The analysis of BP guided decimation algorithm

Federico Ricci-Tersenghi Physics Department
Sapienza University, Roma

FRT, G. Semerjian, JSTAT (2009) P09001
A. Montanari, FRT and G. Semerjian, Proc. Allerton (2007) 352

Motivations

- Solving algorithms are of primary relevance in combinatorial optimization
-> provide lower bounds
-> their behavior is related to problem hardness
- Analytical description of the dynamics of solving algorithms is difficult
- Can we link it to properties of the solution space?
- Is there a threshold unbeatable by any algorithm ? (kind of first principles limitation...)

Models and notation

- Random k-XORSAT (k=3)
- Random k-SAT (k=4)
- Notation:
- N variables, M clauses
- Clause to variables ratio $\alpha=M / N$

Phase transitions in random CSP

Standard picture

energy = unsat clauses

More phase transitions

 in random k-SAT (k > 3)

More phase transitions in random $k-S A T(k>3)$

Performance of algorithms for random 4-SAT

Performance of algorithms for random 4-SAT

Rigorously solved algorithms

Performance of algorithms for random 4-SAT

Rigorously solved algorithms

Algorithms with no analytic solution

Performance of algorithms for random 4-SAT

Rigorously solved algorithms

Algorithms with no analytic solution

Two broad classes of solving algorithms

- Local search
(biased) random walks in
the space of configurations
E.g. Monte Carlo, WalkSAT, FMS, ChainSAT, ...
- Sequential construction at each step a variable is assigned E.g. UCP, GUCP, BP/SP guided decimation
- the order of assignment of variables
- the information used to assign variables

The oracle guided algorithm (a thought experiment)

- Start with all variables unassigned
- while (there are unassigned variables)
- choose (randomly) an unassigned variable σ_{i}
- ask the oracle the marginal of this variable $\mu_{i}(\cdot \mid \underline{\sigma}(t))$
- assign σ_{i} according to its marginal

Samples solutions uniformly :-)
Oracle job is \#P-complete in general :-(

Ensemble of θ-decimated CSP

1. Draw a CSP formula with parameter α
2. Draw a uniform solution $\underline{\tau}$ of this $C S P$
3. Choose a set D_{θ} by retaining each variable independently with probability θ
4. Consider the residual formula on the variables outside D_{θ} obtained by imposing the allowed configurations to coincide with τ on D_{θ}

Not an ensemble of randomly uniform formulae conditioned on their degree distributions (step 2 depends on step 1)

Ensemble of θ-decimated CSP

- Residual entropy:

$$
\begin{aligned}
\omega(\theta) & =\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E}_{F} \mathbb{E}_{I} \mathbb{E}_{D}\left[\ln Z\left(\underline{\tau}_{D}\right)\right] \\
Z\left(\underline{\tau}_{D}\right)= & \text { number of solutions compatible } \\
& \text { with the solution "exposed" on } D_{\theta}
\end{aligned}
$$

- Fraction of frozen variables:

$$
\begin{aligned}
\phi(\theta) & =\frac{1}{N} \mathbb{E}_{F} \mathbb{E}_{\underline{\tau}} \mathbb{E}_{D_{\theta}}\left|W_{\theta}\right| \\
W_{\theta} & =D_{\theta} \cup\left\{\text { variables implied by } D_{\theta}\right\}
\end{aligned}
$$

Ensemble of θ-decimated CSP

- Compute $Z\left(\underline{\tau}_{D}\right)$ by the Bethe-Peierls approx.

$$
\begin{aligned}
\ln Z\left(\underline{\tau}_{D}\right)=- & \sum_{i \notin D, a \in \partial i} \ln \left(\sum_{\sigma_{i}} \nu_{a \rightarrow i}^{\tau_{D}}\left(\sigma_{i}\right) \eta_{i \rightarrow a}^{\tau_{D}}\left(\sigma_{i}\right)\right)+\sum_{a} \ln \left(\sum_{\underline{\sigma}_{\partial a}} \psi_{a}\left(\underline{\sigma}_{\partial a}\right) \prod_{i \in \partial a} \eta_{i \rightarrow a}^{\tau_{D}}\left(\sigma_{i}\right)\right) \\
& +\sum_{i \notin D} \ln \left(\sum_{\sigma_{i}} \prod_{a \in \partial i} \nu_{a \rightarrow i}^{\tau_{D}}\left(\sigma_{i}\right)\right),
\end{aligned}
$$

where messages satisfy standard BP equations with the boundary condition

$$
\eta_{i \rightarrow a}^{\frac{\tau}{D}^{D}}\left(\sigma_{i}\right)=\delta_{\sigma_{i}, \tau_{i}} \text { when } i \in D
$$

Practical approximate implementation of the thought experiment (BP guided decimation algorithm)

a. Choose a random order of the variables $i(1), \ldots, i(N)$
b. for $t=1, \ldots, N$

1. find a fixed point of BP eqns. with boundary condition

$$
\eta_{i \rightarrow a}^{\tau_{D}}\left(\sigma_{i}\right)=\delta_{\sigma_{i}, \tau_{i}}
$$

2. draw $\sigma_{i(t)}$ according to the BP estimation of $\mu\left(\sigma_{i} \mid \underline{\tau}_{D_{t-1}}\right)$
3. set $\tau_{i(t)}=\sigma_{i(t)}$

When BP guided decimation is expected to work

- At least 1 solution must exists $\left(\alpha<\alpha_{s}\right)$
- No contradictions should be generated
- Check for contradictions at each time
- add step 0. where UCP/WP is run
- Can not go beyond condensation transition as BP marginals are no longer correct ($\alpha<\alpha_{c}$)

Results for random 3-XORSAT

- Full analytic solution (by differential equations)

$$
\phi=\theta+(1-\theta)\left(1-e^{-\alpha k \phi^{k-1}}\right)
$$

$$
\alpha<\alpha_{a}
$$

$$
\alpha>\alpha_{a}
$$

Results for random 3-XORSAT

Phase transition for $\alpha>\alpha_{a}=\frac{1}{k}\left(\frac{k-1}{k-2}\right)^{k-2}$ like UCP

$$
\begin{aligned}
& \text { Jump in } \phi(\theta) \\
& \text { and } \\
& \text { cusp in } \omega(\theta) \\
& \alpha_{a}(k=3)=\frac{2}{3}
\end{aligned}
$$

Results for random 3-XORSAT

Phase transition for $\alpha>\alpha_{a}=\frac{1}{k}\left(\frac{k-1}{k-2}\right)^{k-2}$ like UCP

Results for random 3-XORSAT

Phase diagram for random 3-XORSAT

Numerics for random k-SAT

- $k=4, N=1 e 3,3 e 3,1 e 4,3 e 4$
- Run WP

$$
\begin{aligned}
& \alpha_{d}=9.38 \\
& \alpha_{c}=9.55 \\
& \alpha_{s}=9.93
\end{aligned}
$$

- integer variables, no approximation
- Run BP
- much care for dealing with quasi-frozen variables
- slow convergence (damping and restarting trick)
- maximum number of iterations (1000) Much larger than the diameter (~ 2)

Results for random 4-SAT

Large k limit

$$
\alpha_{d} \simeq \frac{\ln k}{k} 2^{k} \quad \alpha_{c} \simeq \alpha_{s} \simeq 2^{k}
$$

- Previous solvable algorithms

Pure Literal ("PL")	$o(1)$ as $k \rightarrow \infty$
Walksat, rigorous Walksat, non-rigorous	$\frac{1}{6} \cdot 2^{k} / k^{2}$
$2^{k} / k$	
Unit Clause ("UC")	$\frac{1}{2}\left(\frac{k-1}{k-2}\right)^{k-2} \cdot \frac{2^{k}}{k}$
Shortest Clause ("SC")	$\frac{1}{8}\left(\frac{k-1}{k-3}\right)^{k-3} \frac{k-1}{k-2} \cdot \frac{2^{k}}{k}$
SC+backtracking ("SCB")	$\sim 1.817 \cdot \frac{2^{k}}{k}$

- Our prediction for BP guided decimation $\alpha_{a} \simeq \frac{e}{k} 2^{k}$

Large k limit

$$
\alpha_{d} \simeq \frac{\ln k}{k} 2^{k} \quad \alpha_{c} \simeq \alpha_{s} \simeq 2^{k}
$$

- Previous solvable algorithms

Pure Literal ("PL")	$o(1)$ as $k \rightarrow \infty$
Walksat, rigorous Walksat, non-rigorous	$\frac{1}{6} \cdot 2^{k} / k^{2}$
$2^{k} / k$	
Unit Clause ("UC")	$\frac{1}{2}\left(\frac{k-1}{k-2}\right)^{k-2} \cdot \frac{2^{k}}{k}$
Shortest Clause ("SC")	$\frac{1}{8}\left(\frac{k-1}{k-3}\right)^{k-3} \frac{k-1}{k-2} \cdot \frac{2^{k}}{k}$
SC+backtracking ("SCB")	$\sim 1.817 \cdot \frac{2^{k}}{k}$

- Our prediction for BP guided decimation $\alpha_{a} \simeq \frac{e}{k} 2^{k}$
- Algorithm Fix by A. Coja-Oghlan works up to $\frac{\ln k}{k} 2^{k}$

Large k limit
 (pros and cons)

- Allows for rigorous proofs :-)
- Phase transition in the decimation process proved rigorously by A. Coja-Oghlan and A. Pachon-Pinzon
- May lead to assertions that are not always true :-((especially for small k values)
- Clustering threshold = rigidity threshold

Performance of algorithms for random 4-SAT

Rigorously solved algorithms

Algorithms with no analytic solution

In summary...

- We have solved the oracle guided decimation algorithm -> ensemble of decimated CSP
- BP guided decimation follows closely this solution
- We improve previous algorithmic thresholds α_{a} from 5.56 (GUC) to 9.05 for $k=4$
from 9.77 (GUC) to 16.8 for $k=5$
- Conjecture: in the large N limit for $\alpha<\alpha_{a}$ BP guided decimation = oracle guided decimation
- Todo: bound the error on BP marginals

A conjecture for the ultimate algorithmic threshold

- Hypothesis 1: no polynomial time algorithm can find solutions in a cluster having a finite fraction of frozen variables (frozen cluster)
- Hypothesis 2: smart polynomial time algorithms can find solutions in unfrozen clusters even when these clusters are not the majority

Dall'Asta, Ramezanpour, Zecchina, PRE 77 (2008) 031118

A conjecture for the ultimate algorithmic threshold

- The smartest polynomial time algorithm can work as long as there exists at least one unfrozen cluster
- Conjecture:

No polynomial time algorithm can find solutions when all clusters are frozen

- Stronger condition than the rigidity transition

