Anomalous scaling in a kinetically constrained model in 1+1 dimensions

Arturo L. Zamorategui.
Modélisation Stochastique

Laboratoire de Probabilités et Modèles Aléatoires.
Supervisor: Vivien Lecomte

June 10, 2014
1 Introduction
2 Part 1. Statistics
3 Results
4 Part 2. Towards an effective model
5 Partial Results
6 Perspectives
Goals

1. Understand the *phase coexistence of active-inactive regions* at the point where the *dynamical phase transition* observed in *glassy systems* occurs. Very well captured by KCMs.

2. Determine an *effective model* of the dynamics in the phase transition from the simplest possible model. Is there something simpler than a KCM?
2D binary mixture of hard disks with different radius (Keys et al Phys. Rev. X 1, 021013, 2011).

Inactive particles vs Active particles

- **Dynamic heterogeneity**: inactive regions with *slow* dynamics and active regions with *fast dynamics*.
- **Facilitated** dynamics: mobility in a region *leads* to motion of neighbouring particles. An *adjacent* excitation is required for both the birth or death of an excitation.
Introduction

Activity vs Inactivity

Inactive regions surrounded by **active** particles.

- The *persistent time* \((t_p)\): time a particle remains inactive before the first move.
- The *exchange time* \((t_x)\): time between two consecutive moves. (*Jung et al* 2004).

<table>
<thead>
<tr>
<th></th>
<th>Not a glass</th>
<th>A glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic heterogeneity</td>
<td>(\langle t_p \rangle = \langle t_x \rangle = \tau)</td>
<td>(\langle t_x \rangle \ll \langle t_p \rangle)</td>
</tr>
<tr>
<td>Facilitation</td>
<td>-</td>
<td>Particles close to excitation lines diffuse more quickly</td>
</tr>
<tr>
<td>Stokes-Einstein relations:</td>
<td>(D\eta/T = \text{constant})</td>
<td>Satisfied</td>
</tr>
<tr>
<td></td>
<td>(D\tau_\alpha = \text{constant})</td>
<td>Broken, since (\tau_\alpha \approx \langle t_p \rangle) and (D \approx \delta x^2/\langle t_x \rangle): ((D\tau_\alpha \approx \delta x^2\langle t_p \rangle/\langle t_x \rangle))</td>
</tr>
</tbody>
</table>
Dynamic heterogeneity (bubbles of inactivity) and facilitation (excitation lines) are captured by kinetically constrained models (KCMs).

- One spatial dimension (discrete) + one temporal dimension (continuous)
Dynamic heterogeneity (bubbles of inactivity) and facilitation (excitation lines) are captured by **kinetically constrained models** (KCMs).

- One spatial dimension (discrete) + one temporal dimension (continuous)
- It is a coarse-grained model with $n_i = 1$ if active and $n_i = 0$ if inactive.
A Kinetically constrained model (KCM)

Dynamic heterogeneity (bubbles of inactivity) and facilitation (excitation lines) are captured by **kinetically constrained models** (KCMs).

- One spatial dimension (discrete) + one temporal dimension (continuous)
- It is a coarse-grained model with $n_i = 1$ if active and $n_i = 0$ if inactive.

Arturo L. Zamorategui. Modélisation Stochastique

Anomalous scaling in a kinetically constrained model in 1+1 dimensions
A Kinetically constrained model (KCM)

Dynamic heterogeneity (bubbles of inactivity) and facilitation (excitation lines) are captured by **kinetically constrained models** (KCMs).

- One spatial dimension (discrete) + one temporal dimension (continuous)
- It is a coarse-grained model with $n_i = 1$ if active and $n_i = 0$ if inactive.
- Dynamic is controlled by a local **constraint**.

![Diagram of KCM with coarse-graining and constraint satisfaction](image)
Anomalous scaling in a kinetically constrained model in 1+1 dimensions

A KCM

A Kinetically constrained model (KCM)

Dynamic heterogeneity (bubbles of inactivity) and facilitation (excitation lines) are captured by **kinetically constrained models** (KCMs).

- One spatial dimension (discrete) + one temporal dimension (continuous)
- It is a coarse-grained model with \(n_i = 1 \) if active and \(n_i = 0 \) if inactive.
- Dynamic is controlled by a local **constraint**.

Arturo L. Zamorategui. Modélisation Stochastique

Anomalous scaling in a kinetically constrained model in 1+1 dimensions
Statics vs Dynamics

- Non-conservative system
- Site \(i \) changes state with rate \(f_i[(1 - c)n_i + c(1 - n_i)] \), where \(c \) is the density of active sites and \(f_i \) is the kinetic constraint.
- \(f_i = 1 \) if constraint is satisfied and \(f_i = 0 \) otherwise.
- \(f_i \) depends on the neighbourhood but not on \(n_i \).
- Detailed balanced holds w.r.t Boltzmann distribution (Bernoulli product measure) with energy \(\sum_i n_i \) and inverse temperature \(\beta \left(c = 1/(1 + e^\beta) \right) \).
- Since statics is trivial, we need a dynamical description.
A dynamic observable: the Activity

Let $C(t)$ be a configuration of the system at time t. We define a (discrete) observable as

$$A[\text{trajectory}] = \sum_{k=1}^{K} \alpha(C(t_{k-1}) \rightarrow C(t_k)),$$

over K changes of configurations between times 0 and T.

Activity

The activity is $K[\text{trajectory}] = \#\text{events}$, i.e. $\alpha(C(t_{k-1}) \rightarrow C(t_k)) = 1$ when configuration changes.
Evolution of a KCM

The master equation for the evolution of the probability $P(C, A, t)$ is

$$\frac{\partial P(C, A, t)}{\partial t} = \sum_{C'} W(C' \rightarrow C) P(C', A - \alpha(C' \rightarrow C), t) - r(C) P(C, A, t)$$

having measured a value A of the observable between 0 and t.

$r(C) = \sum_{C'} W(C \rightarrow C')$ is the escape rate.

Continuous time: at each site there is a clock that changes the state n_i after a time Δt given by $p(\Delta t) = W(n_i \rightarrow 1 - n_i)e^{-W(n_i \rightarrow 1-n_i)\Delta t}$.
To have certain dynamics one can *bias* a trajectory according to a parameter s, with trajectory with *lower than normal activity* ($s > 0$) or *higher than normal activity* ($s < 0$):

$$P[\text{trajectory}] \rightarrow P_s[\text{trajectory}] = \frac{P[\text{trajectory}]e^{-sK[\text{trajectory}]}}{Z_s},$$

where $Z_s = \langle e^{-sK[\text{trajectory}]} \rangle$.

For large observation times:

$$\lim_{t \to \infty} \frac{\ln Z_s}{t} \rightarrow \psi_K(s).$$

$\psi_K(s)$ is a **large deviation function**, also known as *dynamical free energy*.
First order phase transition

\(\psi_K(s) \) presents a singularity at \(s = 0 \):
- \(s < 0 \): trajectory where \(\langle K_t \rangle \) is larger.
- \(s = 0 \): trajectory with coexistence of active and inactive regions.
- \(s > 0 \): trajectory where \(\langle K_t \rangle \) is smaller.

Figure: Active-Inactive transition (Garrahan et al (2007)).
Fredrickson-Andersen Model (FA-1f)

- The transition rates in the FA model are

\[
W(n_i \rightarrow 1 - n_i) = f_i(n_j) \frac{e^{\beta(n_i - 1)}}{1 + e^{-\beta}},
\]

where \(f_i = 1 \) if \(\sum_{j \sim i} n_j > 0 \), i.e. if there is at least one active site in the neighbourhood, otherwise \(f_i = 0 \).

- For an activation: \(W(0 \rightarrow 1) = f_i \frac{1}{1 + e^{\beta}} \). The term \(c = 1/(1 + e^{\beta}) \) is the density of active sites.

- Mean distance between excitations: \(l = 1/c \)
Typical histories (with $s = 0$) for different densities

Histories of length $L = 100$ and $t = 1000$ for $c = 0.1$ and 0.6.
Part 1
Describe bubbles of inactivity

There is not an effective model to understand the phase coexistence of activity and inactivity which is generic in glasses.

Such a model must describe how bubbles of inactivity evolve in space-time.

1. Order columns of inactivity
2. Columns \rightarrow Nodes
3. Build adjacency matrix (from overlap of nodes)
4. Find bubbles by identifying one node, its neighbours,…
Statistics on bubbles

Focus on one bubble...
Anomalous scaling in a kinetically constrained model in 1+1 dimensions

Geometrical Properties

Area

Temporal extension

Temporal perimeter

Number of Nodes

Spatial extension

Spatial perimeter

Arturo L. Zamorategui. Modélisation Stochastique
Histograms for the Area

Varying L: Curves superimpose for different L

Varying c: As c decreases, bigger bubbles appear
Anomalous scaling in a kinetically constrained model in 1+1 dimensions

Statistics

Spatial Perimeter

\[
\langle P_S \rangle
\]

\[
\begin{align*}
data &
\zeta_1 = 0.000 \\
\zeta_2 & = 1.002
\end{align*}
\]

\[
P_S \sim \Delta t^{1.002} \text{ for large bubbles}
\]
Anomalous scaling in a kinetically constrained model in 1+1 dimensions

Statistics

Area

\[A \sim \Delta t^{1.470} \text{ for large bubbles, close to Brownian with } \zeta = 3/2. \]

*S. Majumdar et al. 2005
Anomalous scaling in a kinetically constrained model in 1+1 dimensions

Spatial extension

\[\Delta x \sim \Delta t^{0.549} \] for large bubbles, bigger than Brownian where \(\zeta = 1/2 \)
Anomalous scaling in a kinetically constrained model in 1+1 dimensions

Statistics

Mean shape of bubbles

The probability that r.w. arrives to x_1 at time t_1 given that started at x_0 at time t_0 is:

$$P_\varepsilon(x_1, t_1 | x_0, t_0) = \frac{1}{\sqrt{2\pi D(t_1 - t_0)}} \left[e^{\frac{-(x_1-x_0-\varepsilon)^2}{2D(t_1-t_0)}} - e^{\frac{-(x_1-x_0+\varepsilon)^2}{2D(t_1-t_0)}} \right]$$

The mean value of $x(t, t_1)$ is:

$$\langle x(t, t_1) \rangle_{[t_0, t_1]} = \frac{\int_0^\infty dx \ x \ P_\varepsilon(x_1, t_1 | x, t) P_\varepsilon(x, t | x_0, t_0)}{\int_0^\infty dx P_\varepsilon(x_1, t_1 | x, t) P_\varepsilon(x, t | x_0, t_0)}$$
Numerical mean shape

By scaling average curves of bubbles with duration $\Delta t - \varepsilon < \Delta t < \Delta t + \varepsilon$ as $F'(\tau) \sim \Delta t^{-\zeta} f(\tau \Delta t)$.

$\zeta = 0.5$:

$\zeta = 0.6$:

![Graph 1](image1.png)

![Graph 2](image2.png)
Part 2
Anomalous scaling in a kinetically constrained model in 1+1 dimensions
Towards an Effective model

FA model for small c

At low temperature (small c) the borders of the bubbles of inactivity in the FA model have some few active sites (left). The dynamics in the FA can be reproduced by a model of branching-coalescence (right) (Whitelan, Berthier, Garrahan 2005).

Borders of activity look like random walkers that \textit{branch}, \textit{diffuse} and \textit{coalesce}.
Branching-Coalescing process

We can simulate the system as a branching-coalescing process if
- it captures the same dynamics that the FA model
- Is valid at finite time scales
- Is analytically tractable
Model of branching coalescence

- Initial condition with density c of active sites.
Model of branching coalescence

- Initial condition with density c of active sites.
- A configuration C changes after a time Δt as $p(\Delta t) = r(C)e^{-r(C)\Delta t}$ where the escape rate is

$$r(C) = \sum_i f_i(C)[(1 - n_i)c + n_i(1 - c)] = r_{\text{act}}(C) + r_{\text{inact}}(C)$$

with activation and inactivation terms.
Anomalous scaling in a kinetically constrained model in 1+1 dimensions

(Towards an) Effective model

Model of branching coalescence

- Initial condition with density c of active sites.
- A configuration C changes after a time Δt as $p(\Delta t) = r(C)e^{-r(C)\Delta t}$ where
- the escape rate is

$$r(C) = \sum_i f_i(C)\left[(1 - n_i)c + n_i(1 - c)\right] = r_{\text{act}}(C) + r_{\text{inact}}(C)$$

- An activation with probability: $p_{\text{act}} = \frac{r_{\text{act}}(C)}{r(C)}$ and an inactivation with
 probability: $p_{\text{inact}} = \frac{r_{\text{inact}}(C)}{r(C)}$.

Arturo L. Zamorategui. Modélisation Stochastique
Anomalous scaling in a kinetically constrained model in 1+1 dimensions

(Towards an) Effective model

Model of branching coalescence

- Initial condition with density c of active sites.
- A configuration C changes after a time Δt as $p(\Delta t) = r(C)e^{-r(C)\Delta t}$ where

 $$r(C) = \sum_i f_i(C)[(1 - n_i)c + n_i(1 - c)] = r_{\text{act}}(C) + r_{\text{inact}}(C)$$

- The escape rate is

- An activation with probability: $p_{\text{act}} = \frac{r_{\text{act}}(C)}{r(C)}$ and an inactivation with probability: $p_{\text{inact}} = \frac{r_{\text{inact}}(C)}{r(C)}$.
- A border of activity constrained to have maximum 3 active sites.
Model of branching coalescence

- Initial condition with density c of active sites.
- A configuration C changes after a time Δt as $p(\Delta t) = r(C)e^{-r(C)\Delta t}$ where
 - the escape rate is
 \[r(C) = \sum_i f_i(C)[(1 - n_i)c + n_i(1 - c)] = r_{\text{act}}(C) + r_{\text{inact}}(C) \]
 - An activation with probability: $p_{\text{act}} = \frac{r_{\text{act}}(C)}{r(C)}$ and an inactivation with probability: $p_{\text{inact}} = \frac{r_{\text{inact}}(C)}{r(C)}$.
- A border of activity constrained to have maximum 3 active sites.
Strategy

In *continuous space*: two random walkers will cross an infinite number of times.

In *discrete space*: is reflected in small bubbles. Focus on branching/coalescing points of large bubbles (of duration $T > 10$)
Anomalous scaling in a kinetically constrained model in 1+1 dimensions

(Towards an) Effective model

Analysis

The rates are the same by time reversal symmetry. How often do we have a branching/coalescing event?

To have just branching and coalescing points we use a contraction algorithm until there’s no isolated point...
Analysis

The rates are the same by time reversal *symmetry*. How often do we have a branching/coalescing event?

To have just branching and coalescing points we use a *contraction* algorithm until there’s no isolated point...
Analysis

The rates are the same by time reversal symmetry. How often do we have a branching/coalescing event?

To have just branching and coalescing points we use a contraction algorithm until there's no isolated point...
We end up with a brownian net with just branching and coalescing points.

How many events occur along the borders of a bubble? The frequency of branching/coalescing should not depend on size of bubbles.
Probability distribution of frequency ν

We can study the PDF of the frequency ν of branching and coalescing events for different bubbles’ sizes.
Are branching/coalescing rates independent of bubble size?

Mean frequency $\bar{\nu}$:

Average number of events:
Perspectives

1. Check that the effective model from “brownian net” is realistic.
2. Convergence of the distribution of the event rates as statistics is increased
3. Determine average frequency $\bar{\nu}$?
4. How ν and D are related to c? Scaling limits?
5. What information do we have about the phase coexistence?
6. Low temperature limits for other KCM?
7. For a biased dynamics ($s < 0$ or $s > 0$), what can be relevant from this simple model?
Thank you for listening!
Bibliography

- D. Chandler et al. Phys Rev X 1, 021013 (2011)
Anomalous scaling in a kinetically constrained model in 1+1 dimensions

Order parameter

Activity

\[K = \Delta t \sum_{t=0}^{t_{\text{obs}}} \sum_{i=1}^{L} (r_i(t + \Delta t) - r_i(t))^2 \]

where \(L \) is the total number of particles considered and \(t_{\text{obs}} \) is the amount of time the systems is observed.

The mean activity is

\[\langle K \rangle = Lt_{\text{obs}} \langle (r_1(t + \Delta t) - r_1(t))^2 \rangle = 2dLt_{\text{obs}}D\Delta t \]
Tests

For an un**constrained model**, the probability of a configuration \(\vec{n} = (n_1, n_2, \ldots, n_L) \) is \(P_{eq}^{unc}(\vec{n}) = c^n(1 - c)^{L-n} \), therefore the average value of a site is

\[
\frac{1}{L} \left\langle \sum_i n_i \right\rangle^{unc} = c.
\]

For a **constrained model** where \(\sum_i n_i > 0 \), the probability has a normalization factor \(Z P_{eq}(\vec{n}) = \frac{c^n(1-c)^{L-n}}{Z} \) which is found to be \(Z = 1 - (1 - c)^L \). The average value of a site is

\[
\langle n_j \rangle_{eq} = \frac{c}{1 - (1 - c)^L}.
\]

We compare this value with the one obtained numerically. The bigger the lattice, the more accurate the numerical value is.
Temporal Perimeter

Area

Temporal extension

Temporal perimeter

Number of Nodes

Spatial extension
Spatial Perimeter

Area

Temporal extension

Temporal perimeter

Number of Nodes

Spatial extension

Spatial perimeter

Arturo L. Zamorategui. Modélisation Stochastique
Perimeter geometry

\[P_T \sim \Delta t \text{ for all of the bubbles and } P_S \sim \Delta t \text{ for large bubbles.} \]