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The East Model
¢ Motivation.
¢ Definition
Mixing time and relaxation time
¢ Front propagation.
o Cutoff.
Low temperature dynamics.

e Coalescence and universality on finite scales.
e Equivalence of time scales.
¢ Dynamic heterogeneity.

Scaling limit (conjectured)

Extensions to higher dimensions.
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Motivations

e The East process is a keystone for a general class of
interacting particle systems featuring glassy dynamics:
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Motivations

e The East process is a keystone for a general class of
interacting particle systems featuring glassy dynamics:

o Featureless stationary distribution (i.i.d.);

e Broad spectrum of time relaxation scales;

e Cooperative dynamics;

¢ Huge relaxation times as some parameter is varied.

e Complex out-of-equilibrium dynamics.

e The East process plays also a role in other unrelated MCMC
e.g. the upper triangular matrix walk (Peres, Sly '11).

o It attracted the interest of different communities: physics,
probability, combinatorics.
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e A“spin” wy € {0, 1} is attached to every vertex of either
AN={1,2,...,L}or A=N.
e Let  be the product Bernoulli(p) measure on {0, 1}":

n(w) o« exp(-BH(w)), q=eP/(1+eP).

where H(w) = # of 0’'s in w.
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e A“spin” wy € {0, 1} is attached to every vertex of either
AN={1,2,...,L}or A=N.
e Let  be the product Bernoulli(p) measure on {0, 1}":

n(w) o« exp(-BH(w)), q=eP/(1+eP).

where H(w) = # of 0’'s in w.

The East chain

@ For any vertex x with rate 1 do as follows:

¢ independently toss a p-coin and sample a value in {0, 1}
accordingly;
e update wy to that value iff wy_¢ = 0.

@ To guarantee irreducibility, the spin at x = 1 is always
unconstrained (< there is a frozen “0” at the origin).
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Some general features

e The process evolves with kinetic constraints;

e The constraints try to mimic the cage effect observed in
dynamics of glasses.
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Some general features

e The process evolves with kinetic constraints;

e The constraints try to mimic the cage effect observed in
dynamics of glasses.

e The Q’s are the facilitating sites;

e Reversible w.r.t. to : the “constraint” at x does not involve the
state of the process at x.

e 1 describes i.i.d random variables !
e The process is ergodic for all g € (0, 1).

e It is not attractive/monotone: more 0’s in the system allow
more moves with unpredictable outcome (that’s very
frustrating...).

e No powerful tools like FKG inequalities, monotone coupling,
censoring,... are available.
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Few simple observations

e Two adjacent 'domains” of 1’s:

L0111 1111111111111111 0 11111111111111110 ...
L L

¢ Aslong as the intermediate 0 does not flip, the second block
of 1’s evolves independently of the first one and it coincides
with the East process on L’ vertices.

o If the “persistence” time of 0 is large enough then the second
block has time to equilibrate.

e That suggests already the possibility of a broad spectrum of
relaxation times, hierarchical evolution.....

o Key issue: separation of time scales (more later).
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Previous results

e g =1 - pis the density of the facilitating sites;

Relaxation time (inverse spectral gap) T.e1(L; Q)

Let 64 :=log,(1/q) =B/ log2. Then
sup Teer(L; Q) < +00 (Aldous-Diaconis '02)
L

Tre1(c0; Q) ~ 20/2 ag gl 0, (with Cancrini, Roberto, Toninelli '08) .
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Previous results

e g =1 - pis the density of the facilitating sites;

Relaxation time (inverse spectral gap) T.e1(L; Q)
Let 64 :=log,(1/q) = 5/log2. Then

sup Trei(L; Q) < +00 (Aldous-Diaconis '02)
L

Tre1(c0; Q) ~ 20/2 ag gl 0, (with Cancrini, Roberto, Toninelli '08) .

Exponential relaxation to ©

| A\

Let v # 7 be e.g. a different product measure. Then d¢c, m > 0 s.t.

sup [Py(wx(t) = 1) — pl < c exp[-mt]
L,x

(with Cancrini, Schonmann, Toninelli "09)
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e Let L; := 1/q be the natural equilibrium scale.

Four possible interesting regimes for q | O

FaBI0O MARTINELLT



Equilibration for small temperature (q \, 0)

e Let L; := 1/q be the natural equilibrium scale.

Four possible interesting regimes for q | O

Q@ L > L. (smallness of q irrelevant here);

FaB10 MARTINELLT



Equilibration for small temperature (q \, 0)

e Let L; := 1/q be the natural equilibrium scale.

Four possible interesting regimes for q | O

Q@ L > L. (smallness of q irrelevant here);
@ L = O(1) (finite scale).

FaB10 MARTINELLT



Equilibration for small temperature (q \, 0)

e Let L; := 1/q be the natural equilibrium scale.

Four possible interesting regimes for q | O

Q@ L > L. (smallness of q irrelevant here);
@ L = O(1) (finite scale).
Q L « L. (equilibrium scale).

FaB10 MARTINELLT



Equilibration for small temperature (q \, 0)

e Let L; := 1/q be the natural equilibrium scale.

Four possible interesting regimes for q | O

Q@ L > L. (smallness of q irrelevant here);
@ L = O(1) (finite scale).
Q L « L. (equilibrium scale).

Q@ L ~ L} with 0 <y < 1 (mesoscopic scale).

FaB10 MARTINELLT



Equilibration for small temperature (q \, 0)

e Let L; := 1/q be the natural equilibrium scale.

Four possible interesting regimes for q | O

Q@ L > L. (smallness of g irrelevant here);
@ L = 0O(1) (finite scale).
Q L « L. (equilibrium scale).

Q@ L ~ L} with 0 <y < 1 (mesoscopic scale).

e Each regime has its own features.
e (1) and (2) quite well understood.
¢ (3) and (4) only partially understood.
¢ Aldous and Diaconis suggested a very attractive conjecture for
case (3) which is still open.

FaB10 MARTINELLT



Cutoff phenomenon on length scale L > L,

Fix € € (0, 1) and define the e-mixing time by

mix

T (&) = inf{t : max||u — nll7y < &).
w

Definition (Cutoff)
We say that the East process shows total variation cutoff around
{tL}°, with windows {w, }}"_, if, forall L € N and all € € (0, 1),

T () = 1, + O(wy).

mix
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Cutoff phenomenon on length scale L > L,

Fix € € (0, 1) and define the e-mixing time by

(L)

o (&) = inf{t : max i’ = #llrv < &}

Definition (Cutoff)
We say that the East process shows total variation cutoff around
{tL}]"_, with windows {w, }}°_, if, forall L € N-and all € € (0, 1),

(L)

mix

(€) =t + Oc(wr).

Theorem (with E. Lubetzky and S. Ganguly)
There exists v > 0 such that the East model exhibits cutoff with

fi=L/v, and WL=O(‘/Z).
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e On|[1,2,...) start the
chain from all 1’s. 20

o At any later time the
configuration w(t) will *
have a rightmost zero
(the front).

e Call X(t) the position
of the front.

o Behind the front all T
possible initial
configurations have
coupled.

Figure: The front evolution
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Theorem (O. Blondel ’13)

e X(t)/t > v >0 ast— oo (in probability).

e The law of the process seen from the front converges to a
unique invariant measure v. Moreover v exp-close to m far
from the front X(t).
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Theorem (O. Blondel ’13)

e X(t)/t > v>0ast— oo (in probability).

e The law of the process seen from the front converges to a
unique invariant measure v. Moreover v exp-close to m far
from the front X(t).

Theorem (with E. Lubetzky and S. Ganguly)

Uniformly in all initial configurations with a front and for all t large
enough, the law u; of the process behind the front satisfies

llt = vilTv = O(e™"), a > 0.
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Conclusion

o |t follows that the front increments
&n = X(ntp) = X((n—1)to), t >0
behave like a stationary sequence of weakly dependent

random variables = law of large numbers + CLT.

 Thus X(t) has O( V) concentration around vt and the O( VL)
cutoff window follows.
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O(L;): Equivalence of three basic time scales

(A) Relaxation time T, (L;q).
(B) Mixing time Thix(L;Qq) (e =1/4).

(C) First passage time Ty;(L; g):= mean hitting time of
{w: wr =1} starting from a single 0 at x = L.

Domain length L

([1[1]1]0]

o[1[1][1]1]1

'f < g if f/g stays between two positive constants
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O(L;): Equivalence of three basic time scales

(A) Relaxation time T, (L;q).

(B) Mixing time Tix(L;Qq) (e = 1/4).

(C) First passage time Ty;(L; g):= mean hitting time of
{w: wr =1} starting from a single 0 at x = L.

Domain length L

([1[1]1]0]

o[1[1][1]1]1

Theorem (with Chleboun, Faggionato)

For any L = O(L¢)

Thit(L;q) = Tra(L; Q) < Tmix(L;9), asqlO

'f < g if f/g stays between two positive constants
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Coalescence dominated dynamics as q | 0 when L = O(L;)

e Onlength scales L = O(L.), as g | 0 dynamics dominated by
removing excess of 0’s (Evans-Sollich).
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Coalescence dominated dynamics as q | 0 when L = O(L;)

On length scales L = O(L;), as g | 0 dynamics dominated by
removing excess of 0’s (Evans-Sollich).

Energy barrier: # of extra 0’s that are required.

Subtle interplay between energy and entropy (number of ways
to create the extra 0’s).

If L = O(1) entropy is negligible compared to energy.
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Energy barrier

o Le[2m1 41, 27
Domain length L
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Energy barrier

o Le[2m1 41, 27
Domain length L

0i1|1\1\1|1 1\1|1|1\ﬂ

e Has to create at least n simultaneous zeros
(Chung-Diaconis-Graham and Evans-Sollich).

e Energy cost AH = n.

e Activation time: exp(BAH) ~ (1/q)" = 2™,

Actual killing of last zero
is (relatively) instanta-
neous. Metastable dy-
namics.
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e Let V(n) be the number of configurations with n zeros
reachable from the empty configuration using at most n zeros.

e ni26) < v(n) < cf 12,
(Chung, Diaconis, Graham '01)

e Entropy could reduce the activation time;

e Very subtle question: need to determine how many of the
V(n) configurations lie at the bottleneck.

e Answer: roughly a fraction proportional to (1/n! )2.
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Relaxation Time and Energy-Entropy Balance

o FixL=2"<L,=:2% (6g = log, 1/q).

Theorem (with Chleboun and Faggionato)

Trel(L; G) = 2"~ (2)+nlog n+O(6o)

e Energy/Entropy contribution:
2" = exp[ pAH];  27(E*1199" - exp[— log(Va/(n)?) ]
e When n = 6,4 that gives
Trei(Le: Q) = 293/2+9q log 8g+0(6q)

which is also the correct scaling vV L > L.
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e Very precise recursive inequality for T, (L; g) on scales
Lj~2.
o Auxiliary block chain key tool to establish the recursion.
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Upper bound
e Very precise recursive inequality for T, (L; g) on scales
Li~2.
o Auxiliary block chain key tool to establish the recursion.

v

Lower bound

o Potential analysis tools.

e Algorithmic construction of an approximate solution of the
Dirichlet problem associated to the hitting time Ty;(L; q).

e Bottleneck.
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The case L = O(1)

e Fix L = 2" with n > 1 independent of g !
e Twi(L;qg) < 1/9" (only energy counts).
e Non-equilibrium dynamics:

¢ Distribute the initial 0’s according to a renewal process Q.
e The function t — Pg(w (t) = 0) exhibits plateau behavior.

Pg(o(L) = 0)

L+e 2+e [Cn S

; og
€ 1—e¢ 2—¢ n+e logq

(with Faggionato, Roberto, Toninelli *10)
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o Fix e > 0 and let £ = (1/q)*(*9).
e Recall that L = 2" with n independent of q.

Theorem (Universality)

Fix k < n. Then

1 p(1+ek)
lim sup [Pg(wg(t) =0)— =0
im, sup. IPale(t) =) (2k+1) |

with limg . ek = 0 and p = 1 if Q has finite mean and u = « if
Q ~ a-stable law.

o As observed by Evans-Sollich exactly the same scaling
behavior occurs in several other coalescence models in
stat-physics (Derrida)!
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Time Scales Separation for L = O(L).

e If L = O(1) then Tri(2L; ) < (1/9) Trat(L; Q)
e The above phenomenon is called time scale separation.

Theorem (with Chleboun and Faggionato)

Given 0 <y < 1 there exists A > 1 and @ > 0 such that, for all
L = O(L),

Trel(/”—; Q)

— = >(1/9)* asqlO.

Talig = /9" 28
A=2ify<1/2.

« Consider initial 0's with at least ¢ x L 1’s on its left.

e If ¢ > 1 then 0 will survive until time T.(L}; q).
o It will disappear before time Tre](Lcy;q) ifc < 1.

e Dynamic heterogeneities.
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Scaling limit as q | O for the stationary East process

On the basis of numerical simulations it was assumed in the
physical literature that continuous time scale separation occurs at
the equilibrium scale L.

Definition (Continuous time scale separation)

Given y € (0, 1] we say that continuous time scale separation
occurs at length scale L] if for all d’ > d there exists & > 0 such
that

Trel(dl I—g ; q)

= (1 2
e

Theorem (with Chleboun and Faggionato)
Fixy =1. For any d’ > d there exists x(d’, d) such that

Trel(dl Lc; q) <
Trel(dLC; Q) B

FaB10 MARTINELLT
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The Aldous-Diaconis conjecture

e Rescale space and time: x’ = gx and t’ = t/ Tie1(Lc; Q).
e Under this rescaling L — 1 and Ty(L¢;q) — 1.
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The Aldous-Diaconis conjecture

e Rescale space and time: x’ = gx and t’ = t/ Tie1(Lc; Q).
e Under this rescaling L — 1 and Ty(L¢;q) — 1.

Conjecture
As g | 0 the rescaled stationary East process in [0, +o0) converges
to the following limiting point process X; on [0, +o0):

(i) At any time t, X; is a Poisson(1) process (particles & 0’s).

(ii) For each ¢ > 0 and some rate r(£) each particle deletes all
particles to its right up to a distance ¢ and replaces them by a
new Poisson (rate 1) process of particles.

v

The above conjecture is very close to the “super-spins” description
of Evans-Sollich.
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East Model in Higher Dimensions

e D. Chandler and J. Garrahan suggested that a realistic model
of glassy dynamics involves d-dimensional analog of the East
process.

 E.g. on Z? consider the constraint requiring at least one 0
between the South and West neighbor of a vertex.

o We call the corresponding process the East-like process (or
South-or-West process).
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Limiting Shape

e Dynamics in the positive
quadrant.

e Boundary conditions: only
the origin is unconstrained.

e |nitial condition: all 1’s.
e Black dots: vertices that

have flipped at least once
within time t.

e Dynamics seems to be
much faster along the
diagonal.
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Main results for q small (with Chleboun, Faggionato)

Theorem (Relaxation time on infinite volume)

62
Tea(Z% q) = 2260+ a5 q | 0.

In particular
Trel(Zd; q) = Tel(Z; q):_i(1+0(1))‘

The result confirms massive simulations by D.J. Ashton,
L.O. Hedges and J.P. Garrahan and indicates that dimensional
effects play an important role, contrary to what originally assumed.
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Angle dependence of the first passage time

y -
B
. 1 L
. \1D East
Ofe . ,o e o A
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Let Thit(A; q) and Ty (B; q) be the first passage times for A and for

|.

Theorem
LetL =2".
e Ifn=aby, a € (0,1], then,
Thit(B; q) —a22)2
——— =02 *%/%), asqglO.
Thit(A; Q) ( ) g

e [fnindep. of g then Ty (A; Q) < Thit(B; Q).
e Crossover induced by entropy.

*k%
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