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Motivations

• The East process is a keystone for a general class of
interacting particle systems featuring glassy dynamics:

• Featureless stationary distribution (i.i.d.);

• Broad spectrum of time relaxation scales;

• Cooperative dynamics;

• Huge relaxation times as some parameter is varied.

• Complex out-of-equilibrium dynamics.

• The East process plays also a role in other unrelated MCMC
e.g. the upper triangular matrix walk (Peres, Sly ’11).

• It attracted the interest of different communities: physics,
probability, combinatorics.
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Definition

• A “spin” ωx ∈ {0, 1} is attached to every vertex of either
Λ = {1, 2, . . . , L} or Λ = N.

• Let π be the product Bernoulli(p) measure on {0, 1}Λ:

π(ω) ∝ exp
(
−βH(ω)

)
, q = e−β/(1 + e−β).

where H(ω) = # of 0’s in ω.

The East chain
1 For any vertex x with rate 1 do as follows:

• independently toss a p-coin and sample a value in {0, 1}
accordingly;

• update ωx to that value iff ωx−1 = 0.

2 To guarantee irreducibility, the spin at x = 1 is always
unconstrained (⇔ there is a frozen “0” at the origin).
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Some general features

• The process evolves with kinetic constraints;

• The constraints try to mimic the cage effect observed in
dynamics of glasses.

• The 0’s are the facilitating sites;

• Reversible w.r.t. to π: the “constraint” at x does not involve the
state of the process at x.

• π describes i.i.d random variables !

• The process is ergodic for all q ∈ (0, 1).

• It is not attractive/monotone: more 0’s in the system allow
more moves with unpredictable outcome (that’s very
frustrating...).

• No powerful tools like FKG inequalities, monotone coupling,
censoring,... are available.

FabioMartinelli East model: mixing time, cutoff and dynamical heterogeneities.



Some general features

• The process evolves with kinetic constraints;

• The constraints try to mimic the cage effect observed in
dynamics of glasses.

• The 0’s are the facilitating sites;

• Reversible w.r.t. to π: the “constraint” at x does not involve the
state of the process at x.

• π describes i.i.d random variables !

• The process is ergodic for all q ∈ (0, 1).

• It is not attractive/monotone: more 0’s in the system allow
more moves with unpredictable outcome (that’s very
frustrating...).

• No powerful tools like FKG inequalities, monotone coupling,
censoring,... are available.

FabioMartinelli East model: mixing time, cutoff and dynamical heterogeneities.



Some general features

• The process evolves with kinetic constraints;

• The constraints try to mimic the cage effect observed in
dynamics of glasses.

• The 0’s are the facilitating sites;

• Reversible w.r.t. to π: the “constraint” at x does not involve the
state of the process at x.

• π describes i.i.d random variables !

• The process is ergodic for all q ∈ (0, 1).

• It is not attractive/monotone: more 0’s in the system allow
more moves with unpredictable outcome (that’s very
frustrating...).

• No powerful tools like FKG inequalities, monotone coupling,
censoring,... are available.

FabioMartinelli East model: mixing time, cutoff and dynamical heterogeneities.



Few simple observations

• Two adjacent ’domains” of 1’s:

. . . 0 11111111111111111111 0︸                               ︷︷                               ︸
L

11111111111111110︸                        ︷︷                        ︸
L ′

. . .

• As long as the intermediate 0 does not flip, the second block
of 1’s evolves independently of the first one and it coincides
with the East process on L ′ vertices.

• If the “persistence” time of 0 is large enough then the second
block has time to equilibrate.

• That suggests already the possibility of a broad spectrum of
relaxation times, hierarchical evolution.....

• Key issue: separation of time scales (more later).
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Previous results

• q = 1 − p is the density of the facilitating sites;

Relaxation time (inverse spectral gap) Trel(L ; q)

Let θq := log2(1/q) = β/ log 2. Then

sup
L

Trel(L ; q) < +∞ (Aldous-Diaconis ’02)

Trel(∞; q) ∼ 2θ
2
q/2 as q ↓ 0, (with Cancrini, Roberto, Toninelli ’08) .

Exponential relaxation to π
Let ν , π be e.g. a different product measure. Then ∃ c,m > 0 s.t.

sup
L ,x
|Pν(ωx (t) = 1) − p| ≤ c exp

[
−mt

]
(with Cancrini, Schonmann, Toninelli ’09)
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Equilibration for small temperature (q ↘ 0)

• Let Lc := 1/q be the natural equilibrium scale.

Four possible interesting regimes for q ↓ 0

1 L � Lc (smallness of q irrelevant here);
2 L = O(1) (finite scale).
3 L ∝ Lc (equilibrium scale).
4 L ∼ Lγc with 0 < γ < 1 (mesoscopic scale).

• Each regime has its own features.
• (1) and (2) quite well understood.
• (3) and (4) only partially understood.
• Aldous and Diaconis suggested a very attractive conjecture for

case (3) which is still open.
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Cutoff phenomenon on length scale L � Lc

Fix ε ∈ (0, 1) and define the ε-mixing time by

T (L )
mix(ε) = inf{t : max

ω
||µωt − π||TV ≤ ε}.

Definition (Cutoff)
We say that the East process shows total variation cutoff around
{tL }∞L=1 with windows {wL }

∞
L=1 if, for all L ∈ N and all ε ∈ (0, 1),

T (L )
mix(ε) = tL + Oε(wL ).

Theorem (with E. Lubetzky and S. Ganguly)
There exists v > 0 such that the East model exhibits cutoff with

tL = L/v , and wL = O(
√

L ).
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Tools

• On [1, 2, . . . ) start the
chain from all 1’s.

• At any later time the
configuration ω(t) will
have a rightmost zero
(the front).

• Call X (t) the position
of the front.

• Behind the front all
possible initial
configurations have
coupled.

Figure: The front evolution
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Results

Theorem (O. Blondel ’13)
• X (t)/t → v > 0 as t → ∞ (in probability).

• The law of the process seen from the front converges to a
unique invariant measure ν. Moreover ν exp-close to π far
from the front X (t).

Theorem (with E. Lubetzky and S. Ganguly)
Uniformly in all initial configurations with a front and for all t large
enough, the law µt of the process behind the front satisfies

‖µt − ν‖TV = O(e−tα), α > 0.
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Conclusion

• It follows that the front increments

ξn := X (nt0) − X ((n − 1)t0), t0 > 0

behave like a stationary sequence of weakly dependent
random variables⇒ law of large numbers + CLT.

• Thus X (t) has O(
√

t) concentration around vt and the O(
√

L )
cutoff window follows.
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L = O(Lc): Equivalence of three basic time scales

(A) Relaxation time Trel(L ; q).

(B) Mixing time Tmix(L ; q) (ε = 1/4).

(C) First passage time Thit(L ; q):= mean hitting time of
{ω : ωL = 1} starting from a single 0 at x = L .

Theorem (with Chleboun, Faggionato)
For any L = O(Lc)

Thit(L ; q) � Trel(L ; q) � Tmix(L ; q), as q ↓ 0

1

1f � g if f/g stays between two positive constants
FabioMartinelli East model: mixing time, cutoff and dynamical heterogeneities.
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Coalescence dominated dynamics as q ↓ 0 when L = O(Lc)

• On length scales L = O(Lc), as q ↓ 0 dynamics dominated by
removing excess of 0’s (Evans-Sollich).

• Energy barrier: # of extra 0’s that are required.

• Subtle interplay between energy and entropy (number of ways
to create the extra 0’s).

• If L = O(1) entropy is negligible compared to energy.
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Energy barrier

• L ∈ [2n−1 + 1, 2n]

• Has to create at least n simultaneous zeros
(Chung-Diaconis-Graham and Evans-Sollich).

• Energy cost ∆H = n.
• Activation time: exp(β∆H) ∼ (1/q)n = 2nθq .
•

Actual killing of last zero
is (relatively) instanta-
neous. Metastable dy-
namics.
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Entropy

• Let V (n) be the number of configurations with n zeros
reachable from the empty configuration using at most n zeros.

cn
1 n! 2(n

2) ≤ V (n) ≤ cn
2 n! 2(n

2),

(Chung, Diaconis, Graham ’01)

• Entropy could reduce the activation time;

• Very subtle question: need to determine how many of the
V (n) configurations lie at the bottleneck.

• Answer: roughly a fraction proportional to (1/n! )2.
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Relaxation Time and Energy-Entropy Balance

• Fix L = 2n ≤ Lc =: 2θq (θq = log2 1/q).

Theorem (with Chleboun and Faggionato)

Trel(L ; q) = 2nθq−(n
2)+n log n+O(θq)

• Energy/Entropy contribution:

2nθq ≡ exp
[
β∆H

]
; 2−(

n
2)+n log n ∼ exp

[
− log(Vn/(n!)2)

]
• When n = θq that gives

Trel(Lc ; q) = 2θ
2
q/2+θq log θq+O(θq)

which is also the correct scaling ∀ L ≥ Lc .
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Main tools

Upper bound
• Very precise recursive inequality for Trel(L ; q) on scales

Lj ≈ 2j .

• Auxiliary block chain key tool to establish the recursion.

Lower bound
• Potential analysis tools.

• Algorithmic construction of an approximate solution of the
Dirichlet problem associated to the hitting time Thit(L ; q).

• Bottleneck.
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The case L = O(1)

• Fix L = 2n with n � 1 independent of q !

• Trel(L ; q) � 1/qn (only energy counts).
• Non-equilibrium dynamics:

• Distribute the initial 0’s according to a renewal process Q.
• The function t 7→ PQ(ωL (t) = 0) exhibits plateau behavior.

(with Faggionato, Roberto, Toninelli ’10)
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Main Result

• Fix ε > 0 and let t±k = (1/q)k (1±ε).

• Recall that L = 2n with n independent of q.

Theorem (Universality)
Fix k ≤ n. Then

lim
q→0

sup
t−k ≤t≤t+

k

|PQ(ωL (t) = 0) −
(

1
2k + 1

)µ (1+εk )

| = 0

with limk→∞ εk = 0 and µ = 1 if Q has finite mean and µ = α if
Q ∼ α-stable law.

• As observed by Evans-Sollich exactly the same scaling
behavior occurs in several other coalescence models in
stat-physics (Derrida)!
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Time Scales Separation for L = O(Lc).

• If L = O(1) then Trel(2L ; q) � (1/q)Trel(L ; q).

• The above phenomenon is called time scale separation.

Theorem (with Chleboun and Faggionato)
Given 0 ≤ γ < 1 there exists λ > 1 and α > 0 such that, for all
L = O(Lγc ),

Trel(λL ; q)
Trel(L ; q)

≥ (1/q)α as q ↓ 0.

λ = 2 if γ < 1/2.

• Consider initial 0’s with at least c × Lγc 1’s on its left.
• If c � 1 then 0 will survive until time Trel(L

γ
c ; q).

• It will disappear before time Trel(L
γ
c ; q) if c � 1.

• Dynamic heterogeneities.
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Scaling limit as q ↓ 0 for the stationary East process

On the basis of numerical simulations it was assumed in the
physical literature that continuous time scale separation occurs at
the equilibrium scale Lc .

Definition (Continuous time scale separation)
Given γ ∈ (0, 1] we say that continuous time scale separation
occurs at length scale Lγc if for all d′ > d there exists α > 0 such
that

Trel(d′L
γ
c ; q)

Trel(dLγc ; q)
� (1/q)α

Theorem (with Chleboun and Faggionato)

Fix γ = 1. For any d′ > d there exists κ(d′, d) such that

Trel(d′Lc ; q)
Trel(dLc ; q)

≤ κ ∀q.
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The Aldous-Diaconis conjecture

• Rescale space and time: x′ = qx and t ′ = t/Trel(Lc ; q).

• Under this rescaling Lc → 1 and Trel(Lc ; q)→ 1.

Conjecture
As q ↓ 0 the rescaled stationary East process in [0, +∞) converges
to the following limiting point process Xt on [0, +∞):

(i) At any time t , Xt is a Poisson(1) process (particles⇔ 0’s).

(ii) For each ` > 0 and some rate r(`) each particle deletes all
particles to its right up to a distance ` and replaces them by a
new Poisson (rate 1) process of particles.

The above conjecture is very close to the “super-spins” description
of Evans-Sollich.
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East Model in Higher Dimensions

• D. Chandler and J. Garrahan suggested that a realistic model
of glassy dynamics involves d-dimensional analog of the East
process.

• E.g. on Z2 consider the constraint requiring at least one 0
between the South and West neighbor of a vertex.

• We call the corresponding process the East-like process (or
South-or-West process).
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Limiting Shape

• Dynamics in the positive
quadrant.

• Boundary conditions: only
the origin is unconstrained.

• Initial condition: all 1’s.

• Black dots: vertices that
have flipped at least once
within time t .

• Dynamics seems to be
much faster along the
diagonal.
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Main results for q small (with Chleboun, Faggionato)

Theorem (Relaxation time on infinite volume)

Trel(Zd ; q) = 2
θ2q
2d (1+o(1)), as q ↓ 0.

In particular
Trel(Zd ; q) = Trel(Z; q)

1
d (1+o(1)).

The result confirms massive simulations by D.J. Ashton,
L.O. Hedges and J.P. Garrahan and indicates that dimensional
effects play an important role, contrary to what originally assumed.
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Angle dependence of the first passage time
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Let Thit(A ; q) and Thit(B; q) be the first passage times for A and for
B.

Theorem
Let L = 2n.

• If n = αθq, α ∈ (0, 1], then,

Thit(B; q)
Thit(A ; q)

= O(2−α
2θ2

q/2), as q ↓ 0.

• If n indep. of q then Thit(A ; q) � Thit(B; q).

• Crossover induced by entropy.

***
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