Thermodynamic fluctuations in model glasses

Ludovic Berthier

Laboratoire Charles Coulomb Université Montpellier 2 & CNRS

Glassy Systems and Constrained Stochastic Dynamics – Warwick, June 11, 2014

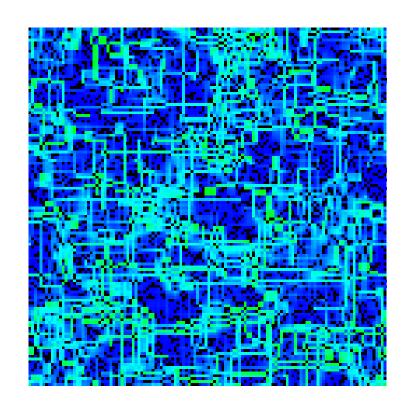
Coworkers

• With:

D. Coslovich (Montpellier)

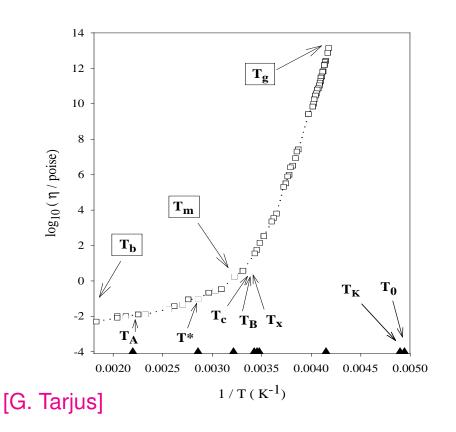
R. Jack (Bath)

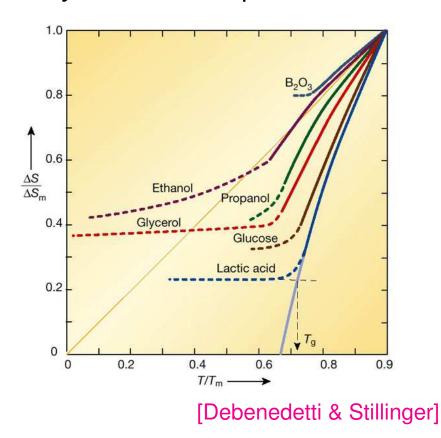
W. Kob (Montpellier)



Temperature crossovers

• Glass formation characterized by several "accepted" crossovers. Onset, mode-coupling & glass temperatures: directly studied at equilibrium.

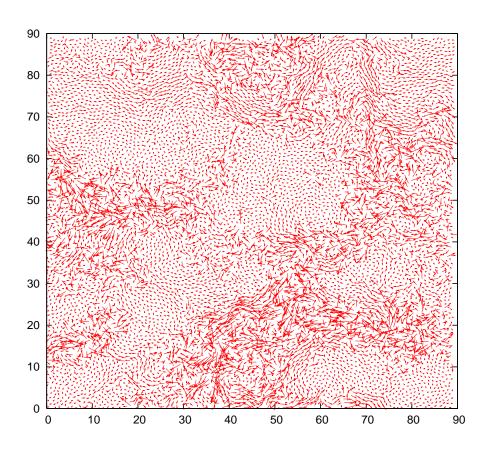




• Extrapolated temperatures for dynamic and thermodynamic singularities: T_0 , T_K . Existence and nature of "ideal glass transition" at Kauzmann temperature is controversial.

Dynamic heterogeneity

 When density is large, particles must move in a correlated way. New transport mechanisms revealed over the last decade: fluctuations matter.



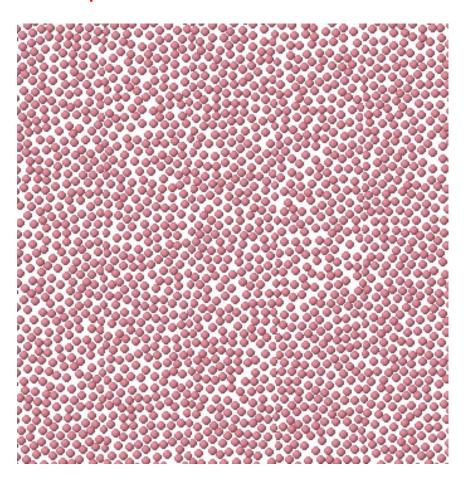
- Spatial fluctuations grow (modestly) near T_q .
- Clear indication that some kind of phase transition is not far – which?
- Structural origin not clearly established: point-to-set lengthscales, other structural indicators?

Dynamical heterogeneities in glasses, colloids and granular materials

Eds.: Berthier, Biroli, Bouchaud, Cipelletti, van Saarloos (Oxford Univ. Press, 2011).

Dynamic heterogeneity

 When density is large, particles must move in a correlated way. New transport mechanisms revealed over the last decade: fluctuations matter.

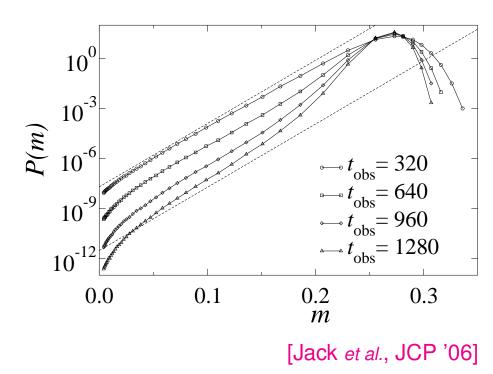


- Spatial fluctuations grow (modestly) near T_q .
- Clear indication that some kind of phase transition is not far – which?
- Structural origin not clearly established: point-to-set lengthscales and other structural indicators?

Do "convincing" thermodynamic fluctuations even exist?

Dynamical view: Large deviations

- Large deviations of fluctuations of the (time integrated) local activity $m_t = \int dx \int_0^t dt' m(x;t',t'+\Delta t)$: $P(m) = \langle \delta(m-m_t) \rangle \sim e^{-tN\psi(m)}$.
- ullet Exponential tail: direct signature of phase coexistence in (d+1) dimensions: High and low activity phases. Direct connection to dynamic heterogeneity.



- Equivalently, a field coupled to local dynamics induces a nonequilibrium first-order phase transition in the "s-ensemble". [Garrahan et al., PRL '07]
- Metastability controls this physics. "Complex" free energy landscape gives rise to same transition, but the transition exists without multiplicity of glassy states: KCM, plaquette models.

Thermodynamic view: RFOT

• Random First Order Transition (RFOT) theory is a theoretical framework constructed over the last 30 years (Parisi, Wolynes, Götze...) using a large set of analytical techniques.

[Structural glasses and supercooled liquids, Wolynes & Lubchenko, '12]

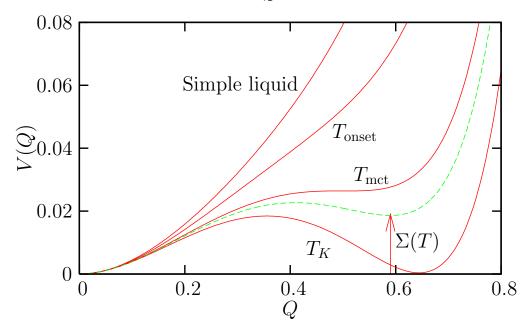
- Some results become exact for simple "mean-field" models, such as the fully connected p-spin glass model: $H = -\sum_{i_1\cdots i_p} J_{i_1\cdots i_p} s_{i_1}\cdots s_{i_p}$.
- Recently demonstrated for hard spheres as $d \to \infty$ [Kurchan, Zamponi et al.]
- Complex free energy landscape → sharp transitions: Onset (apparition of metastable states), mode-coupling singularity (metastable states dominate), and entropy crisis (metastable states become sub-extensive).
- Ideal glass = zero configurational entropy, replica symmetry breaking.
- Extension to finite dimensions ('mosaic picture') remains ambiguous.

'Landau' free energy

• Relevant thermodynamic fluctuations encoded in "effective potential" V(Q). Free energy cost, i.e. configurational entropy, for 2 configurations to have overlap Q: [Franz & Parisi, PRL '97]

$$V_{\mathbf{q}}(Q) = -(T/N) \int d\mathbf{r}_2 e^{-\beta H(\mathbf{r}_2)} \log \int d\mathbf{r}_1 e^{-\beta H(\mathbf{r}_1)} \delta(Q - Q_{12})$$

where: $Q_{12} = \frac{1}{N} \sum_{i,j=1}^{N} \theta(a - |\mathbf{r}_{1,i} - \mathbf{r}_{2,j}|)$.



• V(Q) is a 'large deviation' function, mainly studied in mean-field RFOT limit.

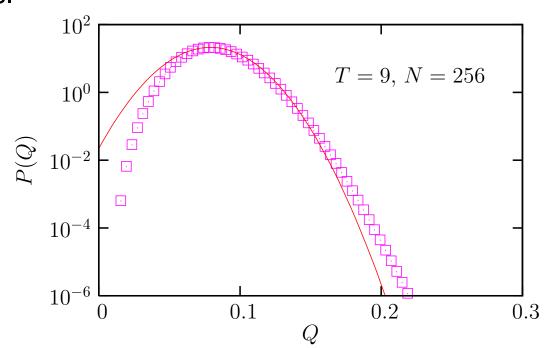
•
$$P(Q) = \overline{\langle \delta(Q - Q_{12}) \rangle}$$

 $\sim \exp[-\beta NV(Q)]$

• Overlap fluctuations reveal evolution of multiple metastable states. Finite d requires 'mosaic state' because V(Q) must be convex: exponential tail.

Direct measurement?

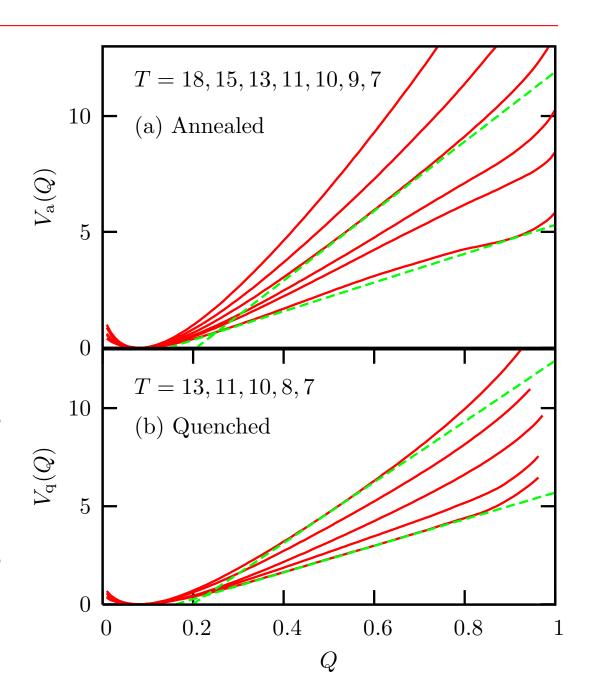
- Principle: Take two equilibrated configurations 1 and 2, measure their overlap Q_{12} , record the histogram of Q_{12} .
- (Obvious) problem: Two equilibrium configurations are typically uncorrelated, with mutual overlap $\ll 1$ and small (nearly Gaussian) fluctuations.



Solution: Seek "large deviations" using umbrella sampling techniques.
 [Berthier, PRE '13]

Overlap fluctuations in 3d liquid

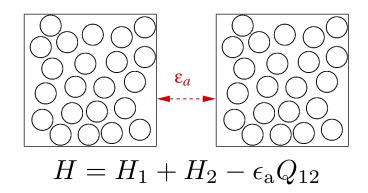
- Idea: bias the dynamics using $W_i(Q) = k_i(Q Q_i)^2$ to explore of $Q \approx Q_i$.
- Reconstruct P(Q) using reweighting techniques.
- Exponential tail below $T_{\rm onset}$ \rightarrow phase coexistence between multiple metastable states in 3d bulk liquid.
- Static fluctuations may control fluctuations and phase transitions in trajectory space.



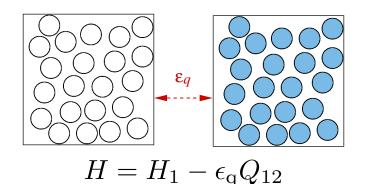
Equilibrium phase transitions

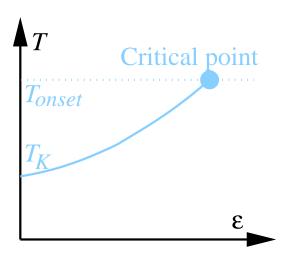
• Non-convex V(Q) implies that an equilibrium phase transition can be induced by a field conjugated to Q. [Kurchan, Franz, Mézard, Cammarota, Biroli...]

Annealed: 2 coupled copies.



Quenched: copy 2 is frozen.

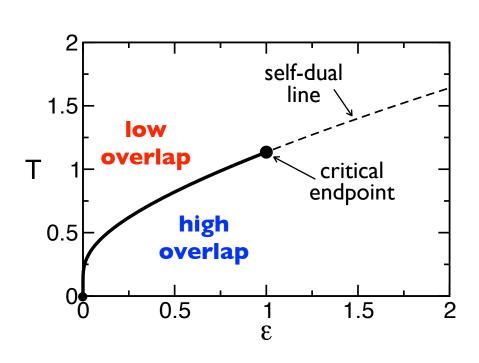




- Within RFOT: Some differences between quenched and annealed cases.
- First order transition emerges from T_K , ending at a critical point near $T_{\rm onset}$.
- Direct consequence of, but different nature from, ideal glass transition.

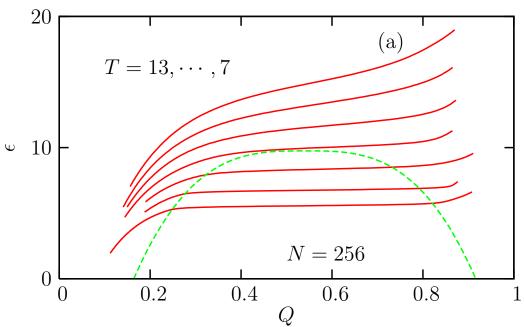
Spin plaquette models

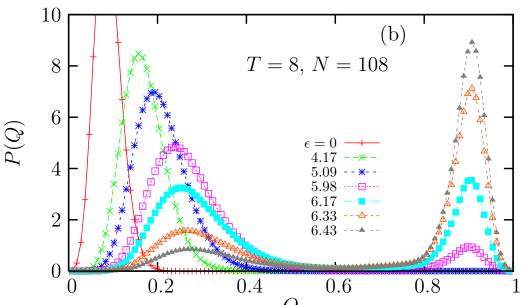
- Spin plaquette models are intermediate spin models between KCM and spin glass RFOT models: statics not fully trivial, localized defects and facilitated dynamics. E.g. in d=2 on square lattice: $E=-\sum_{\square} s_1s_2s_3s_4$.
- Plausible scenario for emergence of facilitated dynamics out of interacting Hamiltonian with glassy dynamics. [Garrahan, JPCM '03]
- Dynamic heterogeneity similar to standard KCM.
 [Jack et al., PRE '05]
- ullet "High-order" or "multi-point" static correlations develop without finite T phase transitions.
- For triangular plaquette model, annealed transition occurs [Garrahan, PRE '14]. Quenched? -> NO (Rob).



Numerical evidence in 3d liquid

- Investigate (T, ϵ) phase diagram using umbrella sampling.
- Sharp jump of the overlap below $T_{\rm onset} \approx 10$.
- Suggests coexistence region ending at a critical point.



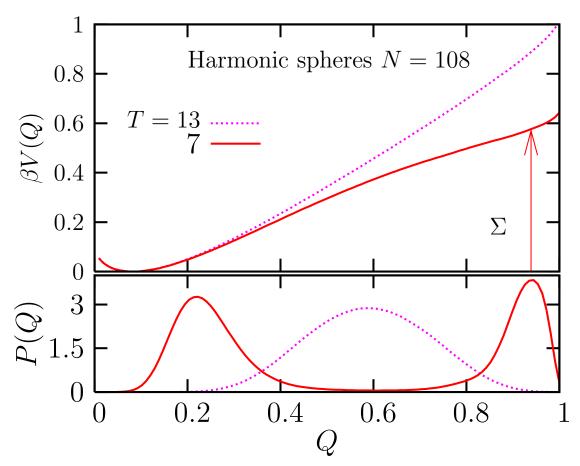


- P(Q) bimodal for finite N.
- Bimodality and static susceptibility enhanced at larger N for $T \lesssim T_c \approx 9.8$.
- → Equilibrium first-order phase transition.

[see also Parisi & Seoane PRE '14]

Configurational entropy $\Sigma(T)$

- $\Sigma = k_B \log \mathcal{N}$ signals entropy crisis: $\Sigma(T \to T_K) = 0$. Problematic when $d < \infty$, because metastable states cannot be rigorously defined.
- Experiments and simulations require approximations: $\Sigma \approx S_{\rm tot} S_{\rm vib}$.



Sensible estimate:

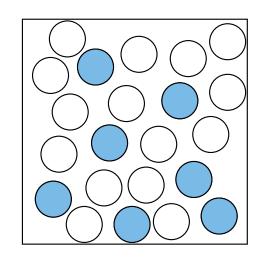
$$\Sigma = \beta [V(Q_{\text{high}}) - V(Q_{\text{low}})]$$

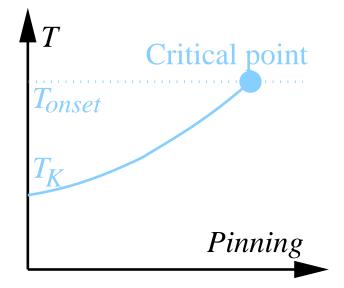
- Free energy cost to localize the system 'near' a given configuration: Well-defined even in finite d.
- Definition of 'states', exploration of energy land-scape not needed.

[Berthier and Coslovich, arXiv:1401.5260]

Ideal glass transition?

- \bullet ϵ perturbs the Hamiltonian: Affects the competition energy / configurational entropy (possibly) controlling the ideal glass transition.
- Random pinning of a fraction c of particles: unperturbed Hamiltonian.
- Slowing down observed numerically.
 [Kim, Scheidler...]





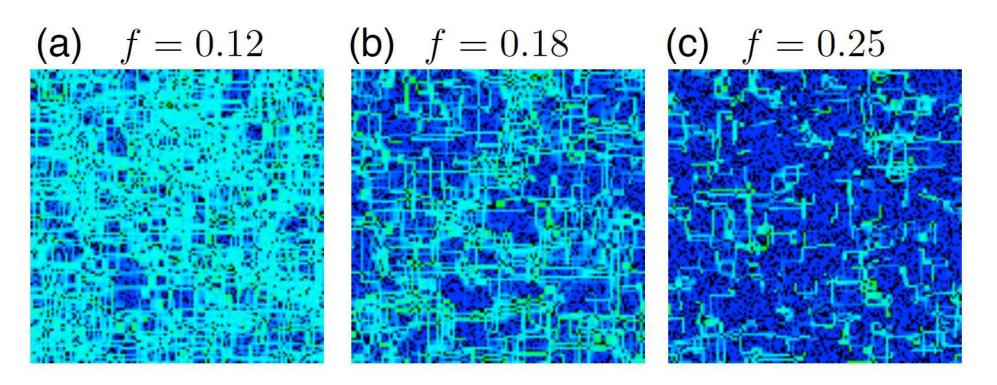
• Within RFOT, ideal glass transition line extends up to critical point.

[Cammarota & Biroli, PNAS '12]

• Pinning reduces multiplicity of states, i.e. decreases configurational entropy: $\Sigma(c,T) \simeq \Sigma(0,T) - cY(T)$. Equivalent of $T \to T_K$.

Pinning in plaquette models

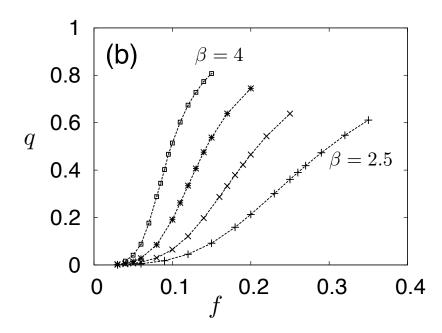
- Random pinning studies in spin plaquette models offer an alternative scenario to RFOT.
 [Jack & Berthier, PRE '12]
- Crossover $f^*(T)$ from competition between bulk correlations and random pinning: directly reveals growing static correlation lengthscale.

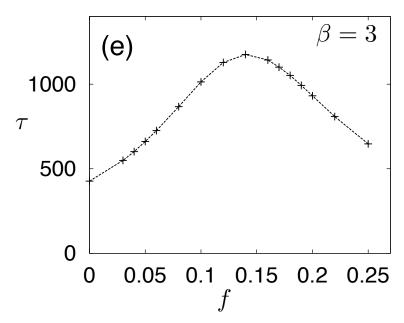


Light blue: mobile. Deep blue: frozen. Black: pinned.

Smooth crossover

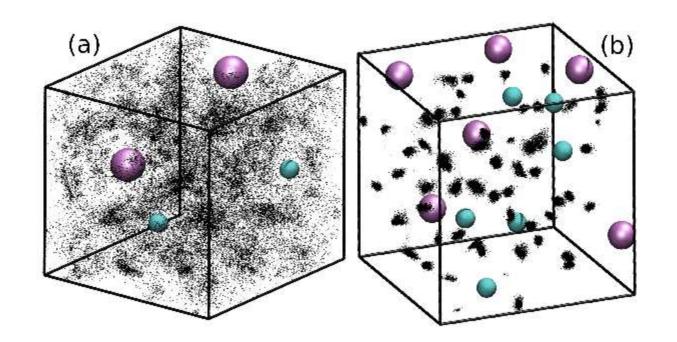
- Static overlap q increases rapidly with fraction f of pinned spins, crossover $f^* = f^*(T)$, but no phase transition.
- Overlap fluctuations reveal growing static correlation length scale, but susceptibility remains finite as $N \to \infty$.
- Dynamics barely slows down with f, unlike atomistic models.





Random pinning in 3d liquid

• Challenge: fully exploring equilibrium configuration space in the presence of random pinning: parallel tempering. Limited (for now) to small system sizes: $N=64,\,128.$ [Kob & Berthier, PRL '13]

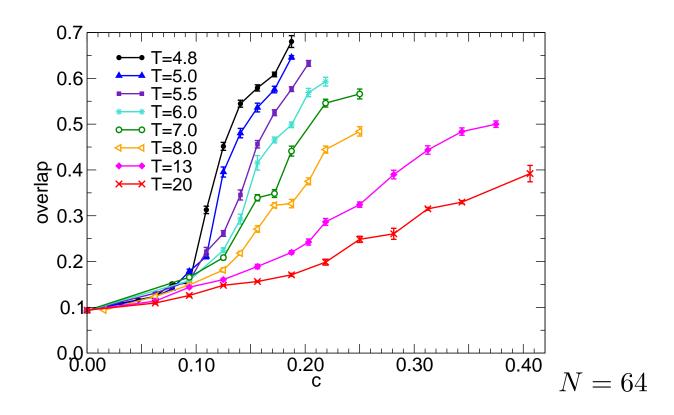


High-c glass

- Low-c fluid
- From liquid to equilibrium glass: freezing of amorphous density profile.
- We performed a detailed investigation of the nature of this phase change, in fully equilibrium conditions.

Order parameter

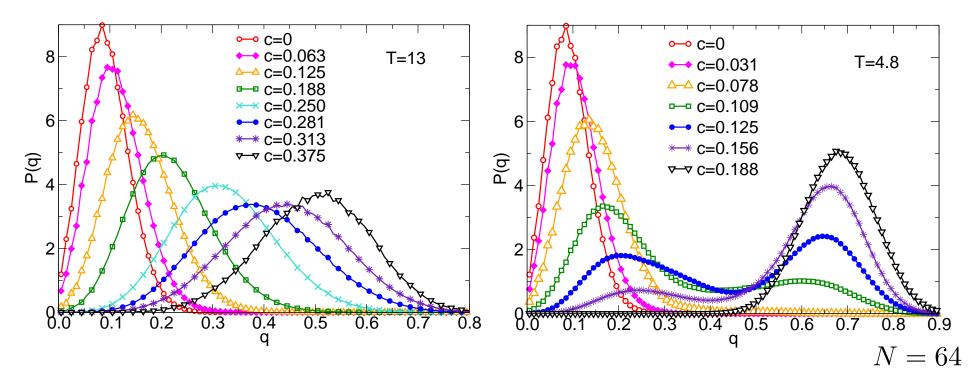
• We detect "glass formation" using an equilibrium, microscopic order parameter: The global overlap $Q = \langle Q_{12} \rangle$.



• Gradual increase at high T to more abrupt emergence of amorphous order at low T at well-defined c value. First-order phase transition or smooth crossover?

Fluctuations: Phase coexistence

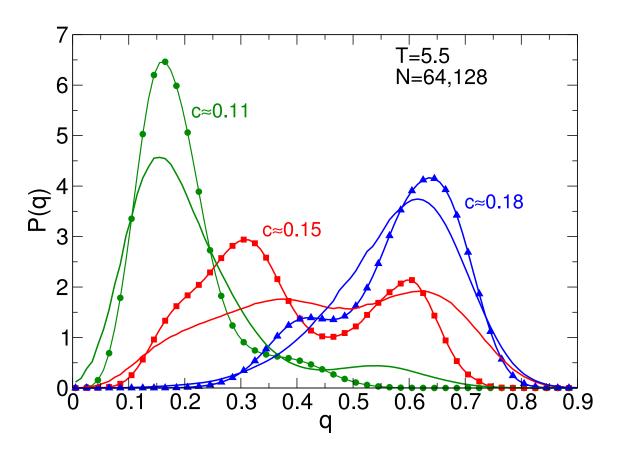
• Probability distribution function of the overlap: $P(Q) = \langle \delta(Q - Q_{\alpha\beta}) \rangle$.



- Distributions remain nearly Gaussian at high T.
- Bimodal distributions appear at low enough T, suggestive of phase coexistence at first-order transition, rounded by finite N effects.

Thermodynamic limit?

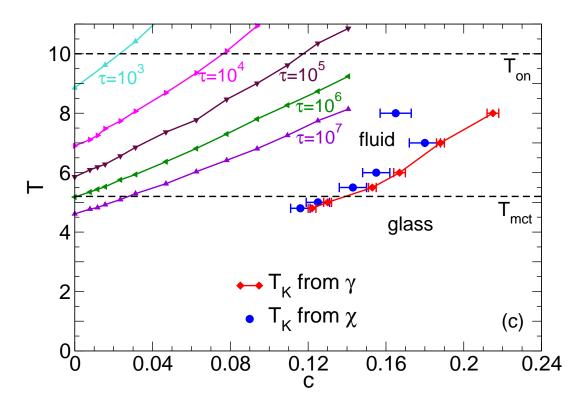
• Phase transition can only be proven using finite-size scaling techniques to extrapolate toward $N \to \infty$.



• Limited data support enhanced bimodality and larger susceptibility for larger N. Encouraging, but not quite good enough: More work needed.

Equilibrium phase diagram

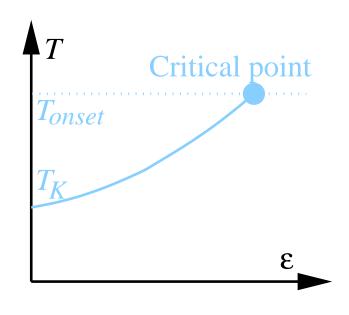
 Location of the transition from liquid-to-glass determined from equilibrium measurements of microscopic order parameter on both sides.



- Glass formation induced by random pinning has clear thermodynamic signatures which can be studied directly.
- Results compatible with Kauzmann transition this can now be decided.

Summary

- Non-trivial static fluctuations of the overlap in 3d bulk supercooled liquids: non-Gaussian V(Q) losing convexity below $\approx T_{\rm onset}$.
- Adding a thermodynamic field can induce equilibrium phase transitions.



- Annealed coupling: first-order transition ending at simple critical point. Universal?
- Quenched coupling: first-order transition ending at random critical point. Specific to RFOT?
- Random pinning: random first order transition ending at random critical point. Specific to RFOT.
- Direct probes of peculiar thermodynamic underpinnings of RFOT theory.
- A Kauzmann phase transition may exist, and its existence be decided.