Neural interface dynamics: from spots to spirals

The University of Nottingham

Brain and Cortex

Principal cells and interneurons

Santiago Ramón y Cajal
1900
Eugene Izhikevich 2008

Electroencephalogram (EEG) power spectrum

Population model

Firing rate activity $f(\mathrm{E})$

Firing rate activity $f(\mathrm{I})$

$$
\begin{aligned}
& \dot{\mathrm{E}}=-\frac{\mathrm{E}}{\tau_{\mathrm{E}}}+\mathrm{W}_{\mathrm{EE}} g_{\mathrm{EE}}\left(A^{+}-\mathrm{E}\right)+\mathrm{W}_{\mathrm{EI}} \mathrm{~g}_{\mathrm{EI}}\left(A^{-}-\mathrm{E}\right)+\mathrm{P}_{\mathrm{E}} \\
& \dot{\mathrm{I}}=-\frac{\mathrm{I}}{\tau_{\mathrm{I}}}+\mathrm{W}_{\mathrm{II}} g_{\mathrm{II}}\left(A^{-}-\mathrm{I}\right)+\mathrm{W}_{\mathrm{IE}} \mathrm{~g}_{\mathrm{IE}}\left(A^{+}-\mathrm{I}\right)+\mathrm{P}_{\mathrm{I}}
\end{aligned}
$$

$$
\mathrm{Qg}_{j \mathrm{E}}=\mathrm{f}(\mathrm{E})
$$

$\mathrm{Qg}_{\mathrm{j}}=\mathrm{f}(\mathrm{I})$

Steady state approximation $E=E\left(g_{E E}, g_{E I}\right) \quad I=I\left(g_{I I}, g_{I E}\right)$

$$
\begin{gathered}
\mathrm{Qg}=\mathrm{f} \\
\mathrm{f}=\mathrm{f}(\{\mathrm{~g}\})
\end{gathered}
$$

$g=\eta * f$

Alphoid chaos (IO D)

Shilnikov saddle-node route to chaos van Veen and Liley, PRL, 97, 208IOI (2006)

Spatially extended models

$$
g=w \otimes \eta * f
$$

Simplest neural field model: Wilson-Cowan ('72),Amari ('77)

$$
\mathfrak{u}(x, t)=\int_{-\infty}^{\infty} d y(x, t) w(y) \int_{0}^{\infty} d s \eta(s) f(u(x-y, t-s-|y| / v))
$$

$$
u_{a b}=\eta_{a b} * \psi_{a b}
$$

2D layers

$$
\psi_{\mathrm{ab}}(\mathbf{r}, \mathrm{t})=\int_{\mathbb{R}^{2}} \mathrm{~d} \mathbf{r}^{\prime} w_{\mathrm{ab}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \mathrm{f}_{\mathrm{b}} \circ h_{\mathrm{b}}\left(\mathbf{r}^{\prime}, \mathrm{t}-\left|\mathbf{r}-\mathbf{r}^{\prime}\right| / v_{\mathrm{ab}}\right)
$$

Turing instability analysis

E layer and I layer

$$
e^{i \mathbf{k} \cdot \mathbf{r}} e^{\lambda t}
$$

Continuous spectrum

$$
\operatorname{det}(\mathcal{D}(k, \lambda)-I)=0
$$

$$
[\mathcal{D}(k, \lambda)]_{\mathfrak{a b}}=\tilde{\eta}_{a b}(\lambda) G_{a b}(k,-i \lambda) \gamma_{b}
$$

$$
\tilde{\eta}=\mathrm{LT} \eta \quad \mathrm{G}=\mathrm{FLT} w(\mathrm{r}) \delta(\mathrm{t}-\mathrm{r} / v) \quad \gamma=\mathrm{f}^{\prime}(\mathrm{ss})
$$

S Coombes et al., PRE, 76, 05190 (2007)

Amplitude Equations (one D)

Coupled mean-field Ginzburg-Landau equations describing a Turing-Hopf bifurcation with modulation group velocity of $\mathrm{O}(1)$.

$$
\begin{aligned}
& \left.\frac{\partial A_{1}}{\partial \tau}=A_{1}\left(a+b\left|A_{1}\right|^{2}+\left.c\langle | A_{2}\right|^{2}\right\rangle\right)+d \frac{\partial^{2} A_{1}}{\partial \xi_{+}^{2}} \\
& \left.\frac{\partial A_{2}}{\partial \tau}=A_{2}\left(a+b\left|A_{2}\right|^{2}+\left.c\langle | A_{1}\right|^{2}\right\rangle\right)+d \frac{\partial^{2} A_{2}}{\partial \xi_{-}^{2}}
\end{aligned}
$$

Benjamin-Feir (BF)

Coefficients in terms of integral transforms of w and η.

Applications to co-registered EEG/fMRI Ingo Bojak

Bojak, I., Oostendorp, T. F., Reid, A.T., Kotter, R., 2009. Realistic mean field forward predictions for the integration of co-registered EEG/fMRI. BMC Neuroscience 10, L2.

A simple 2D neural field model

$$
u_{t}(x, t)=-u(x, t)+\int_{\mathbb{R}^{2}} w\left(x-x^{\prime}\right) H\left[u\left(x^{\prime}, t\right)-h\right] d x^{\prime}
$$

2D Amari model

Neural Fields:Theory and Application, (53I pages)

A simulation

An interface is easily identified

Interface dynamics in 2D

Normal velocity

$$
\nabla_{\mathbf{x}} u \cdot \frac{d \mathbf{r}}{d t}+\frac{\partial u}{\partial \mathrm{t}}=0
$$

$$
\mathbf{n} \cdot \frac{\mathrm{d} \mathbf{r}}{\mathrm{dt}}=\left.\frac{\mathbf{u}_{\mathrm{t}}}{|z|} \quad z \equiv \nabla_{\mathbf{x}} \mathfrak{u}(\mathbf{x}, \mathrm{t})\right|_{\mathbf{x}=\mathbf{r}}
$$

$$
\begin{array}{ll}
u_{\mathrm{t}}=-\mathrm{h}+\int_{\mathcal{B}} \mathrm{d} \mathbf{x}^{\prime} w\left(\left|\mathbf{r}-\mathrm{x}^{\prime}\right|\right), \\
z_{\mathrm{t}}=-z+\left.\nabla_{\mathbf{x}} \int_{\mathcal{B}} \mathrm{d} \mathbf{x}^{\prime} w\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)\right|_{\mathbf{x}=\mathbf{r}} & \int_{\mathcal{B}} \nabla \Psi=\oint_{\partial \mathcal{B}} \mathbf{n} \Psi
\end{array}
$$

K_{0} - Bessel function of the second kind

$\int_{\mathcal{B}} \mathrm{d} \mathbf{x}^{\prime} \nabla_{\mathbf{x}} \mathcal{W}\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)=-\oint_{\partial \mathcal{B}} \mathrm{d} \operatorname{sn}(\mathrm{s}) \mathcal{w}\left(\left|\mathbf{x}-\mathbf{x}^{\prime}(\mathrm{s})\right|\right)$

$$
\int_{\mathcal{B}} \mathrm{d} \mathbf{x}^{\prime} K_{0}\left(\alpha\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)=-\frac{1}{\alpha} \oint_{\partial \mathcal{B}} \mathrm{d} \operatorname{sn}(s) \cdot \frac{\mathbf{x}-\mathbf{r}(s)}{|\mathbf{x}-\mathbf{r}(s)|} K_{1}(\alpha|\mathbf{x}-\mathbf{r}(s)|)+\mathrm{C} \frac{2 \pi}{\alpha^{2}}
$$

Dynamics from data on the boundary only

For points on the boundary parametrised by s

$$
u_{t}(s)=-h+\sum_{i=1}^{N} A_{i}\left\{\oint_{\partial \mathcal{B}} d s^{\prime} \mathbf{n}\left(s^{\prime}\right) \cdot \mathbf{R}_{\mathfrak{i}}\left(s, s^{\prime}\right)+\frac{\pi}{\alpha_{i}^{2}}\right\}
$$

$$
z_{\mathfrak{t}}(\mathrm{s})=-z(\mathrm{~s})-\oint_{\partial \mathcal{B}} \mathrm{d} s^{\prime} \mathbf{n}\left(s^{\prime}\right) \mathcal{w}\left(\left|\mathbf{r}(\mathrm{s})-\mathbf{r}\left(\mathrm{s}^{\prime}\right)\right|\right)
$$

Biot-Savart style interaction

[effective repulsion between two arc length positions with anti-parallel tangent vectors]

Simple numerical scheme

Stability of stationary states

Zero normal velocity - $u_{t}=0, \mathcal{B}(t) \rightarrow \mathcal{B}_{0}$
$\mathrm{h}=\int_{\mathcal{B}_{0}} \mathrm{~d} \mathbf{x}^{\prime} w\left(\left|\mathbf{r}-\mathbf{x}^{\prime}\right|\right)=\sum_{\mathrm{i}=1}^{\mathrm{N}} A_{i}\left\{\oint_{\partial \mathcal{B}_{0}} \mathrm{~d} s^{\prime} \mathbf{n}\left(\mathrm{s}^{\prime}\right) \cdot \mathbf{R}_{\mathfrak{i}}\left(\mathrm{s}, \mathrm{s}^{\prime}\right)+\frac{\pi}{\alpha_{\mathfrak{i}}^{2}}\right\}$

$$
\widehat{\mathfrak{u}}(\widehat{\mathcal{B}})=\mathrm{h}
$$

defines $\widehat{R}=R+\delta R(\theta, t)$

Spots

Using Graf's formula:

$$
h=2 \pi \sum_{i=1}^{N} A_{i}\left\{\frac{1}{\alpha_{i}^{2}}-\frac{R}{\alpha_{i}} K_{1}\left(\alpha_{i} R\right) I_{0}\left(\alpha_{i} R\right)\right\}
$$

Linear adaptation

$$
\frac{1}{\alpha} u_{t}=-u+\psi-g a, \quad a_{t}=u-a
$$

Exploit linearity

$$
\begin{gathered}
u(\cdot, t)=\int_{-\infty}^{t} d s \eta(t-s) \psi(\cdot, s), a(\cdot, t)=\int_{-\infty}^{t} d s e^{-(t-s)} u(\cdot, s) \\
\eta(t)=\frac{\alpha}{\lambda_{-}-\lambda_{+}}\left\{\left(1-\lambda_{+}\right) e^{-\lambda_{+} t}-\left(1-\lambda_{-}\right) \mathrm{e}^{-\lambda_{-} t}\right\} \\
\lambda_{ \pm}=\frac{1+\alpha \pm \sqrt{(1+\alpha)^{2}-4 \alpha(1+g)}}{2}
\end{gathered}
$$

Easy to construct stationary spots

$$
h \rightarrow h(1+g)
$$

Instabilities and travelling pulses

Eigenvalues determined by $\mathcal{E}_{\mathfrak{m}}(\lambda)=0$

$$
\begin{gathered}
\mathcal{E}_{\mathfrak{m}}(\lambda)=\frac{1}{\widetilde{\mathfrak{n}}(\lambda)}-(1+g) W_{\mathfrak{m}} \quad \widetilde{\mathfrak{\eta}}(\lambda)=\int_{0}^{\infty} \mathrm{e}^{-\lambda s} \mathfrak{\eta}(s) \mathrm{d} s \\
W_{\mathfrak{m}}=\frac{R}{\left|\psi^{\prime}(\mathrm{R})\right|} \int_{0}^{2 \pi} \mathrm{~d} \theta \cos (\mathfrak{m} \theta) w(\mathcal{R}(\theta))
\end{gathered}
$$

$\mathrm{m}=0$ mode $(\lambda=i \omega$, breath $)$ unstable when $g>1 / \alpha$
emergent frequency $\omega=\sqrt{\alpha g-1}$
$\mathfrak{m}=1 \operatorname{mode}(\lambda \in \mathbb{R}$, drift $)$ unstable when $g>1 / \alpha$

Drifting

\ldots at the point where $g=1 / \alpha$ the shape of the spot deviates from circular with an amplitude that depends on quadratic and higher powers of c

$$
R(\theta)=R+\sum_{m \geq 2} c^{m} a_{m} \cos m \theta
$$

Lu Y,Amari S:Traveling bumps and their collisions in a 2D neural field.
Neural Computation 201I, 23:I248-I260

Drifting (weakly nonlinear analysis)

For any sigmoid drifting will occur when g increases through $1 / \alpha$

Amplitude analysis
(translation operator and drift eigen-modes):

$$
X(\mathbf{r}, \mathrm{t})=\tau(\mathbf{p})\left[S(r)+\sum_{j=1}^{2} a_{j}(t) \psi_{j}(\mathbf{r})+\chi(\mathbf{r}, \mathrm{t})\right]
$$

p denotes location of spot

$$
a=a_{1}+i a_{2}
$$

$$
\dot{\mathbf{p}}=\mathbf{a} \quad \dot{\mathrm{a}}=a\left(M_{1}|\mathrm{a}|^{2}+M_{2} \eta\right)
$$

$\pi M_{1}=\frac{1}{6}\left\langle\mathcal{F}^{\prime \prime \prime} \psi_{1}^{3} \mid \phi_{1}^{\dagger}\right\rangle+\left\langle\mathcal{F}^{\prime \prime} \psi_{1} V_{1}^{2} \mid \phi_{1}^{\dagger}\right\rangle+\left\langle\partial_{x_{1}} V_{1} \mid \phi_{1}^{\dagger}\right\rangle$,
$\pi M_{2}=\left\langle\mathcal{F}^{\prime \prime} \psi_{1} \mathrm{~V}_{4} \mid \phi_{1}^{\dagger}\right\rangle+\left\langle\gamma^{\prime}(\mathrm{S}) \psi_{1} \mid \phi_{1}^{\dagger}\right\rangle+\left\langle\partial_{x_{1}} \mathrm{~V}_{4} \mid \phi_{1}^{\dagger}\right\rangle$

Scattering

Two spots with centers offset by a vector $h=2 p$

$$
\dot{p}=a+G_{0} f(p), \quad \dot{a}=M_{1} a^{3}+M_{2} a \eta+H_{0} f(p),
$$

$$
f(p)=e^{-2 p} / \sqrt{2 p}
$$

Spirals

Spiral Waves in Disinhibited Mammalian Neocortex (rat slice) Huang et al.,J Neurosci. 2004

An interface approach (in progress)

Look for rigidly rotating solutions of the form

$$
X(r, \theta, t)=X(r, \phi) \quad \phi=\theta-\omega t
$$

$$
\psi(\mathbf{r})=\int_{\Omega} \mathrm{d} \mathbf{r}^{\prime} \mathcal{w}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)
$$

$G(\phi)=e^{A \phi}$
$X(r, \phi)=G(\phi)\left(\left[e^{-2 \pi \mathrm{~A}}-\mathrm{I}\right]^{-1} \int_{0}^{2 \pi}-\int_{0}^{\phi}\right) d \phi^{\prime} G\left(-\phi^{\prime}\right) B\left(r, \phi^{\prime}\right)$

$$
A=\left[\begin{array}{cc}
\alpha / \omega & \alpha \mathrm{g} / \omega \\
-1 / \omega & 1 / \omega
\end{array}\right], \quad \mathrm{B}(\mathrm{r}, \phi)=-\frac{\alpha}{\omega}\left[\begin{array}{c}
\psi(\mathrm{r}, \phi) \\
0
\end{array}\right]
$$

Shape of the spiral arm determined by

$$
\begin{align*}
& \left.u(\mathbf{r})\right|_{\mathbf{r} \in \partial \Omega}-\mathrm{h}=0 \\
& \mathbf{u}(\mathrm{R}, \phi)=0, \quad \forall
\end{align*}
$$

Stability:

$$
(u(r, \theta, t), a(r, \theta, t))=(u(r, \phi), a(r, \phi))+(\delta u(r, \phi), \delta a(r, \phi)) e^{\lambda t}
$$

$$
\left[\begin{array}{cc}
\lambda+\alpha-\omega \partial_{\phi}-\alpha w \odot & \alpha g \\
-1 & \lambda+1-\omega \partial_{\phi}
\end{array}\right]\left[\begin{array}{l}
\delta u \\
\delta \mathrm{a}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
[w \odot \delta u](\mathbf{r})=\oint_{\partial \Omega} \mathrm{d} s w(\mathbf{r}-\mathbf{r}(\mathrm{s})) \frac{\delta \mathfrak{u}(\mathbf{r}(\mathrm{s}))}{|\nabla \mathfrak{u}(\mathbf{r}(\mathrm{s}))|}
$$

... watch this space!

In collaboration with

Helmut Schmidt Ingo Bojak (Exeter)
(Reading)

Daniele Avitabile and Aytül Gökçe
(Nottingham)

