

Taxi walks and the hard-Core model on \mathbb{Z}^2

David Galvin

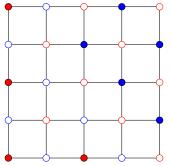
University of Notre Dame

with Antonio Blanca, Dana Randall and Prasad Tetali

Hard-core model on \mathbb{Z}^2

The hard-core model on a box in \mathbb{Z}^2

Model of occupation of space by particles with non-negligible size



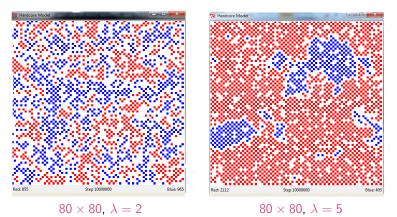
An independent set/hard-core configuration on a box in \mathbb{Z}^2

Density parameter $\lambda > 0$ Each / occurs with probability proportional to $\lambda^{|I|}$

Phase transition

- Small λ : typical configuration disordered
- Large λ : typical configuration mostly in either red or blue sublattice

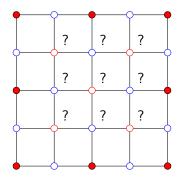
Simulations on a wrapped-around box in \mathbb{Z}^2



(Simulations by Justin Hilyard)

Conjecture: Model on boxes in \mathbb{Z}^2 flips from disorder to order around some λ_{crit}

Dealing with infinite graphs

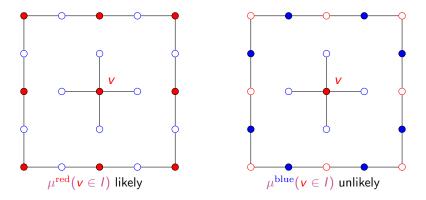


Gibbs measures à la Dobrushin, Lanford, Ruelle

- Hardwire a boundary condition on a finite piece, and extend inside
- Gibbs measure: any limit measure as the finite pieces grow

Can different boundary conditions lead to different Gibbs measures?

The picture for large λ on \mathbb{Z}^2



For large λ "influence of boundary" should persist

Enough to show $\mu^{\text{blue}}(\mathbf{v} \in I)$ small (this forces $\mu^{\text{red}}(\mathbf{v} \in I)$ large)

FKG this is necessary, too

David Galvin (Notre Dame)

A precise conjecture

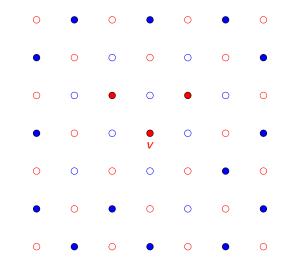
Conjecture (folklore, 1950's): There is $\lambda_{\rm crit} \approx 3.796$ such that

- $\bullet\,$ for $\lambda<\lambda_{\rm crit},$ hard-core model on \mathbb{Z}^2 has unique Gibbs measure
- for $\lambda > \lambda_{\rm crit}$, there is phase coexistence (multiple Gibbs measures)

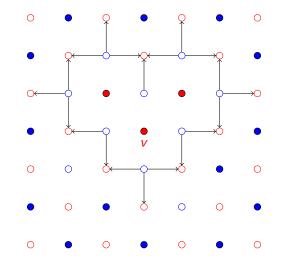
What's known (if λ_{crit} exists)

- Dobrushin (1968): $\lambda_{\rm crit} > .25$ (meaning: for $\lambda \le .25$ there is unique Gibbs measure)
- Vera-Vigoda-Yang (2013): $\lambda_{crit} > 2.48$ [building on Restrepo-Shin-Tetali-Vigoda-Yang (2011), Weitz (2006); earlier work by Dobrushin-Kolafa-Shlosman (1985), Kirillov-Radulescu-Styer (1989), van den Berg-Steif (1994), Radulescu (1997)]
- Dobrushin (1968): λ_{crit} < C for some large C (meaning: for λ ≥ C there are multiple Gibbs measures)
- Borgs-G. (2002-2011): $\lambda_{\mathrm{crit}} <$ 300, with 80 as theoretical limit

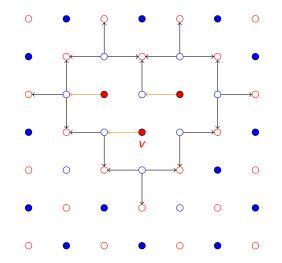
Theorem (Blanca-G.-Randall-Tetali 2012+): $\lambda_{crit} < 5.3646$



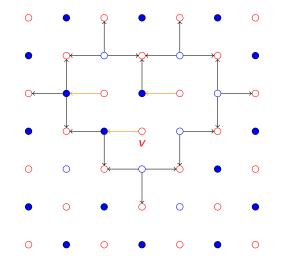
Blue boundary, red center ...



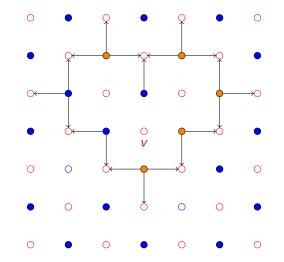
... leads to separating contour ...



... shifting inside contour creates a more ordered independent set ...



... shifting inside contour creates a more ordered independent set ...



... and frees up some vertices (in orange) that can be added

Facts about contours

- Unoccupied edge cutset separating v from boundary
- Interior-exterior edges always from blue sublattice to red
- Length 4ℓ for some $\ell \geq 3$, with ℓ edges in each direction
- Shift in any direction frees up ℓ vertices to be (potentially) added

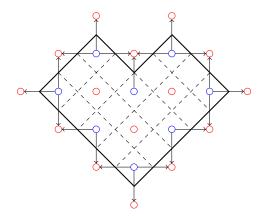
Using contours

- \bullet One-to-many map with image weight $(1+\lambda)^\ell$ times larger than input
- Overlap of images controlled by number of possible contours
- The Peierls bound:

$$\mu^{\mathbf{blue}}(\mathbf{v} \in I) \leq \sum_{\ell \geq 3} rac{f_{\mathrm{contour}}(\ell)}{(1+\lambda)^\ell}$$

where $f_{\rm contour}(\ell)$ is number of contours of length 4ℓ

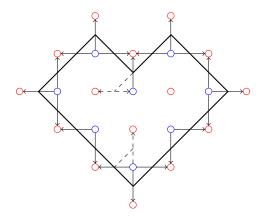
Contours are polygons —



Contours are *simple polygons* in a rotated, dilated copy of \mathbb{Z}^2 where

- vertices the midpoints of edges of \mathbb{Z}^2
- vertices adjacent if their corresponding edges meet perpendicularly

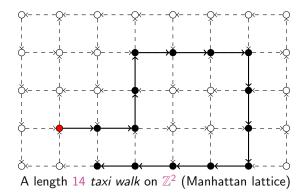
Contours are polygons — with significant restrictions



Contours are *simple polygons* in a rotated, dilated copy of \mathbb{Z}^2 where

- two consecutive turns not allowed
- turn direction forced by parity of length of straight segments

Taking a taxi around the Manhattan lattice



- Contours are closed, self-avoiding, taxi walks!
- $f_{\text{contour}}(\ell) \leq \text{poly}(\ell) 2^{4\ell}$
- $f_{\text{contour}}(\ell) = \text{subexp}(\ell)\mu_t^{4\ell}$, where μ_t is taxi walk connective constant

Upper bounds on $\lambda_{
m crit}$ using Peierls

An easy bound

- For $\lambda > 40$ have $\mu^{\text{blue}}(\mathbf{v} \in I) \leq \sum_{\ell \geq 3} \frac{f_{\text{contour}}(\ell)}{(1+\lambda)^{\ell}} < 1/100$
- Theoretical limit of this argument for λ_{crit} is $\mu_t^4 1 + \varepsilon$

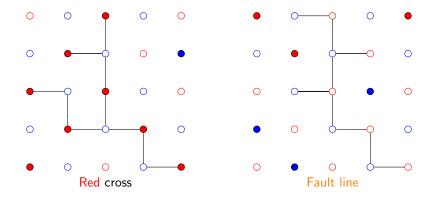
Easy estimate of the connective constant μ_t

• Taxi walk encoded by $\{s,t\}$ -string, no tt, so $\mu_t \leq 1.618\ldots$

A better estimating

- Fix m < n, form matrix with *ij*-entry the number of taxi walks of length n that begin with the *i*th walk of length m and end with the *j*th walk of length m; largest eigenvalue bounds μ_t (Alm 1993)
- Estimating eigenvalues of 10057 imes 10057 matrix, get $\mu_t < 1.59$
- $\lambda_{
 m crit} < 11$, theoretical limit 5.3646

Improving things - crosses and fault lines



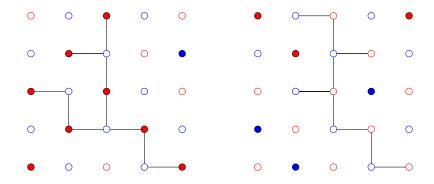
Theorem (Randall 2006) Every independent set in a box has one of

- red cross
- blue cross
- fault line

Improving things - long contours

- A new event that distinguishes between $\mu^{\rm blue}$ and $\mu^{\rm red}$
 - Old: *E* is set of independent sets with particular red vertex occupied
 - New: *E* is set of independent sets with either a red cross or fault line in some fixed $m \times m$ box
 - Under blue boundary condition on $n \times n$ box, build long $(\Omega(m))$ contour around red cross or fault line in $m \times m$ box

Improving things - long contours



Peierls bound

$$\mu^{\mathbf{blue}}(E) \leq \sum_{\ell \geq \Omega(m)} \frac{f_{\mathrm{contour}}(\ell)}{(1+\lambda)^{\ell}}$$

Theorem: For all $\varepsilon > 0$, $\lambda_{crit} < \mu_t^4 - 1 + \varepsilon < 5.3646$

A rapid slide on slow mixing

How quickly does Glauber dynamics converge on an $n \times n$ box?

Conjecture (folklore) Slowly, if $\lambda > \lambda_{\mathrm{crit}}$

Using conductance

- Old: Independent sets with equal numbers of red, blue vertices form bottleneck
- New: Independent sets with fault line forms bottleneck

Theorem (Blanca-G.-Randall-Tetali 2012): Glauber dynamics mixes exponentially slowly for

> $\lambda > 7.1031$ on $n \times n$ box $\lambda > 5.3646$ on $n \times n$ torus

A problem in need of three new ideas

Lower bounds on the critical density

• $\lambda_{\rm crit} > 2.48$

• SSM on $\mathcal{T}_{\mathrm{SAW}}(\mathbb{Z}^2)$ stops before $\lambda=$ 3.4 (Vera-Vigoda-Wang 2013)

Upper bounds on the critical density

- $\lambda_{\rm crit} < \mu_t^4 1 < 5.37$
- $\mu_t^4 1 > 4.22$ (Blanca-G-Randall-Tetali 2013+)

Existence of the critical density

- Hard-core model not always monotone (Brightwell-Häggström-Winkler 1998)
- Problem hard for a reason?

Future work?

THANK YOU!