number of non-identity elements in the 2-Selmer group and which
we show is given by the Tamagawa number (= 2) of the group
SO(W ) over Q. The other comes from the cusp of the fundamental
region,which counts the average number (= 1) of identity elements
in the 2-Selmer group.

The sum 2 + 1 = 3 then gives us the average size of the 2-Selmer
group, as stated in Theorem 1.
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The average size of the 2-Selmer group

The same arguments work also in any congruence family of odd
hyperelliptic curves.

Thus we obtain

Theorem 1’. When all odd hyperelliptic curves of any fixed genus
n ≥ 1 in any family defined by finitely many conguence conditions
are ordered by height, the average size of the 2-Selmer groups of
their Jacobians is equal to 3.
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Some consequences for the average rank

Corollary. When all odd hyperelliptic curves of genus n (in any
congruence family) are ordered by height, the average rank of their
Jacobians is bounded by 1.5.

Proof: Since the rank of the Mordell-Weil group J(Q) is at most the
2-rank r2(S2(J)) of the 2-Selmer group of the Jacobian J, and since
2r2(S2(J)) ≤ 2r2(S2(J)) = #S2(J), by taking averages we obtain that
twice the average rank is at most 3, as desired. �

Note that the average rank is bounded by 1.5, independent of the
genus.

(The same is true also for the average size of XJ [2].)
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Chabauty–Coleman’s p-adic method

Recall that the method of Chabauty, as refined by Coleman, yields
a finite and effective bound on the number of rational points on
a curve over Q whenever its genus is greater than the rank of its
Jacobian. Theorem 1 thus implies

Corollary. Let δn denote the lower density of odd hyperelliptic curves
of genus n satisfying Chabauty’s condition. Then δn → 1 as n→∞.

That is, for an asymptotic density of 1 of odd hyperelliptic curves,
one can effectively bound the number of rational points.
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Chabauty–Coleman’s p-adic method (cont’d)

As an explicit consequence, we may use the main Theorem 1, to-
gether with Chabauty–Coleman’s method as in Stoll’s treatment, to
prove the following explicit bounds on the number of rational points
on odd hyperelliptic curves:

Corollary.

(a) For any n ≥ 2, a positive proportion of odd hyperelliptic
curves of genus n have at most 3 rational points.

(b) For any n ≥ 3, a majority (i.e., a proportion of > 50%)
of all odd hyperelliptic curves of genus n have less than
20 rational points.

The numbers in the Corollary can certainly be improved with a
more careful analysis. Bjorn Poonen and Michael Stoll have re-
cently shown us arguments that use Theorem 1 with more refined
Chabauty–Coleman–style arguments to improve the numbers in (a)
and (b) (provided n ≥ 3) to 1 and 8 respectively. For the latest, see
the next talk!
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Chabauty–Coleman’s p-adic method (cont’d)

As an explicit consequence, we may use the main Theorem 1, to-
gether with Chabauty–Coleman’s method as in Stoll’s treatment, to
prove the following explicit bounds on the number of rational points
on odd hyperelliptic curves:

Corollary.

(a) For any n ≥ 2, a positive proportion of odd hyperelliptic
curves of genus n have at most 3 rational points.

(b) For any n ≥ 3, a majority (i.e., a proportion of > 50%)
of all odd hyperelliptic curves of genus n have less than
20 rational points.

The numbers in the Corollary can certainly be improved with a
more careful analysis. Bjorn Poonen and Michael Stoll have re-
cently shown us arguments that use Theorem 1 with more refined
Chabauty–Coleman–style arguments to improve the numbers in (a)
and (b) (provided n ≥ 3) to 1 and 8 respectively. For the latest, see
the next talk!
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Even hyperelliptic curves

The odd case was a good and important preparation for the general
even case.

Next time: Most general (even) hyperelliptic curves have no rational
points!
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