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Spin models and hard computational problems

Spin models - N interacting binary variables

Disordered systems - fixed sampled interactions/topology

Sherrington-Kirkpatrick model - densely connected
Viana-Bray model - sparsely connected
Hard computational problems (K-SAT, graph colouring)
Decoding in error-correcting codes

Observation - fragmented multi-minima solution spaces

Optimisation/solution - difficult in some parameter regimes
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Ergodicity breaking and hard computational problems

Definitions and terminology

Ergodicity / ergodicity breaking -

Mathematics: Ergodicity - same time-averaged behavior as
average over the space of all states (phase space); ergodicity
breaking - diminishing probability to reach parts of phase space
Physics: Ergodicity - time spent in a region of the phase space
of the same energy is proportional to its volume; typical
manifestation of ergodicity breaking - exponential barriers in
energy landscape

Spin/variable space -N spin variables s

Phase space - separation of space to sets of vectors that share
macroscopic properties that constitute a phase

Solution space - set of vectors s that obey the constraints
(especially at zero temperature)
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Self-sustained clusters

Aim: understand the formation of self-sustained clusters and relate
them to ergodicity breaking and phase properties

What constitutes a self-sustained clusters C ?

Denote in-cluster (i ∈ C) and out-cluster (i /∈ C) spins

Corresponding magnetic fields ui =
∑

j∈C Jijsj and
vi =

∑

j /∈C Jijsj

Total field - hi = ui + vi

Self-sustained cluster if |ui | > |vi |, ∀i ∈ C
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Self-sustained clusters - interpretation

What does it mean?

In-cluster variables dominate the state of spins (i ∈ C)

O(1) fluctuations do not change state of in-cluster spins

Macroscopic changes are required to destabilise self-sustained
clusters
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Models investigated

Sherrington-Kirkpatrick model

N spin binary variables

Ferromagnetic (Jij > 0) or anti-ferromagnetic (Jij < 0)
symmetric interactions, randomly drawn from a Gaussian
distribution N (J0/N, J2/N); we use J=1

Hamiltonian HSK=−
∑

(ij) Jijsi sj

Ising model (Curie-Weiss)

Special case of the SK model with J=0 or J0≫J

Hamiltonian - HIsing= −J0
∑

(ij) sisj/N.
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Analysis used

Replica method

Replica method - lnZ = limn→0(Z
n − 1)/n for averaging over

instances to obtain expected physical quantities

Replacing the average of lnZ by that of the replicated

partition function Zn; using analytical continuation n → 0

As N → ∞, for densely connected systems, solutions are
described fully and uniformly by magnetization and
inter-replica spin correlation

mα =
1

N

∑

i

siα, qαβ =
1

N

∑

i

siαsiβ,

Replica symmetry ansatz assumed - simplest
replica-symmetric mα=m for all α and qαβ=q for all α 6=β
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Cluster entropy

What is cluster entropy?

Entropy of clusters S(r)=[ln Ω(r)]/N; Ω(r) is the number of
self-sustained clusters of normalised size r = |C|/N

For Ising model at zero temperature all spins are aligned
Ω(r)=CN

Nr =N!/[(rN)!(N − rN)!] and
S(r)=−r ln r−(1−r) ln(1−r) for r>0.5 (subsets are also
counted); and Ω(r)=0 and S(r)=−∞ otherwise

Calculating cluster entropy

New variables σi = 1,−1 identify in/out-cluster variables

An indicator function

w ({σi},{si},{Jij})=
∏

i

[

1−σi
2

+
1+σi
2

Θ
(

u2i −v2i
)

]

where Θ(x) = 0/1 for x≤0 and x>0, respectively
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Cluster entropy - Ising model

Operator partition function

At any temperature T we uniformly sample spin
configurations of given magnetisation m=

∑

i si/N, as it
uniquely defines the model’s macroscopic properties

ZIsing(γ,m)

= Tr
{si}

Tr
{σi}

w({σi}, {si})δ

(∑

i si

N
−m

)

eγ
∑

i (1+σi )

2

w does not depend on {Jij} as they are all identical (J0)

The parameter γ plays the role of pesudo-temperature

Computing Z one obtains S(γ) and cluster size r(γ)
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Ising model - results

Ising model - entropy and magnetisation

Self-sustained cluster entropy

S(r) =











0 r = 0

−∞ 0 < r < 0.5

−r ln r − (1− r) ln(1− r) r ≥ 0.5

,

In-cluster and out-cluster magnetsations

〈si 〉σi=1 =
m +msσ

2r
, 〈si 〉σi=−1 =

m −msσ

2(1− r)

where m = 1
N

∑

i si and msσ = 1
N

∑

i σi si

Trivial ergodicity breaking occurs in the ferromagnetic phase
due to symmetry with either m>0 or m<0; trivial clusters
span the whole system
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Ising model - results
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Cluster entropy - SK model I

Operator partition function

We uniformly sample spin configurations of given
magnetization {mα} and cross-replica overlap {qαβ}, which
uniquely define the model’s macroscopic properties

Replicated operator partition function

ΞSK(γ,{mα},{qαβ}, n)

= Tr
{Jij}

Tr
{siα}

Tr
{σiα}

eγ
∑

i,α

1+σiα
2

∏

α

w({σiα},{siα},{Jij})

×
∏

α

δ

(∑

i siα

N
−mα

)

∏

αβ

δ

(∑

i siαsiβ

N
−qαβ

)

∏

(ij)

P(Jij).
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Cluster entropy - SK model II

Replica symmetry breaking

Un-replicated partition function ZSK[γ,P(mα),P(qαβ)]
requires averaging over the distributions P(mα) and P(qαβ)
to compute lnZSK = limn→0(ΞSK − 1)/n

In the spin glass phase Full Replica Symmetry Breaking

(FRSB) ansatz is required

We use Replica Symmetry (and one-step RSB) so that lnZSK

only depends on γ,m and q

RS/1RSB ansatze used in parameter values where the
corresponding entropy is positive
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SK model in the ferromagnetic phase
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SK model in the spin-glass phase

Entropies exhibit a similar general shape but with degrees of
freedom reduced (almost exactly) by half; and a gap at r = 1

S(r)≈
−r ln r−(1−r) ln(1−r)

2
= lim

N→∞

lnC
N/2
Nr/2

N
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Clusters in the spin-glass phase I

Correlations between clusters and replica

To understand the relation between self-sustained clusters and
ergodicity breaking we examine d = qsσsσ − qm2

σ

qsσsσ = [〈siασiαsiβσiβ〉i ,α,β], mσ = [〈σiα〉i ,α],

[. . . ] denotes disorder average

If spin-configuration overlap between two replica is
uncorrelated with cluster affiliations d=0

When correlated spin-configurations in two replica have
correlated cluster associations d>0
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Clusters in the spin-glass phase II
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d>0 for all r - correlated self-sustained and frozen clusters of
all sizes; not all spin subsets are self-sustained clusters (d = 0)

An extensive number of spin flips are required to
macroscopically destabilise self-sustained clusters
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Ferromagnetic phase - gap in cluster sizes

Discontinuity in cluster size at J0 ≥ 1.6; division to large/small
clusters; small domains of arbitrary alignment always exist
Phase line marks a growing ferromagnetic domain with J0 -
leading to trivial cluster as J0→∞
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Cluster sizes and magnetisations

In-cluster magnetisation as a function of r - imbalance
between different clusters 〈si 〉σi=1>m and 〈si 〉σi=−1<m

Pointing to local domains of weaker magnetic alignment
Absent in the Ising ferromagnet; a feature of coupling disorder
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Self-sustained clusters on sparse graphs I

Recursion relation in sparse graphs

For sparse graphs, we write down a recursion to relate the
operator partition function of node i to descendent nodes j ’s:

Z(sl , σl ; si , σi ; Jil) ∝ Tr
{sj ,σj}

w (si ,sl ,{sj};σi ,σl ,{σj}; Jil ,{Jji})

× eγ
1+σi
2





ki−1
∏

j=1

Z(si , σi ; sj , σj ; Jji)



P(si )P(Jil)

The indicator function

w (si ,sl ,{sj};σi ,σl ,{σj}; Jil ,{Jji})

=

[

1− σi
2

+
1 + σi

2
Θ(u2i − v2i )

]

is defined similarly as in the fully
connected cases
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Self-sustained clusters on sparse graphs II

Recursion relation in sparse graphs (cont.)

The spin configuration is uniformly sampled from the order
parameter P(si ), obtained from a self-consistent equation
independent of σ’s:

P(si) = Tr
{sj}

e
β
∑ki−1

j=1 Jji sj si

ki−1
∏

j=1

P(sj)

and simplifies to a recursion of cavity field hi by P(si)∝eβhi si

Loops in 3-regular graphs
form self-sustained clusters
at low temperature

Reason for frustrations or
RSB?
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The Ising model on random graphs

A simple case

The Ising model on random graphs can be constructed by
setting all Jij = 1

At T = 0, all si = 1 (or -1), the recursion of the operator
partition function can be greatly simplified:

Z(σl , σi ) ∝ Tr
{σj}

w (σi ,σl ,{σj}) e
γ

1+σi
2

ki−1
∏

j=1

Z(σi , σj )

Random regular network of
k = 3, all J = 1 at T = 0:

More cluster than loop at
most size r , since clusters
are not necesarily loop only

Less cluster then loop at
r = 1, since more than one
loop span the network 0 0.2 0.4 0.6 0.8 1

r
0

0.1

0.2

0.3

0.4

0.5

S(
r)

Loop
Self-sustained clusters

Chi Ho Yeung and David Saad Self-sustained Clusters



Spin glasses on random graphs

Model and cluster entropy

The distribution of coupling is given by
P(Jij) = pδ(Jij − 1) + (1− p)δ(Jij + 1)

The three main phases on 3-regular graphs: ferromagnetic,
paramagnetic and spin glass phase
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Summary and future work

Summary

Defined the notion of self-sustained clusters

Developed a method to calculate the entropy of self-sustained
clusters; obtained results for fully and sparsely connected Ising
models, SK model and spin glasses on random graphs

Showed that their existence is correlated with ergodicity
breaking in the examples studied; due to system symmetries or
complexity of the energy landscape

Identified a new phase transition in the ferromagnetic regime

Future plan

Explore further properties of self-sustained clusters in sparsely
connected networks

Improve optimisation algorithms using the new insight gained

C-H. Yeung, D. Saad, Phys. Rev. E 88, 032132 (2013)
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