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Overview The model

Random graph coloring

• Draw a random graph on N vertices by connecting any two vertices with
probability d/N at random.

• Is this graph k-colorable ?

• How many k-colorings can we find ? For a given graph: Z (G).
In general: either zero or exponentially many.

• Taking the average over the choice of the graph and N → ∞:

◦ Average number of colorings: [EZ (G)]1/N → k(1 − 1/k)d/2.

◦ Typical number of colorings: E
h

Z (G)1/N
i

?
→ Φk (d) =??.
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Overview The model

Phase transitions

• Phase transition (informel): discontinuity in some “macroscopic”
quantity describing a problem. For instance:

◦ the size of the largest connected component for Erdős-Rényi random
graphs, upon increasing the average degree,

◦ the density when freezing water,
◦ the derivative of the magnetization when heating a magnet.

• Phase transition (here): non analyticity of Φk(d).
For instance it is conjectured that there exists dcol(k) such that:

◦ for d < dcol(k), Φk (d) > 0, and limdրdcol(k) Φk (d) > 0.
◦ for d > dcol(k), Φk (d) = 0.

• Here we look at another phase transition that happens for d < dcol(k).
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Overview Clustering and condensation

The physics picture
• A powerful tool to study random optimization problems: the cavity

method.
◦ Introduced by Mézard and Parisi in 2000.
◦ General overview for random optimization problems: Krzakala, Montanari,

Ricci-Tersenghi, Semerjian, Zdeborová in PNAS 2007.
◦ Application to coloring: Krzakala, Pagnani, Weigt, Zdeborová ...

• Upon increasing d , solutions tend to group into clusters.
C (G , σ) = {colorings τ that can be reached from σ by altering at most

N/(k log k) vertices at a time}
(Proofs: [Achlioptas - Coja-Oghlan 2008, Molloy 2012])

dcol(k) d
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Overview Clustering and condensation

The physics picture [Zdeborová - Krzakala 2007]

Compare the cluster size with the total number of colorings.

Φk(d)

|C (G , σ)|1/N

dcond(k) d

Number of clusters: Φk(d) − |C (G , σ)|1/N .
What happens for d > dcond(k) ?
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Overview Clustering and condensation

Interlude: a broader view of condensation.

• A similar phenomenon appears when cooling too fast some liquids.

• This is the famous Kauzmann paradox:

• .

10 / 31



Overview Clustering and condensation

The physics picture [Zdeborová - Krzakala 2007]

Physics prediction: dcond(k) marks a phase transition:

- for d < dcond(k), |C (G , σ)|1/N < Φk(d) = k(1 − 1/k)d/2,

- for d > dcond(k), |C (G , σ)|1/N = Φk(d) < k(1 − 1/k)d/2,

- the second derivative of Φk(d) is discontinuous at dcond(k).

k(1 − 1/k)d/2

Φk(d)

|C (G , σ)|1/N

dcond(k) dcol(k) d

11 / 31



Overview Clustering and condensation

The physics picture [Zdeborová - Krzakala 2007]

Upon increasing d , the geometry of the set of solutions dramatically
changes.

C (G , σ) = {colorings τ that can

be reached from σ by altering

at most N/(k log k) vertices at a time}

dcond(k) dcol(k) d

Condensation: when the number of clusters becomes sub-exponential.
⇔ when the cluster size |C (G , σ)|1/N equals Φk(d).
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Overview Rigorous results

A first transition: the satisfiability transition
The number of colorings is easily understood when d < 1.

Φk(d)

d
0 1

k(1 − 1/k)d/2
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Overview Rigorous results

Upper bounds
Upper bound on the typical number of colorings: first moment method.
Can be improved from the naive result [Coja-Oghlan 2013].

Φk(d)

d
0 1 dk − 1

k(1 − 1/k)d/2

dk = (2k − 1) ln k
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Overview Rigorous results

Lower bounds
Lower bound on the typical number of colorings: second moment method
[Achlioptas - Naor 2005, Coja-Oghlan - Vilenchik 2010].

Φk(d)

d
0 1 dk − 2 ln 2 dk − 1

k(1 − 1/k)d/2

dk = (2k − 1) ln k
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Overview Rigorous results

The condensation transition
Theorem (1/2): for k large enough there exists dcond(k) such that:

– there is a phase transition at dcond(k),
– for d < dcond(k) : Φk(d) = k(1 − 1/k)d/2,
– for d > dcond(k) : Φk(d) < k(1 − 1/k)d/2 (or does not exist).

Φk(d)

d
0 dk − 2 ln 2 dk − 1

k(1 − 1/k)d/2

dk = (2k − 1) ln k

dcond(k)
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Overview Rigorous results

The condensation transition
Theorem (2/2): dcond(k) is given by the formula predicted by the cavity
method [Zdeborová - Krzakala 2007]. That is:

- Ω = {probability distributions on {1, . . . , k}},

- f :
⋃

γ≥0 Ωγ → Ω,

f (µ1, . . . , µγ)(i) =

∏γ
j=1 1 − µj(i)

∑

h∈[k]

∏γ
j=1 1 − µj(h)

.

- P = {probability distributions on Ω},
- Fk,d : P → P

Fk,d(π) =

∞
X

γ=0

γd exp(−d)

γ! · Zγ(π)

Z

Ωγ

"

k
X

h=1

γ
Y

j=1

1 − µj(h)

#

· δf [µ1,...,µγ ]

γ
O

j=1

dπ(µj).

where Zγ(π) =
∑k

h=1

(

1 −
∫

Ω
µ(h)dπ(µ)

)γ

- Σk,d : P → R (“Complexity”). Σk,d(π) = ...

- dcond(k) is the unique solution of Σk,d(π⋆
k,d ) = 0 in [dk − 2, dk ], where

π⋆
k,d is a particular fixed point of Fk,d .
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Overview Rigorous results

Conjectures: the satisfiability transition
Conjecture 1: Φk(d) exists for all d .

⇒ There exist a colorability threshold dcol(k).
⇒ There is a phase transition at dcol(k).

Conjecture 2: dcond(k) < dcol(k). There are exactly two phase transitions.

Φk(d)

d
0 dk − 2 ln 2 dk − 1

k(1 − 1/k)d/2

dcond(k)

dk = (2k − 1) ln k

dcol(k)
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Outline of the proof Using the planted model

The planted model

• The condensation corresponds to the point where the cluster size
|C (G , σ)|1/N equals (w.h.p.) k(1 − 1/k)d/2.

• However it is hard to compute the cluster size:
given a random graph, how do we even find a coloring ?

• Planting: first pick a configuration σ⋆ at random.
Then generate a graph G⋆ by adding edges independently and uniformly
at random such that:

– G⋆ has as many vertices as G (in average),
– σ⋆ is a coloring of this graph.

Generating the pair (G⋆, σ⋆) is easy.

• The cluster size |C (G⋆, σ⋆)|1/N is also easier to compute.
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Outline of the proof Using the planted model

Condensation and clusters sizes

k(1 − 1/k)d/2

Φk(d)

|C (G , σ)|1/N

|C (G⋆, σ⋆)|1/N

dcond(k) d

• Physics intuition: [Krzakala - Zdeborová 2009]
– if d < dcond(k),

|C (G , σ)|1/N = |C (G⋆, σ⋆)|1/N < Φk(d) = k(1 − 1/k)d/2,

– if d > dcond(k),
|C (G , σ)|1/N = Φk(d) < k(1 − 1/k)d/2 < |C (G⋆, σ⋆)|1/N .
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Outline of the proof Using the planted model

Condensation and clusters sizes

k(1 − 1/k)d/2

|C (G⋆, σ⋆)|1/N

dcond(k) d

• We use the following result: ∀ǫ > 0 [Coja-Oghlan - Vilenchik 2010]
– if |C(G⋆, σ⋆)|1/N < k(1 − 1/k)d/2 − ǫ, then d < dcond(k),

– if |C(G⋆, σ⋆)|1/N > k(1 − 1/k)d/2 + ǫ, then d > dcond(k).

• Therefore it is enough to understand the cluster size in the planted model.
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Outline of the proof Identifying the frozen vertices

Frozen vertices

• We need to compute |C (G⋆, σ⋆)|1/N .
Remember that we defined C (G⋆, σ⋆) = {colorings τ that can
be reached from σ⋆ by altering at most N/(k log k) vertices at a time}.

• Close to dcond(k) most of the vertices are frozen : they take the same
value for all τ ∈ C (G⋆, σ⋆). Most of : all but a fraction 1/k .

• We need to identify the frozen vertices.
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Outline of the proof Identifying the frozen vertices

Frozen vertices

• Close to dcond(k) most of the vertices are frozen: they take the same
value for all τ ∈ C (G⋆, σ⋆).

• Intuition for that: a vertex v typically has many neighbors of each color.

v
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Outline of the proof Identifying the frozen vertices

Frozen vertices

• Close to dcond(k) most of the vertices are frozen: they take the same
value for all τ ∈ C (G⋆, σ⋆).

• Intuition for that: a vertex v typically has many neighbors of each color.

v

• If in addition to that, most of the neighbors of v are frozen, then so is v .

• Technically: “Warning Propagation” + existence a priori of a large set of
frozen vertices + convergence of local neighborhoods to trees.
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Outline of the proof The remaining: a problem over finite trees

• Outcome of the previous analysis: coloring a graph where the color of
some vertices is fixed

v

w
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Outline of the proof The remaining: a problem over finite trees

• Outcome of the previous analysis: coloring a graph where each vertex v

can take colors in Lv ⊂ [k ] fixed.

v

w

• If |Lv | = 1, we can remove v .

29 / 31



Outline of the proof The remaining: a problem over finite trees

• Outcome of the previous analysis: coloring a graph where each vertex v

can take colors in Lv ⊂ [k ] fixed.

v

w

• If |Lv | = 1, we can remove v .
• If Lv ∩ Lw = {∅}, we can disconnect v and w

→ problem over finite trees: easy.
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Conclusions

Conclusions

• Rigorous proof of the existence of the condensation transition for
(Erdős-Rényi) random graphs coloring.
The transition point is a number (does not depend on N).

• Confirms the prediction of the cavity method.
Condensation for a model with fluctuating degrees.

• Some directions for future work: what about

◦ the colorability threshold ?
◦ finite temperature ?
◦ models where the non-condensed phase is non-trivial ?
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Conclusions

Warning propagation
Consider the following process:

• associate to each pair of vertices (v , w) connected by an edge a sequence
µv→w (i ∈ [k ], t ≥ 0) ∈ {0, 1} defined by:

◦ µv→w (i , t = 0) = 1 iff v has color i under σ⋆,

µa→v

µb→v

µc→v

µv→w

a

b

c

v w
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• associate to each pair of vertices (v , w) connected by an edge a sequence
µv→w (i ∈ [k ], t ≥ 0) ∈ {0, 1} defined by:

◦ µv→w (i , t = 0) = 1 iff v has color i under σ⋆,

µa→v

µb→v

µc→v

µv→w

a

b

c

v w

0 0 0

00 0

000

000

1

1

1

1

t = 0

33 / 31



Conclusions

Warning propagation
Consider the following process:

• associate to each pair of vertices (v , w) connected by an edge a sequence
µv→w (i ∈ [k ], t ≥ 0) ∈ {0, 1} defined by:

◦ µv→w (i , t = 0) = 1 iff v has color i under σ⋆,
◦ µv→w (i , t + 1) = 1 iff for all j 6= i , there is u ∈ ∂v \ {w} such that

µu→v (j , t) = 1 (“u warns v that it cannot take color j”).

µa→v

µb→v

µc→v

µv→w

a

b

c

v w

0 0 0

00 0
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000
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1

0
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Conclusions

Warning propagation
Consider the following process:

• associate to each pair of vertices (v , w) connected by an edge a sequence
µv→w (i ∈ [k ], t ≥ 0) ∈ {0, 1} defined by:

◦ µv→w (i , t = 0) = 1 iff v has color i under σ⋆,
◦ µv→w (i , t + 1) = 1 iff for all j 6= i , there is u ∈ ∂v \ {w} such that

µu→v (j , t) = 1 (“u warns v that it cannot take color j”).

µa→v

µb→v

µc→v

µv→w

a

b

c

v w

0 0 0

00 0

000

000

1

1

0

0

t = 2
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Conclusions

Warning propagation

• The process is decreasing and converges.

• Define L(v) = {i ∈ [k ], ∀u∈ ∂v , µu→v (i , t = ∞) = 0}
(“colors that v is allowed to take”).

• Let Z (G⋆, σ⋆) be the number of colorings of G⋆ such that σ(v) ∈ L(v).
Then |C (G⋆, σ⋆)|1/N = Z (G⋆, σ⋆)1/N w.h.p.
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Conclusions

Warning propagation (2d version)

Consider the following process:

• associate to each pair of vertices (v , w) connected by an edge a sequence
µv→w (i ∈ [k ], t ≥ 0) ∈ {0, 1} defined by:

◦ µv→w (i , t = 0) = 1 iff v has color i under σ⋆ and v is in the core,
◦ µv→w (i , t + 1) = 1 iff for all j 6= i , there is u ∈ ∂v \ {w} such that

µu→v (j , t) = 1 (“u warns v that it cannot take color j”).

• The process is increasing and converges.
Define L2(v) = {i ∈ [k ], ∀u∈ ∂v , µu→v (i , t = ∞) = 0}

(“colors that v is allowed to take”).

• Let Z2(G
⋆, σ⋆) be the number of colorings of G⋆ such that σ(v) ∈ L2(v).

Then Z2(G
⋆, σ⋆) is an upper bound on the cluster size (w.h.p).

W.h.p. lnZ1(G
⋆, σ⋆) = ln Z2(G

⋆, σ⋆) + o(N).
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