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Motivations

• Solving algorithms are of primary relevance in 
combinatorial optimization
-> provide lower bounds
-> their behavior is related to problem hardness

• Analytical description of the dynamics of solving 
algorithms is difficult

• Can we link it to properties of the solution space ?

• Is there a threshold unbeatable by any algorithm ?
(kind of first principles limitation...)



Models and notation

• Random k-XORSAT (k=3)

• Random k-SAT (k=4)

• Notation:

• N variables, M clauses

• Clause to variables ratio � = M/N



Structure of solutions space
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Fig. 11. Total entropy S(c) and configurational entropy S(c) for p=3.

of (2), spontaneously form clusters. By definition, two solutions having a
finite Hamming distance d, i.e., d/NQ 0 for NQ., are in the same
cluster, while two solutions in different clusters must have an extensive
distance, that is d/N ’ O(1) for large N.
In virtue of the property stated at the beginning of this subsection, all

the clusters have the same size. Their number is eNS(c), where S(c) is called
complexity or configurational entropy. We will show that the number of
clusters equals the number of solution in the core, that is

S(c)=Sc(c). (45)

The intra-cluster entropy, i.e., the normalized logarithm of the cluster size,
is then given by the non-core entropy Snc(c)=S(c)−Sc(c)=S(c)−S(c).
For p=3 these entropies are shown in Fig. 11.
The proof of Eq. (45) is given in 2 steps. First we show that all the

solution assignments of the core variables xFc are ‘‘well separated’’, that is
the distance among any pair of them is extensive. This is what gives rise to
the clustering, with a number of clusters which is at least as large as the
number of core solutions (S \ Sc). Then we show that, for any fixed xFc, all
possible assignments of non-core variables xFnc belong to the same cluster,
and so S=Sc.
The first step is accomplished by calculating the probability distribu-

tion of the distance among any two solutions in the core. Thanks to the
group property, we can restrict the calculation fixing one solution to the
null vector 0F. For simplicity we have performed an annealed average

S(d, c)= lim
Nc Q.

1
Nc
log C

sF

d 1C
i
si=Nc−2d2 DMc

m=1
d(sim1 · · ·simp=1), (46)
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More phase transitions
in random k-SAT (k > 3)

Phase transitions in random CSP

Random instances :

for each constraint a take the indices i1a . . . , ika uniformly at random

take the J ’s ±1 with equal probability

Large size (thermodynamic) limit, N,M → ∞ with α = M/N

Satisfiability phase transition :

for α < αs there are solutions (with high probability)

for α > αs there is no solution (with high probability)

Guilhem Semerjian (LPT-ENS Paris) 20.12.07 / Orsay 5 / 34

Phase transitions in random CSP

XORSAT : [Cocco, Dubois, Mandler, Monasson]

[Mézard, Ricci-Tersenghi, Zecchina]

αd αs α

Clustering Satisfiability

For α < αs, there are exp[Nω(α)] solutions

For αd < α < αs, splitting of the entropy, ω(α) = ωint(α) + Σ(α)

Clusters of “close” solutions

Guilhem Semerjian (LPT-ENS Paris) 20.12.07 / Orsay 6 / 34

Phase transitions in random CSP

SAT [Biroli, Monasson, Weigt]

[Mézard, Parisi, Zecchina]

More transitions (for k ≥ 4)

[Krzakala, Montanari, Ricci-Tersenghi, GS, Zdeborova]

αd,+ αd αc αs

Exponential number of relevant clusters only in [αd,αc],
then “condensation”
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Random factor graphs

are locally acyclic

have Poisson distributions of mean αk for the variable degrees

Branching process :
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Two broad classes of
solving algorithms

• Local search
(biased) random walks in
the space of configurations
E.g. Monte Carlo, WalkSAT, FMS, ChainSAT, ...

• Sequential construction
at each step a variable is assigned
E.g. UCP, GUCP, BP/SP guided decimation

• the order of assignment of variables

• the information used to assign variables



The oracle guided algorithm
(a thought experiment)

• Start with all variables unassigned

• while (there are unassigned variables)

• choose (randomly) an unassigned variable

• ask the oracle the marginal of this variable

• assign       according to its marginal

Samples solutions uniformly  :-)
Oracle job is #P-complete in general  :-(
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Ensemble of   -decimated CSP

1. Draw a CSP formula with parameter 

2. Draw a uniform solution     of this CSP

3. Choose a set       by retaining each variable 
independently with probability

4. Consider the residual formula on the variables outside 
obtained by imposing the allowed configurations to 
coincide with    on

✓

✓

Not an ensemble of randomly uniform formulae conditioned 
on their degree distributions (step 2 depends on step 1)
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Ensemble of   -decimated CSP✓

• Residual entropy:

• Fraction of frozen variables:

= number of solutions compatible
 with the solution “exposed” on
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On the cavity method for decimated random constraint satisfaction problems

The analytical description of the dynamics followed by this ideal process seems very
difficult: at each time step the probability of the evolution τDt−1

→ τDt
depends in a

non-trivial way on all the choices made in the previous steps. However the description
of the process at a given point of its evolution is very simple. As noted above τDt

is
distributed according to the marginal of µ(·). One can state this in a slightly different
way: τDt

can be obtained by drawing uniformly a solution τ from µ(·), retaining the
configuration of the variables in Dt, and discarding the rest of the configuration. We shall
further assume that the permutation i(1), . . . , i(N) is drawn uniformly at random, such
that Dt is a random set of t variables among N . In the thermodynamic limit we shall
define θ = t/N , the fraction of assigned variables, and consider for simplicity that DθN is
built by retaining independently each variable with probability θ (we only make an error
of order 1/

√
N on the fraction of variables thus included in D).

These considerations lead us to the definition of an ensemble of CSP instances
parameterized by α and θ, generalizing the original one which corresponds to θ = 0.
Explicitly this ensemble of formulae corresponds to the following generation process:

(1) draw a satisfiable CSP with parameter α;

(2) draw a uniform solution τ of this CSP;

(3) choose a set D by retaining each variable independently with probability θ;

(4) consider the residual formula on the variables outside D obtained by imposing the
allowed configurations to coincide with τ on D.

Let us emphasize that, apart from simple cases like the xorsat model, these ensembles
do not coincide in general with randomly uniform formulae conditioned on their degree
distributions. The fact that the generation of the configuration τ depends on the initial
CSP induces non-trivial correlations in the structure of the final formula.

We shall see in the following how to adapt the statistical mechanics techniques to
compute the typical properties of such generalized formulae, and in particular to determine
the phase transition thresholds in the (α, θ) plane. One characterization of these random
ensembles is the quenched average residual entropy:

ω(θ) = lim
N→∞

1

N
EF EτED[ln Z(τD)], Z(τD) =

∑

σ

M∏

a=1

ψa(σ∂a)I(σD = τD), (5)

where the three expectation values correspond to the three steps of the definition above.
This quantity is similar, yet distinct, from the Franz–Parisi quenched potential [26]. The
definition of the latter also involves a ‘thermalized’ reference configuration τ , but is given
by the free energy of the measure on the configurations at a given Hamming distance
from τ . In other words the two real replicas σ and τ are coupled uniformly across the
variables in a Franz–Parisi quenched potential, whereas in the definition of ω they are
coupled infinitely strongly on D where they are forced to coincide, and not at all outside
D. The computations presented in the rest of this paper can, however, be easily adapted
to obtain the usual quenched potential.

We shall characterize the reduced measure µ(·|τD) more precisely by computing other
quantities besides ω(θ). The existence of clusters in this measure will be tested by the
computation of the long-range point-to-set correlations and the complexity of the typical
clusters.

doi:10.1088/1742-5468/2009/09/P09001 8
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Ensemble of   -decimated CSP✓

• Compute             by the Bethe-Peierls approx. 

where messages satisfy standard BP equations
with the boundary condition
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2.3. Bethe–Peierls approximation for decimated CSPs

We recall in this section the Bethe–Peierls approximation for statistical models defined on
factor graphs and show how to adapt it to partially decimated CSPs. Let us first consider
a probability measure with a weight function which can be factorized as in equation (3),
with ψa some a priori arbitrary positive functions. The Bethe approximation for the
computation of the partition function Z consists in extremizing the following expression:

ln Z = −
∑

i,a∈∂i

ln

(
∑

σi

νa→i(σi)ηi→a(σi)

)

+
∑

a

ln

⎛

⎝
∑

σ∂a

ψa(σ∂a)
∏

i∈∂a

ηi→a(σi)

⎞

⎠

+
∑

i

ln

(
∑

σi

∏

a∈∂i

νa→i(σi)

)

(6)

over the unknown {νa→i, ηi→a}. These are probability measures on the alphabet of σi,
defined on the directed edges of the factor graph, which we shall call messages for reasons
that will become clear below. The extremization of the Bethe approximation for ln Z
leads to a set of equations between the messages:

νa→i(σi) = f({ηj→a}j∈∂a\i), ηi→a(σi) = g({νb→i}b∈∂i\a), (7)

where the (edge-dependent) functions f and g are defined by

νa→i(σi) =
1

za→i

∑

σ∂a\i

ψa(σ∂a)
∏

j∈∂a\i

ηj→a(σj), ηi→a(σi) =
1

zi→a

∏

b∈∂i\a

νb→i(σi), (8)

with za→i and zi→a ensuring the normalization of νa→i and ηi→a. When the factor graph
is a tree the log partition function is exactly given by (6) evaluated on the unique solution
of the stationarity equations (8), see for instance [24]. The messages νa→i (resp. ηi→a)
are then the marginal probabilities for σi of a modified measure corresponding to a factor
graph where all factor nodes around i except a have been removed (resp. only a has
been removed). From the knowledge of the messages solution of (8) one can compute
the marginal probability of the variables in the full factor graph law (3), for instance the
marginal probability of variable i is

1

zi

∏

a∈∂i

νa→i(σi), (9)

with again zi fixed by normalization. In general factor graphs do contain loops, in that
case (6), (8), (9) are only approximations, at the basis of the so-called belief propagation
algorithm discussed in more details below.

The Bethe approximation can be easily adapted to the case where the configuration is
forced to the value τD on a subset of the sites i ∈ D, that is to the conditional measure (4).
The estimation of the conditioned log partition function follows from (6)

ln Z(τD) = −
∑

i/∈D,a∈∂i

ln

(
∑

σi

ν
τD
a→i(σi)η

τD
i→a(σi)

)

+
∑

a

ln

⎛

⎝
∑

σ∂a

ψa(σ∂a)
∏

i∈∂a

η
τD
i→a(σi)

⎞

⎠

+
∑

i/∈D

ln

(
∑

σi

∏

a∈∂i

ν
τD
a→i(σi)

)

, (10)
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where the messages {ητD
i→a, ν

τD
a→i} depend on the imposed partial configuration τD. They

indeed obey the same equations (8), complemented with the boundary conditions
η

τD
i→a(σi) = δσi,τi when i ∈ D.

2.4. Practical approximate implementation of the thought experiment

The ideal sampling algorithm described in section 2.2 cannot be practically implemented,
because the computation of the marginals of the probability law µ(σ|τD) has generically
a cost exponential in the number of variables. One can, however, mimic this procedure,
using a faster yet approximate estimation of the marginals of µ(σ|τD) by means of the
belief propagation algorithm. This modification of the ideal sampler, which will be called
BP guided decimation in the following, thus corresponds to (for a given CSP instance):

(1) choose a random order of the variables, i(1), . . . , i(N), call D0 = ∅, Dt =
{i(1), . . . , i(t)};

(2) for t = 1, . . . , N :

(a) find a fixed point of the BP equations (7) with the boundary conditions ηi→a(σi) =
δσi,τi when i ∈ Dt−1;

(b) draw σi(t) according to the BP estimation of µ(σi|τDt−1
) given in (9);

(c) set τi(t) = σi(t).

The belief propagation part of the algorithm corresponds to step 2(a). It amounts to
searching for a stationary point of the Bethe approximation for the log partition function,
in an iterative manner. The unknowns of the Bethe expression, ηi→a (resp. νa→i), are
considered as messages passed from a variable to a neighboring clause (resp. from a
clause to a variable). In a random sequential order a message, say ηi→a, updates itself
by recomputing its value from the current messages sent by its neighbors {νb→i}b∈∂i\a,
according to the equation in (8). If the factor graph of the formula was a tree, these
iterations would converge in a finite number of updates to the unique fixed point solution
of (8). On generic factor graphs there is no guarantee of convergence of these iterations, in
practical implementations one has thus to precise the definition of the algorithm, giving
criteria to stop the iterations of the BP updates; we shall come back to this point in
section 5.5.

The definition of the probability measure conditioned on the choice of the reference
configuration τD (4) and the subsequent derivation of the BP equations only make sense
if the formula admits at least one solution compatible with τD. In the analysis of the
ideal algorithm this is automatically the case as soon as the initial formula is satisfiable.
However, this can fail in the course of the BP guided decimation algorithm because the
marginals used to generate the configuration τ are only approximate. The BP equations
are no longer well defined when there are no solutions of the formula compatible with
τD. This shows up, for instance, in the computation of the message sent by a variable i
to a clause a; whenever the product

∏
b∈∂i\a νb→i(σi) vanishes for all possible values of σi

the message ηi→a can no longer be normalized; a contradiction has occurred between the
strong requests imposed by the clauses in ∂i \ a. The BP guided decimation algorithm
has then to stop and fails to construct a solution of the formula.

This mechanism which unveils the contradictions in the choice of τD, and the fact
that no solution is compatible with it, is actually equivalent to the unit clause propagation

doi:10.1088/1742-5468/2009/09/P09001 10
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• Full analytic solution (by differential equations)
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Results for XORSAT - Analysis

Discontinuity in φ(θ) for α ≥ α∗ = 1
k

(
k−1
k−2

)k−2
2
3
for k = 3

phase

diagram

in (α, θ):

α

θ
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0.3

0.2

0.1

0

Relevant branch in φ(θ) is the lowest one (from rigorous solution)

⇒ discontinuity on the solid line

Guilhem Semerjian (LPT-ENS Paris) 20.12.07 / Orsay 22 / 34

Results for XORSAT - Analysis

Residual entropy :

ω(θ) = (ln 2)

⎡

⎢⎢
⎣(1− φ(θ))
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variables

− α
(
1− φ(θ)k − k(1 − φ(θ))φ(θ)k−1

)
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constraints

⎤

⎥⎥
⎦

α < α∗ :

θ

ω(θ)/ ln 2

10.80.60.40.20

0.5

0.25

0

Guilhem Semerjian (LPT-ENS Paris) 20.12.07 / Orsay 23 / 34

Results for XORSAT - Analysis

α > α∗ :

θ

ω(θ)/ ln 2

10.80.60.40.20

0.2

0.15

0.1

0.05

0

⇒ another line in the phase diagram
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Numerics for random k-SAT

• k = 4,   N = 1e3, 3e3, 1e4, 3e4

• Run WP

• integer variables, no approximation

• Run BP

• much care for dealing with quasi-frozen variables

• slow convergence (damping and restarting trick)

• maximum number of iterations (1000)

�d = 9.38
�c = 9.55
�s = 9.93

Much larger than
the diameter (~2)
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FIG. 6: 4-sat, φ(θ), left: α = 7.0, right: α = 8.4.
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FIG. 7: 4-sat, θ±(α) from the computation of φ, ψ.

B. The computation of ω(θ)

By analogy with xorsat one could think that the above computed lines θ± are (at least bounds on) the limits of
the region of the (α, θ) where the reduced measure µ(·|σD) gets clustered. This does not seem to be the case. At
α = 8.4 as well as α = 7.0, there are no trace of long-range point-to-set correlation in the reduced measure, the
residual entropy goes down smoothly with no complexity arising, see Fig. 8.

In fact non-trivial long-range correlations and complexities arise for larger values of α. Above αt
∗ > α∗, the average

long range point-to-set correlation is non-trivial in a range [θt
−, θt

+], see Fig. 9 for the plots of the correlation, and
Fig. 10 for the values of θt

±. By definition θt
− vanishes at αd, the dynamic transition threshold of the original ensemble.

A condensation transition occurs at some value θc(α) ∈ [θt
−, θt

+]. In the interval [θt
−, θc] the complexity of the

relevant clusters is positive, given by the difference between the solid and dashed line of Fig. 11. In [θc, θt
+] one should
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FIG. 8: 4-sat, ω(θ), left: α = 7.0, right: α = 8.4.
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Large k limit

• Previous solvable algorithms

• Our prediction for BP guided decimation 

• Algorithm Fix by A. Coja-Oghlan works up to 

↵d ' ln k

k
2k ↵c ' ↵s ' 2k

↵a ' e

k
2k

1 INTRODUCTION 3

Algorithm Densitym/n < · · · Success probability Ref., year
Pure Literal (“PL”) o(1) as k → ∞ w.h.p. [19], 2006
Walksat, rigorous 1

6 · 2k/k2 w.h.p. [9], 2009
Walksat, non-rigorous 2k/k w.h.p. [22], 2003

Unit Clause (“UC”) 1
2

(

k−1
k−2

)k−2
· 2k

k Ω(1) [7], 1990

Shortest Clause (“SC”) 1
8

(

k−1
k−3

)k−3
k−1
k−2 · 2k

k w.h.p. [8], 1992

SC+backtracking (“SCB”) ∼ 1.817 · 2k

k w.h.p. [15], 1996
BP+decimation (“BPdec”) e · 2k/k w.h.p. [21], 2007

(non-rigorous)

Table 1: Algorithms for random k-SAT

1.3 Related work
Quite a few papers deal with efficient algorithms for random k-SAT, contributing either rigorous results,
non-rigorous evidence based on physics arguments, or experimental evidence. Table 1 summarizes the
part of this work that is most relevant to us. The best rigorous result (prior to this work) is due to Frieze
and Suen [15], who proved that “SCB” succeeds for densities ηk2k/k, where ηk is increasing to 1.817
as k → ∞. SCB can be considered a (restricted) DPLL-algorithm. More precisely, SCB combines the
shortest clause rule, which is a generalization of Unit Clause, with (very limited) backtracking. Conversely,
it is known that DPLL-type algorithms require an exponential running time w.h.p. for densities beyond
O(2k/k) [1].

Montanari, Ricci-Tersenghi, and Semerjian [21] provide evidence that Belief Propagation guided dec-
imation may succeed up to density e · 2k/k. This algorithm is based on a very different paradigm than
the others mentioned in Table 1. The basic idea is to run a message passing algorithm (“Belief Propaga-
tion”) to compute for each variable the marginal probability that this variable takes the value true/false in a
uniformly random satisfying assignment. Then, the decimation step selects a variable, assigns it the value
true/false with the corresponding marginal probability, and simplifies the formula. Ideally, repeating this
procedure will yield a satisfying assignment, provided that Belief Propagation keeps yielding the correct
marginals. Proving (or disproving) this remains a major open problem.

Survey Propagation is a modification of Belief Propagation that aims to approximate the marginal
probabilities induced by a particular (non-uniform) probability distribution on the set of satisfying assign-
ments [6]. It can be combined with a decimation procedure as well to obtain a heuristic for finding a
satisfying assignment. There is (non-rigorous) evidence that for most of the satisfiable regime (actually
m/n < 2k ln 2 − O(1)) Belief and Survey Propagation are essentially equivalent [20]. Hence, there is no
evidence that Survey Propagation finds satisfying assignments beyondO(2k/k) for general k.

In summary, various algorithms are known/appear to succeed for densities c · 2k/k, where the constant
c depends on the particulars of the algorithm. But I am not aware of prior evidence (either rigorous results,
non-rigorous arguments, or experiments) that some algorithm succeeds for densities m/n = 2kω(k)/k
with ω(k) → ∞.

The discussion so far concerns the case of general k. In addition, a large number of papers deal with the
case k = 3. Flaxman [13] provides a survey. Currently the best rigorously analyzed algorithm for random
3-SAT is known to succeed up tom/n = 3.52 [17]. This is also the best known lower bound on the 3-SAT
threshold. The best current upper bound is 4.506 [11], and non-rigorous arguments suggest the threshold
to be ≈ 4.267 [6]. As mentioned in Section 1.2, there is non-rigorous evidence that the structure of the
set of all satisfying assignment evolves differently in random 3-SAT than in random k-SAT for “large” k.
This may be why experiments suggest that Survey Propagation guided decimation for 3-SAT succeeds for
densitiesm/n up to 4.2 [6].

1.4 Techniques and outline
The algorithms for random k-SAT from [7, 8, 15] all follow a very simple scheme:
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Large k limit

• Allows for rigorous proofs   :-)

• Phase transition in the decimation process proved 
rigorously by A. Coja-Oghlan and A. Pachon-Pinzon

• May lead to assertions that are not always true   :-(
(especially for small k values)

• Clustering threshold = rigidity threshold

(pros and cons)
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In summary...

• We have solved the oracle guided decimation algorithm
-> ensemble of decimated CSP

• BP guided decimation follows closely this solution

• We improve previous algorithmic thresholds
from 5.56 (GUC) to 9.05 for k=4
from 9.77 (GUC) to 16.8 for k=5 

• Conjecture: in the large N limit for 
BP guided decimation = oracle guided decimation 

• Todo: bound the error on BP marginals

↵ < ↵a
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A conjecture for the ultimate 
algorithmic threshold

• Hypothesis 1: no polynomial time algorithm can find 
solutions in a cluster having a finite fraction of
frozen variables (frozen cluster)

• Hypothesis 2:
smart polynomial time
algorithms can find
solutions in unfrozen
clusters even when
these clusters
are not the majority

namically relevant ones. Moreover, FSA finds solutions in
much smaller clusters close to the frozen ones.

The above results have been obtained with parameters
given in Sec. VII A. We found that by decreasing ! !in BPR"
or "# !in SA and FSA" the algorithms find solutions in larger
clusters. In fact in a very slow annealing scheme, where one
equilibrates the system at each step of the algorithm, we will
finally find a solution in the thermodynamically relevant
clusters.

Notice that all the algorithms end up in the region be-
tween the frozen and thermodynamically relevant clusters.
Indeed, when N is large it is very difficult to find a solution
in the frozen clusters; each time we flip a frozen variable, we
go to another cluster of solutions and so an extensive number
of flips is needed to accordingly rearrange the variables. On
the other hand, it is not also easy to find a solution in very
large clusters that are exponentially less numerous than the
thermodynamically relevant ones.

As already mentioned, beyond the rigidity transition we
could only find a solution by BPR algorithm. Figure 10
shows that in this case the solutions are very close to the
boundary between frozen and unfrozen clusters. The differ-
ence is about the statistical errors and the error that we make
by underestimating the entropy. We see that when the ther-
modynamically relevant clusters are frozen the algorithm
ends up in the smallest unfrozen clusters. These are exponen-
tially more numerous than the other unfrozen clusters.

We have checked that our solutions do, indeed, belong to
the unfrozen clusters. This can be done with the so-called
whitening process #37,38$. Given a solution one checks if a
variable can be flipped without violating any constraint. If
so, that variable is unfrozen and is denoted with a “!.” The
process goes on by checking one by one the other variables
with the additional rule that a constraint with at least one star
variable be always satisfied. This process is repeated up to
the fixed point where the number of star variables is fixed. If
a solution belongs to an unfrozen cluster, then at the end all
the variables would be !.

VIII. CONCLUSION

In summary, we applied the large deviations cavity
method to study the phase diagram of the bicoloring problem
on regular random hypergraphs. Working in the one-step
replica-symmetry-breaking framework we located the vari-
ous phase transitions characterizing the structure of the solu-
tions landscape at both the ensemble and single-instance lev-
els. Notice that we did not check the stability of 1RSB
solutions toward higher-order replica symmetry breaking.
But as other studies show #39,40$, we expect 1RSB solutions
to give the correct qualitative picture and even exact results
close to the SAT-UNSAT transition.

We also used different algorithms to find solutions and to
locate them in the entropy landscape of the problem. This
provided a rough characterization of the relations existing
between the entropic properties of clusters of solutions and
the different algorithms used to find them.

From an algorithmic point of view, the algorithms based
on simulated annealing could not efficiently find solutions
after the rigidity point. However, using BPR we showed that
it is actually possible to go beyond the rigidity transition. In
this case we obtained solutions that belong to the smallest
and most numerous unfrozen clusters #18$.
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APPENDIX A: CAVITY EQUATIONS
IN THE RS APPROXIMATIONS

We start from the partition function definition in Eq. !9"
and derive the main equations in the first part of Sec. IV. Let
Zi→a!$i" denote the partition function in the absence of con-
straint a and when variable i has state $i. Then, in the ab-
sence of constraint a, the probability of finding variable i in
state $i is

%i→a!$i" =
Zi→a!$i"

%$
Zi→a!$"

. !A1"

On the other hand, assuming a tree structure for the factor
graph we can write

Zi→a!$i" = %
$!i→a

& '
b!V!i"\a

Ib!$!b"( '
j!V!b"\i

Zj→b!$ j")*ex!$i − $i
!"2

.

!A2"

From the above equation we can derive a relation for the
cavity marginals:

%i→a!$i" =
1

Zi→a
%

$!i→a
& '

b!V!i"\a
Ib!$!b"

&( '
j!V!b"\i

% j→b!$ j")*ex!$i − $i
!"2

, !A3"

where Zi→a is a normalization constant. It is more convenient
if we write the above relation as
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FIG. 10. !Color online" Comparing the attractive clusters of the
BPR algorithm with the typical and thermodynamically relevant
clusters !large circles". In this case the BPR algorithm finds solu-
tions in the most numerous unfrozen clusters. The result obtained
from 20 solutions on a !6,121"-hypergraph of size N=100 02. The
standard deviation in the entropy is about 0.002.
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A conjecture for the ultimate 
algorithmic threshold

• The smartest polynomial time algorithm can work
as long as there exists at least one unfrozen cluster

• Conjecture:
No polynomial time algorithm can find solutions
when all clusters are frozen

• Stronger condition than the rigidity transition


