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Take VdP with α large and constant forcing a

   .
εx = y-x3/3+x
                                       .     
  y = a-x

..                .
x + α(x -1)x + x = a2Second order ODE:

Rewritten as first order system:

where:   0     ε=1/α        1< �

Long-term dynamics of when a is varied:
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Time-scale analysis: from ε > 0 to ε = 0
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 y’ = ε(a-x)

   ε > 0    
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   ε = 0: Layer sys. 

                                            
  y’ = 0

Limiting system for the fast dynamics:



  . x ∼ O(1/ε) ⇒ x is fast 
  . y ∼ O(1) ⇒ y is slow 

   slow subsystem   
0 = y-x3/3+x                                       

ε = 0: Reduced sys.    
                                       .     
  y = a-x

Limiting system for the slow dynamics:

ODE defined on the 
cubic S:={y=x   -x}3

/3

   
x’ = y-x3/3+x                                       

   ε = 0: Layer sys. 

                                            
  y’ = 0

Limiting system for the fast dynamics:

   fast subsystem

family of ODEs param. by y 
S is a set of equilibria

Time-scale analysis: from ε > 0 to ε = 0



Time-scale analysis: dynamics from ε = 0 to ε > 0 

• away from the slow curve S, the overall dynamics is fast
• in an ε-neighbourhood of S, the overall dynamics is slow

• Transition: bifurcation points of the fast dynamics

Note  S has 2 fold points ⇒ different stability on each side:
S  is attracting and S  is repelling a r
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For ε > 0 there are Fenichel slow manifolds or rivers

Fenichel theory: dynamics from ε = 0 to ε > 0 



Back to Benoît et al.

• The VdP system has limit cycles which

✓ follow the attracting part S of the cubic nullcline S ...
✓ all the way down to the fold point and then ...
✓ continue along the repelling part S of S!
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Why do canard cycles exist in an 
exponentially small parameter range?

Answer:
is repelling so to follow it for a time 

the solution (cycle) must be exponentially
close to it.

Sr
t = O(1/ε)
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2D Hodgkin-Huxley
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Mixed mode oscillations

Canard explosion with a drift



Mixed mode oscillations
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Mixed mode oscillations

M. Brons, M. Krupa and M. Wechselberger. Mixed mode oscillations due to the generalized canard 
phenomenon. Fields Inst. Comm. 49, 39-63 (2006)
M. Krupa, N. Popovic and N. Kopell. Mixed-mode oscillations in three timescale systems--a 
prototypical example. SIAM J. Appl. Dyn. Sys. 7, 361-420 (2008)
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Applications, mixed mode oscillations
H. Rotstein, T. Oppermann, J. White, and N. Kopell

The dynamic structure underlying subthreshold oscillatory 
activity and the onset of spikes in a model of medial 
entorhinal cortex stellate cells. 

J. Comput. Neurosci., 2006
Biol Cybern (2007) 97:5–32
DOI 10.1007/s00422-007-0153-5
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Giant squid-hidden canard: the 3D geometry
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Abstract This work is motivated by the observation of
remarkably slow firing in the uncoupled Hodgkin–Huxley
model, depending on parameters τh, τn that scale the rates of
change of the gating variables. After reducing the model to
an appropriate nondimensionalized form featuring one fast
and two slow variables, we use geometric singular perturba-
tion theory to analyze the model’s dynamics under system-
atic variation of the parameters τh, τn , and applied current
I . As expected, we find that for fixed (τh, τn), the model
undergoes a transition from excitable, with a stable resting
equilibrium state, to oscillatory, featuring classical relaxa-
tion oscillations, as I increases. Interestingly, mixed-mode
oscillations (MMO’s), featuring slow action potential gener-
ation, arise for an intermediate range of I values, if τh or τn
is sufficiently large. Our analysis explains in detail the geo-
metric mechanisms underlying these results, which depend
crucially on the presence of two slow variables, and allows
for the quantitative estimation of transitional parameter val-
ues, in the singular limit. In particular, we show that the sub-
threshold oscillations in the observed MMO patterns arise
through a generalized canard phenomenon. Finally, we dis-
cuss the relation of results obtained in the singular limit to
the behavior observed away from, but near, this limit.

J. Rubin (B)
Department of Mathematics
and Center for the Neural Basis of Cognition,
University of Pittsburgh, Pittsburgh, PA, USA
e-mail: rubin@math.pitt.edu

M. Wechselberger
School of Mathematics and Statistics,
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Sydney, NSW, Australia

1 Introduction

The Hodgkin–Huxley (HH) model (Hodgkin and Huxley
1952) for the action potential of the space-clamped squid
giant axon is defined by the following 4D vector field:

C
dV
dt

= I − INa − IK − IL

dm
dt

= φ[αm(V )(1 − m) − βm(V ) m]
dh
dt

= φ[αh(V )(1 − h) − βh(V ) h]
dn
dt

= φ[αn(V )(1 − n) − βn(V ) n] .

(1.1)

We use modern conventions such that the spikes of action
potentials are positive, and the voltage V̄ of the original HH
model (Hodgkin and Huxley 1952) is shifted relative to the
voltage V of this model by V̄ = (V + 65).

The first equation is obtained by applying Kirchhoff’s law
to the space-clamped neuron, i.e. the transmembrane current
is equal to the sum of intrinsic currents. C is the capacitance
density in µF/cm2, V is the membrane potential in mV and
t is the time in ms. The ionic currents on the right hand side
are given by

INa = gnam3h(V − ENa) , IK = gkn4(V − EK ),

IL = gl(V − EL)
(1.2)

with a fast sodium current INa , a delayed rectifier potassium
current IK and a small leak current IL , which consists mainly
of chloride current. The current densities Ix (x = Na, K , L)
are measured in µA/cm2 and the conductance densities gx in
mS/cm2. The parameter I represents current injected
into the space-clamped axon and Ex are the equilibrium
potentials or Nernst potentials in mV for the various ions.
The parameters are given by

123

J. Rubin and M. Wechselberger

Biol Cybern (2007) 97:5–32
DOI 10.1007/s00422-007-0153-5

ORIGINAL PAPER

Giant squid-hidden canard: the 3D geometry
of the Hodgkin–Huxley model

Jonathan Rubin · Martin Wechselberger

Received: 8 November 2006 / Accepted: 11 March 2007 / Published online: 26 April 2007
© Springer-Verlag 2007

Abstract This work is motivated by the observation of
remarkably slow firing in the uncoupled Hodgkin–Huxley
model, depending on parameters τh, τn that scale the rates of
change of the gating variables. After reducing the model to
an appropriate nondimensionalized form featuring one fast
and two slow variables, we use geometric singular perturba-
tion theory to analyze the model’s dynamics under system-
atic variation of the parameters τh, τn , and applied current
I . As expected, we find that for fixed (τh, τn), the model
undergoes a transition from excitable, with a stable resting
equilibrium state, to oscillatory, featuring classical relaxa-
tion oscillations, as I increases. Interestingly, mixed-mode
oscillations (MMO’s), featuring slow action potential gener-
ation, arise for an intermediate range of I values, if τh or τn
is sufficiently large. Our analysis explains in detail the geo-
metric mechanisms underlying these results, which depend
crucially on the presence of two slow variables, and allows
for the quantitative estimation of transitional parameter val-
ues, in the singular limit. In particular, we show that the sub-
threshold oscillations in the observed MMO patterns arise
through a generalized canard phenomenon. Finally, we dis-
cuss the relation of results obtained in the singular limit to
the behavior observed away from, but near, this limit.

J. Rubin (B)
Department of Mathematics
and Center for the Neural Basis of Cognition,
University of Pittsburgh, Pittsburgh, PA, USA
e-mail: rubin@math.pitt.edu

M. Wechselberger
School of Mathematics and Statistics,
University of Sydney,
Sydney, NSW, Australia

1 Introduction

The Hodgkin–Huxley (HH) model (Hodgkin and Huxley
1952) for the action potential of the space-clamped squid
giant axon is defined by the following 4D vector field:

C
dV
dt

= I − INa − IK − IL

dm
dt

= φ[αm(V )(1 − m) − βm(V ) m]
dh
dt

= φ[αh(V )(1 − h) − βh(V ) h]
dn
dt

= φ[αn(V )(1 − n) − βn(V ) n] .

(1.1)

We use modern conventions such that the spikes of action
potentials are positive, and the voltage V̄ of the original HH
model (Hodgkin and Huxley 1952) is shifted relative to the
voltage V of this model by V̄ = (V + 65).

The first equation is obtained by applying Kirchhoff’s law
to the space-clamped neuron, i.e. the transmembrane current
is equal to the sum of intrinsic currents. C is the capacitance
density in µF/cm2, V is the membrane potential in mV and
t is the time in ms. The ionic currents on the right hand side
are given by

INa = gnam3h(V − ENa) , IK = gkn4(V − EK ),

IL = gl(V − EL)
(1.2)

with a fast sodium current INa , a delayed rectifier potassium
current IK and a small leak current IL , which consists mainly
of chloride current. The current densities Ix (x = Na, K , L)
are measured in µA/cm2 and the conductance densities gx in
mS/cm2. The parameter I represents current injected
into the space-clamped axon and Ex are the equilibrium
potentials or Nernst potentials in mV for the various ions.
The parameters are given by

123

M. Krupa, N. Popovic, N. Kopell and H. G. Rotstein.
Mixed-mode oscillations in a three 

timescale model of a dopamine neuron. 

of tethered satellite systems and their stability for very stiff tethers. Dyn. Syst. 16,

253–278 (2001).

[21] M. Krupa and P. Szmolyan. Transcritical and pitchfork singularities of critical man-

ifolds. Nonlinearity 14, 1473–1491. (2001)

[22] M. Krupa, I. S. Melbourne. Asymptotic stability of heteroclinic cycles in systems

with symmetry, II. Proc. Roy. Soc. Edinburgh A 134A, p. 1177-1197, (2004)

[23] S.A. van Gils, M. Krupa and P. Szmolyan. Asymptotic expansions using blow-up.

ZAMP 56, 369-397, (2005)

[24] M.Krupa, W. Poth, M. Schagerl, A. Steindl, W. Steiner, H. Troger, G. Wiedermann.

Modelling, dynamics and control of tethered satellite systems. Nonlinear Dynam. 43 73-

96 (2006)

[25] E. Barany and M. Krupa, Stability of multiple access network control schemes with

carrier sensing and exponential backoff, Physica A 363 573-590 (2006)

[26] M. Golubitsky and M. Krupa. Stability Computations for Nilpotent Hopf Bifurca-

tions in Coupled Cell Systems. International Journal of Bifurcation and Chaos 17 pp.

2595-2603 (2007)

[27] M. Krupa, N. Popovic and N. Kopell. Mixed-mode oscillations in three timescale

systems–a prototypical example. SIAM J. Appl. Dyn. Sys., 7 (2) pp. 361-420 (2008).

[28] M. Krupa, N. Popovic, N. Kopell and H. G. Rotstein. Mixed-mode oscillations in a

three timescale model of a dopamine neuron. Chaos, 18, p. 015106 (2008).

[29] H. Cagnan, H. Meijer, S. van Gils, M. Krupa, T. Heida, M. Rudolph, W. Wadman

and H. Martens. Frequency-selectivity of a thalamocortical relay neuron during Parkin-

son’s disease and deep brain stimulation: a computational study. Eur J Neurosci 30, pp.
1306-1317 (2009)

[30] J. Jalics, M. Krupa and H. G. Rotstein. A novel canard-based mechanism for mixed-

mode oscillations in a neuronal model. Dynamical Systems – International Journal 25
(4): 445-482, (2010).

[31] C. Börgers, S. Gielen, and M. Krupa. The response of a population of classical

Hodgkin-Huxley neurons to an inhibitory pulse. Journal of Comp. Neurosci. 28, 509-

526 (2010)

[32] S. Gielen, M. Krupa, M. Zeitler. Gamma oscillations as a mechanism for selective

information transmission. Biological Cybernetics, 103 (2), 151-165 (2010)

[33] M. Krupa and M. Wechselberger. Folded saddle-node of type II. J. Differential
Equations, 248 2841-2888 (2010).

[34] H. Meijer, M. Krupa, H. Cagnan T. Heida, H. Martens and S. van Gils. From

parkinsonian thalamic activity to suppression by Deep Brain Stimulation: new insights

from computational modeling. J. Neur. Eng. 8 (2011)

Publications in conference proceedings

[35] A. Vanderbauwhede, M. Krupa and M. Golubitsky. Secondary bifurcations in sym-

metric systems. Proc. Equadiff Conference 1987, Lecture Notes in Pure and Applied

Mathematics, 118, Marcel Dekker, New York, Basel (1989).

[36] D.G. Aronson, S.A. van Gils and M. Krupa. Homoclinic twist and bifurcation. In:

Bifurcation and Symmetry, edited by E. Allgower, K. Böhmer and M. Golubitsky, Inter-
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Cdv/dt = I − IL − INa − IK (1)

I (applied current) is const
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x = m, h, n gating variables.
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(x− x∞(v))

Known time scale separation: v and m are fast, h and m are slow.

4D → 3D reduction: m = m∞(v)
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Spike adding canard explosion and
mixed-mode bursting oscillations MMBOs
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Appendix. Asymptotics of the number of spikes per burst as ε → 0.

Given a system of the form

x
� =f(x, y)

y
� =εg(x, y), x ∈ R2

, y ∈ R.
(17)

Suppose that for ε = 0 there exists a family of periodic orbits of the layer problem x� = f(x, y),
parametrized monotonically by y, continuing from a Hopf bifurcation to a homoclinic orbit. We denote

the periodic orbits in this family by p(t, y), with Ty denoting the period of the orbit t → p(t, y). The set

M0 = ∪{p(t, y) : t ∈ [0, Ty), y ∈ (yHopf , yhom)},

is a normally hyperbolic attracting invariant manifold M0 for ε = 0 (excluding the immediate neighbor-

hood of the Hopf bifurcation). Since it is normally hyperbolic, it persists to a nearby invariant manifold

Mε. The evolution of y for the vector field restricted to Mε, is given by

y
� = εg(p(t, y), y) +O(ε2).

Discarding the O(ε) and averaging we obtain

y
� = ε

1

Ty
G(y),

where

G(y) =

� Ty

0

g(p(τ, y), y)dτ,

see, for example, [25] or [26]. To find the lowest order approximation to the number of rotations incurred

as the flow passes from y = 0 to y = yhom, we note that the increment in the amount of rotation incurred

as y moves from some y0 to y0 +∆y is given by

∆R =
∆t

Ty0

=
1

ε

∆y

G(y0)
.

Hence,

R =
1

ε

� yhom

yHopf

dy

G(y)
.

Finally, if a trajectory of (17) is attracted to Mε close to a periodic orbit corresponding to some y0

between yHopf and yhom, then the estimate of the number of fast oscillations it makes is given by:

R(y0) =
1

ε

� yhom

y0

dy

G(y)
.
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Cdv/dt = I − IL − INa − IK (1)

I (applied current) is const

IL = gL(v − VL) INagNam
3h(v − VNa) IK = gKn

4(v − VK)

x = m, h, n gating variables.

dx/dt =
1

τx(v)
(x− x∞(v))

Known time scale separation: v and m are fast, h and m are slow.

4D → 3D reduction: m = m∞(v)

3D → 2D reduction (Rinzel): h(t) = 0.8− n(t)
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Square wave burster

Context:  Morris-Lecar type system (extra slow variable):

v� =I − 0.5(v + 0.5)− 2w(v + 0.7)− 0.5(1 + tanh(
v − 0.1

0.145
))(v − 1)

w� =1.15(0.5(1 + tanh(
v + 0.1

0.15
)− w) cosh(

v − 0.1

0.29
)

I � =ε(k − v)

Two fast and one slow variable
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The Hindmarsh-Rose burster

x� = y − ax3 + bx2 + I − z

y� = c− dx2 − y

z� = ε(s(x− x1)− z)

Bifurcation diagram
 fast system

The Hindmarsh-Rose burster

x� = y − ax3 + bx2 + I − z

y� = c− dx2 − y

z� = ε(s(x− x1)− z)
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Phase portrait of the fast system
 for different values of z
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Spike-adding via canards



Spike-adding via canards (cont)
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Adding the first spike
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Adding a spike within canard explosion

maximal 
canard 1 spike

maximal 
canard 2 spikes

intermediate canard 
  2 spikes



MMOs
slow oscillations (+ 1 spike)

Bursting
fast oscillations (+ quiescent phase) 

+ = ... ?

Combination of MMO and bursting (II)



➟ Minimal system:  2 fast & 2 slow variables

• different time scales, fast and slow complex oscillations

MMOs
slow oscillations (+ 1 spike)

Bursting
fast oscillations (+ quiescent phase) 

+ = ... ?

Combination of MMO and bursting (II)



“MMOs + Bursting” = “Mixed-Mode Bursting Oscillations (MMBOs)”

 ← 2 slow variables  →

← 2 fast variables →



➟ 2 fast: ε1ẋ1 = f1
ε2ẋ2 = f2

“MMOs + Bursting” = “Mixed-Mode Bursting Oscillations (MMBOs)”

 ← 2 slow variables  →

← 2 fast variables →



➟ 2 slow: ẏ1 = g1
ẏ2 = g2
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ε2ẋ2 = f2

“MMOs + Bursting” = “Mixed-Mode Bursting Oscillations (MMBOs)”

 ← 2 slow variables  →

← 2 fast variables →



➟ 2 slow: ẏ1 = g1
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➟ 2 fast: ε1ẋ1 = f1
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“MMOs + Bursting” = “Mixed-Mode Bursting Oscillations (MMBOs)”
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➟ 2 slow: ẏ1 = g1
ẏ2 = g2

➟ 2 fast: ε1ẋ1 = f1
ε2ẋ2 = f2

“MMOs + Bursting” = “Mixed-Mode Bursting Oscillations (MMBOs)”
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➟ 2 slow: ẏ1 = g1
ẏ2 = g2

➟ 2 fast: ε1ẋ1 = f1
ε2ẋ2 = f2

“MMOs + Bursting” = “Mixed-Mode Bursting Oscillations (MMBOs)”

 ← 2 slow variables  →

← 2 fast variables →

Bursting



➟ 2 slow: ẏ1 = g1
ẏ2 = g2

➟ 2 fast: ε1ẋ1 = f1
ε2ẋ2 = f2

“MMOs + Bursting” = “Mixed-Mode Bursting Oscillations (MMBOs)”

 ← 2 slow variables  →

← 2 fast variables →

➟ Combine theories ... and questions:  
what patterns of oscillations ?  
what organising centres ?  



Our strategy to construct and analyse
a 4D slow-fast system with MMBOs

• start from a burster (Hindmarsh-Rose in our case)
• add a slow variable
• similarly to the MMO case, we want MMBOs to be the result to a slow passage through a 
canard explosion
➠ we will construct a slow passage through a spike-adding canard explosion
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x� = y − ax3 + bx2 + I − z

y� = c− dx2 − y

z� = ε(s(x− x1)− z)

I �= ε(k − hx(x− xfold)
2 − hy(y − yfold)

2 − hI(I − Ifold))

Hindmarsh-Rose



Understanding MMBOs as a slow passage
x� = y − ax3 + bx2 + I − z

y� = c− dx2 − y

z� = ε(s(x− x1)− z)

I �= ε(k − hx(x− xfold)
2 − hy(y − yfold)

2 − hI(I − Ifold))



Controlling the number of SAOs 
using folded node theory

x� = y − ax3 + bx2 + I − z

y� = c− dx2 − y

z� = ε(s(x− x1)− z)

I �= ε(k − hx(x− xfold)
2 − hy(y − yfold)

2 − hI(I − Ifold))

2.5 3 3.5 4
0.7

0.8

0.9

1

4.5!
x 10 4

t

I

(c) (d)

0 0.5 1 1.5 20.7

0.9

1.1

1.3

x 104
t

I

2.5 3 3.5 4
 -2

 -1

0

1

2

4.5!
x 10 4

(a)

0 1 2
 -2

 -1

0

1

2

x 104
t

x

(b)

ε = 10−3ε = 10−4



Reducing the value of epsilon
to match theoretical formulas

x� = y − ax3 + bx2 + I − z

y� = c− dx2 − y

z� = ε(s(x− x1)− z)

I �= ε(k − hx(x− xfold)
2 − hy(y − yfold)

2 − hI(I − Ifold))
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Naive approach: rescaling

We first translate the singularity to the origin:

ẋ = y − x2 − 1

3
x3

ẏ = λ− x λ = a− 1

Now rescale:

x =
√
εx̄, y = εȳ λ =

√
ελ̄

Analysis: canard phenomenon and MMOs



ẋ =
√
ε(y − x2 − 1

3

√
εx3)

ẏ =
√
ε(λ− x)

Rescaled equations (we drop the bars):

After time rescaling:

ẋ = y − x2 − 1

3

√
εx3

ẏ = λ− x



x =
√
εx̄, y = εȳ λ =

√
ελ̄

What is the problem?

If           were assumed uniformly bounded with 
respect to    then the corresponding 
neighborhood in (x, y) is        in size. 
Too small for Fenichel theory!    

(x̄, ȳ)

O(ε)
ε



Possible approaches:

Nonstandard analysis

 E. Benoît, J.-L. Callot, F. Diener and M. Diener, Chasse au canard,
Collectanea Mathematica 32 (1-2): 37-119, 1981.

Classical analysis, using stretch variables

 W. Eckhaus, Standard chase on French Ducks, Springer LNM Vol. 
985: 449-494, 1983

Blow-up
 F. Dumortier and R. Roussarie, Canard cycles and center manifolds,
 Memoirs of the American Mathematical Society 121(577), 1996.

M. Krupa and P. Szmolyan, Relaxation oscillations and canard explosion, 
Journal of Differential Equations 174(2) 312-368, 2001.



Blow-up

Singular coordinate transformation:

Φ : R+ × S4 �→ R4

x = rx̄, y = r2ȳ, ε = r2ε̄, λ = rλ̄

-it contains the rescaling

-it covers a neighborhood of fixed size (wrt to ε)



Charts of the blow-up, i.e. charts of the sphere, 
correspond to parts of the phase space

MMO IN A PHANTOM BURSTING SYSTEM 21

x

y

K2

K1K1

Fig. 3.2. Validity of the charts K1 and K2 used in the blow-up transformation 3.9 in the
original coordinates (X suppressed).

In figure 3.1, we show the result of these manifold computations. Panel (a) shows

an attracting slow manifold (red) Sa
ε and a repelling one (blue) Sr

ε , computed in

between sections Σ−0.025 and Σ0.025, together with three secondary canards (black

curves) that correspond to transversal intersections between Sa
ε and Sr

ε ; we also show

the intersection curves (red and blue curves) of the slow manifolds with both cross

sections. The spiralling behavior of the slow manifolds is typical of the folded node

scenario [27, 3]. In panel (b), we present the intersection curves of the slow manifolds

with the cross section Σ0 that contains the folded node; once more, the figure is, as

expected, very similar with previously computed slow manifolds in similar dynamical

contexts [14, 27, 3, 8].

Our proof of Theorem 3.1 is based on the application of the blow-up method and

builds on the results of [19]. In the next two paragraphs we make an outline of the

blow-up analysis. The relevant blow up transformation Φ is defined as follows:

Φ : R+ × S4 → R4,
(r, x, y,X, ε) → (r̄x̄, r̄2ȳ, r̄X̄, r̄2ε̄) = (x, y,X, ε).

(3.9)

This blow-up was used by Dumortier and Roussarie [10] to study the canard phe-

nomenon [10] and was later slightly adapted to study the folded node [10].

We should point out that S4 denotes the four dimensional sphere, which can be

identified with a collection of charts and chart-to-chart transformations defined on

the overlap of the charts. In principle the charts can be arbitrary, but in practice it

is best to use stereographic projection, which we do in our analysis. To obtain our

results we need two charts: K1, defined by setting ȳ = −1, and K2, defined by setting

ε̄ = 1. These charts have also an interpretation in terms of the original coordinates

and the associated dynamics; this can be read off from Figure 3.2. Chart K1 is where

normal hyperbolicity can be extended. Chart K2 is where at least a part of the time

scale separation is lost, in fact if the problem has genuinly just two time scales the

Chart K2 is the rescaling 

Chart K1 connects to the slow flow 

Chart K3 connects to the fast flow 



2D problems lead to 3D problems

Non-hyperbolic points

Interesting dynamics involving jumps between different
locally invariant slow manifolds is related to the loss of
normal hyperbolicity of S0. Simplest example: fold. The
following equations give an example:

εẋ = −y + x2

ẏ = g(x, y), g(0, 0) < 0.

S a S r

x

y

(a) relaxation oscillation(a) simple fold

9

Case 1:  Simple fold

Non-hyperbolic points

Interesting dynamics involving jumps between different
locally invariant slow manifolds is related to the loss of
normal hyperbolicity of S0. Simplest example: fold. The
following equations give an example:

εẋ = −y + x2

ẏ = g(x, y), g(0, 0) < 0.

S a S r

x

y

(a) relaxation oscillation(a) simple fold

9



Case II: canard pointCanard point

Canard point is a degenerate fold defined by the condition
g(0, 0) = 0 The following equations give an example:

εẋ = −y + x2

ẏ = x − λ λ ≈ 0

S a S r

(a) canard point

10

Canard point

Canard point is a degenerate fold defined by the condition
g(0, 0) = 0 The following equations give an example:

εẋ = −y + x2

ẏ = x − λ λ ≈ 0

S a S r

(a) canard point

10



ε = 0
Unfoldings of a canard point

r

a

S a S a

S r

S r S

S

canard solution

11

Unfoldings of a canard point

r

a

S a S a

S r

S r S

S

canard solution

11

Unfoldings of a canard point,  ε > 0



Case III: folded node 
(two slow one fast dimensions)

εẋ = −y + x2

ẏ = x− z

ż = µ



Folded node with ε = 0

!

y′ = x − λ

y = x2

λ′ = µ

15

0 = −y + x2

ẏ = x− z

ż = µ

reduced
equations

The slow subsystem



Explanation: λ unfoldings of a canard point

> 0

x

y

! < 0

x

y

! > 0

x

y

!

13

λ = 0

λ > 0

λ < 0



λ unfoldings of a canard point

!

y′ = x − λ

y = x2

λ′ = 0

14

Explanation:



Folded node with ε = 0

!

y′ = x − λ

y = x2

λ′ = µ

15

εẋ = −y + x2

ẏ = x− z

ż = µ

Folded node is a canard point with a drift

Folded node



Folded node

ε > 0

Folded node

!

The green trajectory and the magenta trajectory are called
primary canards
The black trajectory is a secondary canard

16

The green trajectory and the magenta trajectory are called 
primary canards

The black trajectory is a secondary canards



computed by Mathieu Desroches

Computed slow manifolds and canards
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Computed slow manifolds and canards



Continuing canards: initial situation

Sa

Sr

ξa
6

ξr
6

Lr

La

FΣfn

.

.

Secondary canard obtained by continuation

computed by Mathieu Desroches



Selected references on folded node

 E. Benoît, Canards et enlacements, 
 Publications Mathématiques de l’IHES 72(1): 63–91, 1990.

 P. Szmolyan and M. Wechselberger, Canards in     ,
 Journal of Differential Equations 177(2): 419-453, 2001.

R3

 M. Wechselberger, Existence and bifurcations of canards in      in the case of the folded node,
 SIAM Journal on Applied Dynamical Systems 4(1): 101-139, 2005.

R3

 M. Brøns, M. Krupa and M. Wechselberger, Mixed-mode oscillations due to the 
generalized canard phenomenon, in Bifurcation Theory and spatio-temporal pattern 
formation, Fields Institute Communications vol. 49, pp. 39-63, 2006.



The slow manifolds
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Multiple secondary canards 

Computed by M. Desroches



References on secondary canards

 M. Wechselberger, Existence and bifurcations of canards in      in the case of the folded node,
 SIAM Journal on Applied Dynamical Systems 4(1): 101-139, 2005.

R3

 M. Krupa, N. Popovic and N. Kopell, Mixed-mode oscillations in the three time-scale systems: A 
prototypical example, SIAM Journal on Applied Dynamical Systems 7(2): 361-420, 2008.

 M. Krupa and M. Wechselberger, Local analysis near a folded saddle-node singularity,
 Journal of Differential Equations 248(12): 2841-2888, 2010.

 M. Krupa, A. Vidal, M. Desroches and F. Clément, Multiscale analysis of mixed-mode oscillations 
in a phantom bursting model, SIAM Journal on Applied Dynamical Systems (2012)



Torus canards: transition from spiking to bursting

Early work by Izhikievich, SIAM Review,  43, 315-344, 2001.

Canonical system:

ż = (u+ iω)z + 2z|z|2 − z|z|4 + . . .

u̇ = ε(a− |z|2) + . . .

Canard explosion for amplitude equations

(related to discrete canards?)



Transition from bursting to spiking

fast spiking

modulated spiking:
small canard

modulated spiking:
canard with head

bursting: relaxation 
oscillation



The big picture

Fixed point Bursting
[fold fold-cycle]

Bursting
[canard]

AM
[canard]

Spiking

J = -32.94  (AM spiking)

Torus bifurcation (TR) 
in full system
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Slow nullcline & 
attracting FP of 
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intersect

Increasing excitation (J)

Torus canard 
explosion

Activity of a Purkinje cell
Burke, Barry, Kramer, Kaper, Desroches



Other directions

Extensions to infinite dimensions, delay eqs, PDES
Krupa, Touboul

Fine aspects of the dynamics, e.g. chaotic MMOs
Krupa, Popovic, Kopell, SIADS 2008

Systems with more than two timescales
Krupa, Vidal, Desroches, Clémént, SIADS 2012

Noise driven canards

Singular Perturbation Theory
εẋ = f(x, y) x′ = f(x, y)

ẏ = g(x, y) x ∈ Rn, y ∈ Rm y′ = εg(x, y),

slow equation fast equation

0th order approximations are given by:
f(x, y) = 0 x′ = f(x, y)

ẏ = g(x, y) y′ = 0,

reduced equation layer equation

• The set S0 = {(x, y) : f(x, y) = 0} is called the reduced
manifold.
• S0 is the phase space for the reduced problem and the set
of equilibria for the layer problem.

RuG • May 2007 – p.2/34
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Networks of canard oscillators, synchronization
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Canards in boundary value problems
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Torus canards?

Singular Perturbation Theory
εẋ = f(x, y) x′ = f(x, y)

ẏ = g(x, y) x ∈ Rn, y ∈ Rm y′ = εg(x, y),

slow equation fast equation

0th order approximations are given by:
f(x, y) = 0 x′ = f(x, y)

ẏ = g(x, y) y′ = 0,

reduced equation layer equation

• The set S0 = {(x, y) : f(x, y) = 0} is called the reduced
manifold.
• S0 is the phase space for the reduced problem and the set
of equilibria for the layer problem.
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