Canard dynamics: applications to the biosciences and theoretical aspects

M. Krupa

INRIA Rocquencourt (France)

Collaborators: M. Desroches (INRIA), T. Kaper (BU)

Outline

I Canards in two dimensions
2 Mixed-mode oscillations
3 Spike adding in square wave bursters
4 Mixed-mode bursting oscillations
5 Analysis of the canard phenomenon
6 Other directions

Take VdP with α large and constant forcing a

Second order ODE:

$$
\ddot{x}+\alpha\left(x^{2}-I\right) \dot{x}+x=a
$$

Rewritten as first order system:

$$
\begin{aligned}
\varepsilon \dot{x} & =y-x^{3} / 3+x \\
\dot{y} & =a-x
\end{aligned}
$$

Long-term dynamics of when a is varied:

via $\mathrm{a}=0.9935$

Benoît, Callot, Diener \& Diener (I98I)

Van der Pol oscillator

$$
\binom{\varepsilon \dot{x}}{\dot{y}}=\binom{y-x^{3} / 3+x}{a-x}
$$

$O(\varepsilon)$-away from the Hopf point the branch becomes almost vertical
$\varepsilon=0.001$

Benoît, Callot, Diener \& Diener (I98I)

Van der Pol oscillator

$$
\binom{\varepsilon \dot{x}}{\dot{y}}=\binom{y-x^{3} / 3+x}{a-x}
$$

Hopf bifurcation at $\mathrm{a}=1$
$O(\varepsilon)$-away from the Hopf point the branch becomes almost vertical
$\varepsilon=0.001$

Time-scale analysis: from $\varepsilon>0$ to $\varepsilon=0$

$\dot{x} \sim O(I / \varepsilon) \Rightarrow x$ is fast $\quad \dot{y} \sim O(I) \Rightarrow y$ is slow

Time-scale analysis: from $\varepsilon>0$ to $\varepsilon=0$

$$
\dot{x} \sim O(1 / \varepsilon) \Rightarrow x \text { is fast } \quad \dot{y} \sim O(1) \Rightarrow y \text { is slow }
$$

Limiting system for the slow dynamics:

$\varepsilon>0$
$\varepsilon \dot{x}=y-x^{3} / 3+x$
$\dot{y}=a-x$

$$
\begin{aligned}
& \varepsilon=0: \text { Reduced sys. } \\
& \hline 0=y-x^{3} / 3^{+} x \\
& \dot{y}=a-x
\end{aligned}
$$

Time-scale analysis: from $\varepsilon>0$ to $\varepsilon=0$

$$
\dot{x} \sim O(1 / \varepsilon) \Rightarrow x \text { is fast } \dot{y} \sim O(1) \Rightarrow y \text { is slow }
$$

Limiting system for the slow dynamics:

$\varepsilon>0$
$\varepsilon \dot{x}=y-x^{3} / 3+x$
$\dot{y}=a-x$

$$
\begin{aligned}
& \varepsilon=0: \text { Reduced sys. } \\
& \hline 0=y-x^{3} / 3^{+} x \\
& \dot{y}=a-x
\end{aligned}
$$

Limiting system for the fast dynamics:

$\varepsilon>0$
$x^{\prime}=y-x^{3} / 3+x$
$y^{\prime}=\varepsilon(a-x)$

$$
\begin{aligned}
& \varepsilon=0 \text { : Layer sys. } \\
& x^{\prime}=y-x^{3} / 3+x \\
& y^{\prime}=0
\end{aligned}
$$

Time-scale analysis: from $\varepsilon>0$ to $\varepsilon=0$

$$
\dot{\mathrm{x}} \sim \mathrm{O}(\mathrm{I} / \varepsilon) \Rightarrow \mathrm{x} \text { is fast } \quad \dot{y} \sim \mathrm{O}(\mathrm{I}) \Rightarrow \mathrm{y} \text { is slow }
$$

Limiting system for the slow dynamics:

$$
\begin{gathered}
\varepsilon=0: \text { Reduced sys. } \\
\hline 0=y-x^{3} / 3^{+} x \\
\dot{y}=a-x
\end{gathered}
$$

slow subsystem
ODE defined on the cubic $S:=\left\{y=x{ }_{13}^{3} x\right\}$

Limiting system for the fast dynamics:

$$
\begin{aligned}
& \varepsilon=0 \text { : Layer sys. } \\
& \begin{array}{l}
x^{\prime}=y-x^{3} / 3+x \\
y^{\prime}=0
\end{array}
\end{aligned}
$$

fast subsystem
family of ODEs param. by y
S is a set of equilibria

Time-scale analysis: dynamics from $\varepsilon=0$ to $\varepsilon>0$

- away from the slow curve S, the overall dynamics is fast
- in an ε-neighbourhood of S, the overall dynamics is slow
- Transition: bifurcation points of the fast dynamics

Note S has 2 fold points \Rightarrow different stability on each side: $\mathbf{S}^{\mathbf{a}}$ is attracting and $\mathbf{S}^{\boldsymbol{r}}$ is repelling

Fenichel theory: dynamics from $\varepsilon=0$ to $\varepsilon>0$

For $\varepsilon>0$ there are Fenichel slow manifolds or rivers

Back to Benoît et al.

$\begin{array}{lllll}a & -0,998 & 740 & 451 & 2\end{array}$

$\cdot 0,998 \quad 7404513$

The VdP system has limit cycles which
\checkmark follow the attracting part S of the cubic nullcline S^{a}... \checkmark all the way down to the fold point and then ... \checkmark continue along the repelling part \mathbf{S}^{r} of \mathbf{S} !

Back to Benoît et al.

a - 0,998 7404512

$\cdot 0,998 \quad 7404513$

The VdP system has limit cycles which
\checkmark follow the attracting part S of the cubic nullcline S^{a}... \checkmark all the way down to the fold point and then ... \checkmark continue along the repelling part \mathbf{S}^{r} of \mathbf{S} !

They have been called canards by the French mathematicians who discovered them

Back to Benoît et al.

a- $-0.998 \quad 740451 \quad 2$

0.9987404513

The VdP
; which
\checkmark follow the \checkmark all the wa \checkmark continu

abic nullcline S^{a}... nd then ... part \boldsymbol{S}^{r} of \boldsymbol{S} !

They have been called canards by the French mathematicians who discovered them

Why do canard cycles exist in an exponentially small parameter range?

Answer:

S^{r} is repelling so to follow it for a time $t=O(1 / \varepsilon)$ the solution (cycle) must be exponentially close to it.

- 0,998 7404512

. 0,9987404513

Applications

aerodynamics

Bifurcations and instabilities in the Greitzer model for
compressor system surge
MORTEN BRØNS
Mathematical Institue, The Technical University of Denmark, Building 303, DK-2800 Lyngby, Dermark

M. Brøns, Math. Eng. Industry 2(I): 5I-63, 1988

chemical reactions

Canard Explosion and Excltation In a Model of the Belousov-Zhabotinsky Reaction
Morten Brøns*
Mathematical Institute, The Technical University of Denmark, DK-2800 Lyngby, Denmark
and Kedma Bar-Eli
Sackler Faculty of Exact Sciences, School of Chemistry, Tel-Aviv University, Ramat Aviv 69978, Israel (Received: February 5, 1991)
M. Brøns \& K. Bar-Eli, J. Phys. Chem. 95: 8706-87I 3, I99I

False bifurcations in chemical systems: canards
By Bo Peng, Vilmos Gáspár† and Kenneth Showalter Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, U.S.A
B. Peng et al., Phil.Trans. R. Soc. Lond.A 337: 275-289, I99।

Asymptotic analysis of canards in the EOE equations and the role of the inflection line \dagger

By Morten BRøns ${ }^{1}$ and Kedma Bar-Eli ${ }^{2}$
${ }^{1}$ Mathematical Institute, The Technical University of Denmark,
DK-2800 Lyngby, Denmark
${ }^{2}$ Sackler Faculty of Exact Sciences, School of Chemistry, Tel-Aviv University, Ramat Aviv 69978, Israel
M. Brøns \& K. Bar-Eli, Proc. R. Soc. London A 445: 305-322, I 994

Applications (...)

```
Jeff Moehlis
Canards for a reduction
of the Hodgkin-Huxley equations
```

J. Moehlis, J. Math. Biol. 52: I4I-I53, 2006

> H.G. Rotstein, N. Kopell, A.M. Zhabotinsky, and I.R. Epstein,
> Canard phenomenon and localization of oscillations in the Belousov-Zhabotinsky reaction with global feedback.
J. Chemical Physics, 2003;119:8824-32

4D Hodgkin-Huxley

$$
\begin{array}{ll}
C d v / d t=I-I_{L}-I_{\mathrm{Na}}-I_{K} & I \text { (applied current) is const } \\
I_{L}=g_{L}\left(v-V_{L}\right) \quad I_{\mathrm{Na}}=g_{\mathrm{Na}} m^{3} h\left(v-V_{\mathrm{Na}}\right) & I_{\mathrm{K}}=g_{\mathrm{K}} n^{4}\left(v-V_{\mathrm{K}}\right) \\
x=m, h, n \quad \text { gating variables. } & \\
d x / d t=\frac{1}{\tau_{x}(v)}\left(x-x_{\infty}(v)\right) &
\end{array}
$$

$4 D \longrightarrow 2 D$ reduction

Known time scale separation: v and m are fast, h and m are slow.
$4 \mathrm{D} \rightarrow 3 \mathrm{D}$ reduction: $m=m_{\infty}(v)$
$3 \mathrm{D} \rightarrow 2 \mathrm{D}$ reduction $($ Rinzel $): h(t)=0.8-n(t)$

2D Hodgkin-Huxley

Mixed mode oscillations

Canard explosion with a drift

Mixed mode oscillations

Mixed mode oscillations

M. Brons, M. Krupa and M. Wechselberger. Mixed mode oscillations due to the generalized canard phenomenon. Fields Inst. Comm. 49, 39-63 (2006) M. Krupa, N. Popovic and N. Kopell. Mixed-mode oscillations in three timescale systems--a prototypical example. SIAM J.Appl. Dyn. Sys. 7, 36I-420 (2008)

Applications, mixed mode oscillations

H. Rotstein, T. Oppermann, J. White, and N. Kopell

The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells.
J. Comput. Neurosci., 2006
J. Rubin and M.Wechselberger

Giant squid-hidden canard: the 3D geometry of the Hodgkin-Huxley model

Biol Cybern (2007) 97:5-32

> M. Krupa, N. Popovic, N. Kopell and H. G. Rotstein. Mixed-mode oscillations in a three timescale model of a dopamine neuron.

$$
\text { Chaos, 18, p. } 015106 \text { (2008) }
$$

Review:

M. Deroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. Osinga, M. Wechselberger.
Mixed-mode oscillations with multiple time scales.

Spike adding canard explosion and mixed-mode bursting oscillations MMBOs

References:

D. Terman, Chaotic spikes arising from a model of bursting in excitable membranes, SIAM Journal on Applied Mathematics 51 (5) (1991) 1418-1450.
J. Guckenheimer, C. Kuehn, Computing slow manifolds of saddle type, SIADS 8, 854-879 (2009)
M. Desroches, T. J. Kaper and M. Krupa, Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a squarewave burster. Chaos 23(4), pp. 046106 (2013).

Square wave burster

Context: Morris-Lecar type system (extra slow variable):

$$
\begin{aligned}
v^{\prime} & =I-0.5(v+0.5)-2 w(v+0.7)-0.5\left(1+\tanh \left(\frac{v-0.1}{0.145}\right)\right)(v-1) \\
w^{\prime} & =1.15\left(0.5\left(1+\tanh \left(\frac{v+0.1}{0.15}\right)-w\right) \cosh \left(\frac{v-0.1}{0.29}\right)\right. \\
I^{\prime} & =\varepsilon(k-v)
\end{aligned}
$$

Two fast and one slow variable

Bursting (square wave burster)

The Hindmarsh-Rose burster

$$
\begin{aligned}
& x^{\prime}=y-a x^{3}+b x^{2}+I-z \\
& y^{\prime}=c-d x^{2}-y \\
& z^{\prime}=\varepsilon\left(s\left(x-x_{1}\right)-z\right)
\end{aligned}
$$

Spike-adding via canards

Spike-adding via canards (cont)

Adding a spike within canard explosion

Combination of MMO and bursting (II)

Combination of MMO and bursting (II)

- different time scales, fast and slow complex oscillations
" \rightarrow Minimal system: 2 fast \& 2 slow variables
"MMOs + Bursting" = "Mixed-Mode Bursting Oscillations (MMBOs)"

$\leftarrow 2$ fast variables \rightarrow
$\leftarrow 2$ slow variables \rightarrow

"MMOs + Bursting" = "Mixed-Mode Bursting Oscillations (MMBOs)"

"MMOs + Bursting" = "Mixed-Mode Bursting Oscillations (MMBOs)"

"MMOs + Bursting" = "Mixed-Mode Bursting Oscillations (MMBOs)"

$\leftarrow 2$ fast variables \rightarrow
$\leftarrow 2$ slow variables \rightarrow

MMOs
" $\mathrm{m} \rightarrow 2$ fast:

$$
\varepsilon_{2} \dot{x_{2}}=f_{2}
$$

" $\rightarrow 2$ slow:
"MMOs + Bursting" = "Mixed-Mode Bursting Oscillations (MMBOs)"

"MMOs + Bursting" = "Mixed-Mode Bursting Oscillations (MMBOs)"

$\leftarrow 2$ fast variables \rightarrow
$\leftarrow 2$ slow variables \rightarrow

" $\rightarrow 2$ fast:

$$
\begin{aligned}
& \varepsilon_{1} \dot{x_{1}}=f_{1} \\
& \varepsilon_{2} \dot{x_{2}}=f_{2}
\end{aligned}
$$

" $\rightarrow 2$ slow:

$$
\dot{y_{2}}=g_{2}
$$

Bursting

"MMOs + Bursting" = "Mixed-Mode Bursting Oscillations (MMBOs)"

"MMOs + Bursting" = "Mixed-Mode Bursting Oscillations (MMBOs)"

$\leftarrow 2$ fast variables \rightarrow
$\leftarrow 2$ slow variables \rightarrow |fmmul

" $\rightarrow 2$ fast:
" m 2 slow:

$$
\begin{aligned}
\varepsilon_{1} \dot{x_{1}} & =f_{1} \\
\varepsilon_{2} \dot{x_{2}} & =f_{2} \\
\dot{y_{1}} & =g_{1} \\
\dot{y_{2}} & =g_{2}
\end{aligned}
$$

$\xrightarrow{\prime \rightarrow}$ Combine theories ... and questions: what patterns of oscillations? what organising centres ?

Our strategy to construct and analyse a 4D slow-fast system with MMBOs

- start from a burster (Hindmarsh-Rose in our case)
- add a slow variable
- similarly to the MMO case, we want MMBOs to be the result to a slow passage through a canard explosion
Int we will construct a slow passage through a spike-adding canard explosion

$$
\begin{aligned}
& x^{\prime}=y-a x^{3}+b x^{2}+I-z \\
& y^{\prime}=c-d x^{2}-y \quad \text { Hindmarsh-Rose } \\
& z^{\prime}=\varepsilon\left(s\left(x-x_{1}\right)-z\right) \\
& I^{\prime}=\varepsilon\left(k-h_{x}\left(x-x_{\text {fold }}\right)^{2}-h_{y}\left(y-y_{\text {fold }}\right)^{2}-h_{I}\left(I-I_{\text {fold }}\right)\right)
\end{aligned}
$$

Understanding MMBOs as a slow passage

```
\(x^{\prime}=y-a x^{3}+b x^{2}+I-z\)
\(y^{\prime}=c-d x^{2}-y\)
\(z^{\prime}=\varepsilon\left(s\left(x-x_{1}\right)-z\right)\)
\(I^{\prime}=\varepsilon\left(k-h_{x}\left(x-x_{\text {fold }}\right)^{2}-h_{y}\left(y-y_{\text {fold }}\right)^{2}-h_{I}\left(I-I_{\text {fold }}\right)\right)\)
```


Controlling the number of SAOs using folded node theory

$$
\begin{aligned}
& x^{\prime}=y-a x^{3}+b x^{2}+I-z \\
& y^{\prime}=c-d x^{2}-y \\
& z^{\prime}=\varepsilon\left(s\left(x-x_{1}\right)-z\right) \\
& I^{\prime}=\varepsilon\left(k-h_{x}\left(x-x_{\text {fold }}\right)^{2}-h_{y}\left(y-y_{\text {fold }}\right)^{2}-h_{I}\left(I-I_{\text {fold }}\right)\right)
\end{aligned}
$$

Reducing the value of epsilon to match theoretical formulas

```
\(x^{\prime}=y-a x^{3}+b x^{2}+I-z\)
\(y^{\prime}=c-d x^{2}-y\)
\(z^{\prime}=\varepsilon\left(s\left(x-x_{1}\right)-z\right)\)
\(I^{\prime}=\varepsilon\left(k-h_{x}\left(x-x_{\text {fold }}\right)^{2}-h_{y}\left(y-y_{\text {fold }}\right)^{2}-h_{I}\left(I-I_{\text {fold }}\right)\right)\)
```

$\varepsilon=10^{-5}$

Analysis: canard phenomenon and MMOs

Naive approach: rescaling

We first translate the singularity to the origin:

$$
\begin{aligned}
& \dot{x}=y-x^{2}-\frac{1}{3} x^{3} \\
& \dot{y}=\lambda-x \quad \lambda=a-1
\end{aligned}
$$

Now rescale:

$$
x=\sqrt{\varepsilon} \bar{x}, \quad y=\varepsilon \bar{y} \quad \lambda=\sqrt{\varepsilon} \bar{\lambda}
$$

Rescaled equations (we drop the bars):

$$
\begin{aligned}
& \dot{x}=\sqrt{\varepsilon}\left(y-x^{2}-\frac{1}{3} \sqrt{\varepsilon} x^{3}\right) \\
& \dot{y}=\sqrt{\varepsilon}(\lambda-x)
\end{aligned}
$$

After time rescaling:

$$
\begin{aligned}
\dot{x} & =y-x^{2}-\frac{1}{3} \sqrt{\varepsilon} x^{3} \\
\dot{y} & =\lambda-x
\end{aligned}
$$

What is the problem?

$$
x=\sqrt{\varepsilon} \bar{x}, \quad y=\varepsilon \bar{y} \quad \lambda=\sqrt{\varepsilon} \bar{\lambda}
$$

If (\bar{x}, \bar{y}) were assumed uniformly bounded with respect to ε then the corresponding neighborhood in (\mathbf{x}, y) is $O(\varepsilon)$ in size.
Too small for Fenichel theory!

Possible approaches:

Nonstandard analysis

> | E. Benoît, J.-L. Callot, F. Diener and M. Diener, Chasse au canard, |
| :--- |
| Collectanea Mathematica 32 (1-2): $37-119,1981$. |

Classical analysis, using stretch variables

W. Eckhaus, Standard chase on French Ducks, Springer LNMVol. 985: 449-494, 1983

Blow-up

> F. Dumortier and R. Roussarie, Canard cycles and center manifolds, Memoirs of the American Mathematical Society $\mathbf{1 2 1}(577), 1996$.
M. Krupa and P. Szmolyan, Relaxation oscillations and canard explosion, Journal of Differential Equations 174(2) 312-368, 2001.

Blow-up

Singular coordinate transformation:

$$
\begin{gathered}
\Phi: \mathbb{R}^{+} \times \mathbb{S}^{4} \mapsto \mathbb{R}^{4} \\
x=r \bar{x}, \quad y=r^{2} \bar{y}, \quad \varepsilon=r^{2} \bar{\varepsilon}, \quad \lambda=r \bar{\lambda}
\end{gathered}
$$

-it contains the rescaling
-it covers a neighborhood of fixed size (wrt to ε)

Charts of the blow-up, i.e. charts of the sphere, correspond to parts of the phase space

Chart KI connects to the slow flow
Chart $K 2$ is the rescaling
Chart K3 connects to the fast flow

2D problems lead to 3D problems

Case I: Simple fold

$$
\begin{aligned}
\varepsilon \dot{x} & =-y+x^{2} \\
\dot{y} & =g(x, y), \quad g(0,0)<0
\end{aligned}
$$

Case II: canard point

Canard point is a degenerate fold defined by the condition $g(0,0)=0$ The following equations give an example:

$$
\begin{aligned}
\varepsilon \dot{x} & =-y+x^{2} \\
\dot{y} & =x-\lambda \quad \lambda \approx 0
\end{aligned}
$$

Unfoldings of a canard point, $\varepsilon>0$

Case III: folded node (two slow one fast dimensions)

$$
\begin{aligned}
\varepsilon \dot{x} & =-y+x^{2} \\
\dot{y} & =x-z \\
\dot{z} & =\mu
\end{aligned}
$$

The slow subsystem

Explanation: λ unfoldings of a canard point

Explanation: λ unfoldings of a canard point

Folded node

$$
\begin{aligned}
\varepsilon \dot{x} & =-y+x^{2} \\
\dot{y} & =x-z \\
\dot{z} & =\mu
\end{aligned}
$$

Folded node is a canard point with a drift

Folded node

The green trajectory and the magenta trajectory are called primary canards
The black trajectory is a secondary canards

Computed slow manifolds and canards

Secondary canard obtained by continuation

computed by Mathieu Desroches

Selected references on folded node

E. Benoît, Canards et enlacements, Publications Mathématiques de l'IHES 72(1): 63-91, 1990.
P. Szmolyan and M. Wechselberger, Canards in \mathbb{R}^{3}, Journal of Differential Equations 177(2): 419-453, 2001.
M. Wechselberger, Existence and bifurcations of canards in \mathbb{R}^{3} in the case of the folded node, SIAM Journal on Applied Dynamical Systems 4(1): 101-139, 2005.
M. Brøns, M. Krupa and M. Wechselberger, Mixed-mode oscillations due to the generalized canard phenomenon, in Bifurcation Theory and spatio-temporal pattern formation, Fields Institute Communications vol. 49, pp. 39-63, 2006.

Multiple secondary canards

Computed by M. Desroches

References on secondary canards

M. Wechselberger, Existence and bifurcations of canards in $\mathbb{R}^{3} t^{3}$ the case of the folded node, SIAM Journal on Applied Dynamical Systems 4(1): 101-139, 2005.
M. Krupa, N. Popovic and N. Kopell, Mixed-mode oscillations in the three time-scale systems: A prototypical example, SIAM Journal on Applied Dynamical Systems 7(2): 361-420, 2008.
M. Krupa and M. Wechselberger, Local analysis near a folded saddle-node singularity, Journal of Differential Equations 248(12): 2841-2888, 2010.
M. Krupa, A. Vidal, M. Desroches and F. Clément, Multiscale analysis of mixed-mode oscillations in a phantom bursting model, SIAM Journal on Applied Dynamical Systems (2012)

Torus canards: transition from spiking to bursting

 (related to discrete canards?)Early work by Izhikievich, SIAM Review, 43, 315-344, 2001.

Canonical system:

$$
\begin{aligned}
& \dot{z}=(u+i \omega) z+2 z|z|^{2}-z|z|^{4}+\ldots \\
& \dot{u}=\varepsilon\left(a-|z|^{2}\right)+\ldots
\end{aligned}
$$

Canard explosion for amplitude equations

Transition from bursting to spiking

bursting: relaxation oscillation

modulated spiking: canard with head
modulated spiking: small canard

fast spiking

\qquad

Activity of a Purkinje cell

Burke, Barry, Kramer, Kaper, Desroches

Other directions

- Extensions to infinite dimensions, delay eqs, PDES Krupa,Touboul
- Fine aspects of the dynamics, e.g. chaotic MMOs

Krupa, Popovic, Kopell, SIADS 2008

- Systems with more than two timescales

Krupa,Vidal, Desroches, Clémént, SIADS 2012

- Noise driven canards

Touboul, Krupa, Desroches, submitted 2013

- Networks of canard oscillators, synchronization
- Canards in boundary value problems
- Torus canards?

