Physical ageing in systems without detailed balance

Malte Henkel

Groupe de Physique Statistique, Institut Jean Lamour (CNRS UMR 7198)
Université de Lorraine Nancy, France

Symposion University of Warwick:
Models from statistical mechanics in applied sciences,
13th of September 2013

N. Allegra, J.-Y. Fortin and MH, arxiv:1309.1634
Remerciements :

N. Allegra, F. Baumann, C. Chatelain, X. Durang, J.-Y. Fortin

M. Pleimling
J.D. Noh, H. Park
F. Sastre
S. Rouhani
M. Hase, T. Tomé, M.J. de Oliveira
S. Stoimenov
T. Enss, U. Schollwöck
J. Ramasco, M.A. Santos, C. da Silva Santos

U Nancy I (France)
Virginia Tech. (É.U.A.)
KIAS Seoul (Corea)
U Guanajuato (Mexico)
U Teheran (Iran)
U São Paulo (Brazil)
Sofia (Bulgarie)
TU & LMU Munich (Germany)
U Porto (Portugal)
Overview:

1. Ageing phenomena
2. Interface growth (KPZ universality class)
3. Form of the scaling functions & Local Scale-Invariance (LSI)
4. Logarithmic conformal & ageing invariance (LLSI)
5. Numerical experiments (KPZ and DP classes in 1D, majority voter in 2D)
6. Outlook: growth on semi-infinite substrates
7. Conclusions
1. Ageing phenomena

Known & practically used since prehistoric times (metals, glasses) systematically studied in physics since the 1970s

Discovery: ageing effects reproducible & universal! Occur in widely different systems (structural glasses, spin glasses, polymers, simple magnets, ...)

Three **defining properties** of **ageing**:

1. Slow relaxation (non-exponential!)
2. **No** time-translation-invariance (TTI)
3. Dynamical scaling without fine-tuning of parameters

Most existing studies on ‘magnets’: relaxation towards equilibrium

Question: what can be learned about intrinsically irreversible and/or complex systems by studying their ageing behaviour?
\(t = t_1 \) \hspace{1cm} \(t = t_2 > t_1 \)

magnet \(T < T_c \) \hspace{2cm} \rightarrow \text{ordered cluster}

magnet \(T = T_c \) \hspace{2cm} \rightarrow \text{correlated cluster}

critical contact process \hspace{2cm} \Longrightarrow \text{cluster dilution}

common feature: growing length scale \(L(t) \sim t^{1/z} \)

\(z \): dynamical exponent
Two-time observables: analogy with ‘magnets’

time-dependent order-parameter $\phi(t, r)$

two-time **correlator** $C(t, s) := \langle \phi(t, r) \phi(s, r) \rangle - \langle \phi(t, r) \rangle \langle \phi(s, r) \rangle$

two-time **response** $R(t, s) := \frac{\delta \langle \phi(t, r) \rangle}{\delta h(s, r)} \bigg|_{h=0} = \langle \phi(t, r) \tilde{\phi}(s, r) \rangle$

t: observation time, s: waiting time

a) system at equilibrium: fluctuation-dissipation theorem

$$R(t - s) = \frac{1}{T} \frac{\partial C(t - s)}{\partial s} , \quad T: \text{temperature}$$

b) far from equilibrium: C and R independent!

The **fluctuation-dissipation ratio** (FDR)

$$X(t, s) := \frac{TR(t, s)}{\partial C(t, s)/\partial s}$$

measures the distance with respect to equilibrium: $X_{eq} = X(t - s) = 1$
Scaling regime: \(t, s \gg \tau_{\text{micro}} \) and \(t - s \gg \tau_{\text{micro}} \)

\[
C(t, s) = s^{-b} f_C \left(\frac{t}{s} \right), \quad R(t, s) = s^{-1-a} f_R \left(\frac{t}{s} \right)
\]

Asymptotics: \(f_{C,R}(y) \sim y^{-\lambda_{C,R}/z} \) for \(y \gg 1 \)

\(\lambda_C \): autocorrelation exponent, \(\lambda_R \): autoresponse exponent,
\(z \): dynamical exponent, \(a, b \): ageing exponents

\[\lambda_C = \lambda_R = d + z + \frac{\beta}{\nu_{\perp}} , \quad b = \frac{2\beta'}{\nu_{\parallel}} \]

\(\rightarrow \) stationary-state critical exponents \(\beta, \beta', \nu_{\perp}, \nu_{\parallel} = z \nu_{\perp} \)

Example: critical particle-reaction model (contact process),
initial particle density > 0

Baumann & Gambassi 07
2. Interface growth

deposition (evaporation) of particles on a substrate \(\rightarrow \) **height profile** \(h(t, r) \)
generic situation : RSOS (**restricted solid-on-solid**) model

\[p = \text{deposition prob.} \]
\[1 - p = \text{evap. prob.} \]

here \(p = 0.98 \)

some universality classes :

(a) **KPZ** \[\partial_t h = \nu \nabla^2 h + \frac{\mu}{2} (\nabla h)^2 + \eta \]

(b) **EW** \[\partial_t h = \nu \nabla^2 h + \eta \]

(c) **MH** \[\partial_t h = -\nu \nabla^4 h + \eta \]

\(\eta \) is a gaussian white noise with \(\langle \eta(t, r)\eta(t', r') \rangle = 2\nu T \delta(t - t')\delta(r - r') \)

\(\nu, T \) are constants
Family-Viscek scaling on a spatial lattice of extent L^d:

$$\overline{h}(t) = L^{-d} \sum_j h_j(t)$$

Family & Viscek 85

$$w^2(t; L) = \frac{1}{L^d} \sum_{j=1}^{L^d} \left\langle (h_j(t) - \overline{h}(t))^2 \right\rangle = L^{2\zeta} f\left(tL^{-z}\right) \sim \begin{cases} L^{2\zeta} & \text{if } tL^{-z} \gg 1 \\ t^{2\beta} & \text{if } tL^{-z} \ll 1 \end{cases}$$

β: growth exponent, ζ: roughness exponent, $\zeta = \beta z$

two-time correlator:

$$C(t, s; r) = \left\langle (h(t, r) - \langle \overline{h}(t) \rangle) (h(s, 0) - \langle \overline{h}(s) \rangle) \right\rangle = s^{-b} F_C\left(\frac{t}{s}, \frac{r}{s^{1/z}}\right)$$

with ageing exponent: $b = -2\beta$

Kallabis & Krug 96

expect for $y = t/s \gg 1$: $F_C(y, 0) \sim y^{-\lambda_C/z}$ autocorrelation exponent
1D relaxation dynamics, starting from an initially flat interface

observe all 3 properties of ageing:
- slow dynamics
- no TTI
- dynamical scaling

confirm simple ageing for the 1D KPZ universality class

Pars pro toto

Kallabis & Krug 96; Krech 97; Bustingorry et al. 07-10; Chou & Pleimling 10; D’Aquila & Täuber 11/12; h.n.p. 12
extend Family-Viscek scaling to two-time responses:
analogue: TRM integrated response in magnetic systems

two-time integrated response:
* sample A with deposition rates \(p_i = p \pm \epsilon_i \), up to time \(s \),
* sample B with \(p_i = p \) up to time \(s \);
then switch to common dynamics \(p_i = p \) for all times \(t > s \)

\[
\chi(t, s; r) = \int_0^s du \, R(t, u; r) = \frac{1}{L} \sum_{j=1}^L \left\langle \frac{h_{j+r}^{(A)}(t; s) - h_{j+r}^{(B)}(t)}{\epsilon_j} \right\rangle = s^{-a} F_{\chi} \left(\frac{t}{s}, \frac{|r|^z}{s} \right)
\]

with \(a \): ageing exponent

expect for \(y = t/s \gg 1 \): \(F_R(y, 0) \sim y^{-\lambda_R/z} \); autoresponse exponent

? Values of these exponents ?
Effective action of the KPZ equation:

\[
\mathcal{J} [\phi, \tilde{\phi}] = \int dt dr \left[\tilde{\phi} \left(\partial_t \phi - \nu \nabla^2 \phi - \frac{\mu}{2} (\nabla \phi)^2 \right) - \nu T \tilde{\phi}^2 \right]
\]

\[\Rightarrow\] **Very special properties of KPZ in** \(d = 1\) **spatial dimension!**

Exact critical exponents \(\beta = 1/3, \ \zeta = 1/2, \ z = 3/2, \ \lambda_C = 1\) \[kpz \ 86; \ Krech \ 97\]

related to precise symmetry properties:

A) tilt-invariance (Galilei-invariance)

kept under renormalisation!

\[\Rightarrow\] exponent relation \(\zeta + z = 2\) \(\text{(holds for any dimension } d)\)

B) time-reversal invariance

special property in 1D, where also \(\zeta = \frac{1}{2}\)
Special KPZ symmetry in $1D$: let $v = \frac{\partial \phi}{\partial r}$, $\tilde{\phi} = \frac{\partial}{\partial r} (\tilde{p} + \frac{v}{2T})$

$$J = \int dtdr \left[\tilde{p} \partial_t v - \frac{v}{4T} (\partial_r v)^2 - \frac{\mu}{2} v^2 \partial_r \tilde{p} + \nu T (\partial_r \tilde{p})^2 \right]$$

is invariant under time-reversal

$$t \mapsto -t \ , \ v(t, r) \mapsto -v(-t, r) \ , \ \tilde{p} \mapsto +\tilde{p}(-t, r)$$

\Rightarrow fluctuation-dissipation relation for $t \gg s$

$$TR(t, s; r) = -\partial_r^2 C(t, s; r)$$

distinct from the equilibrium FDT $TR(t - s) = \partial_s C(t - s)$

Combination with ageing scaling, gives the ageing exponents :

$$\lambda_R = \lambda_C = 1 \quad \text{and} \quad 1 + a = b + \frac{2}{z}$$
1D relaxation dynamics, starting from an initially flat interface

confirm simple ageing in the autocorrelator
confirm expected exponents $b = -2/3$, $\lambda_C/z = 2/3$

N.B. : this confirmation is out of the stationary state

Kallabis & Krug 96; Krech 97; Bustingorry *et al.* 07-10; Chou & Pleimling 10; D’Aquila & Täuber 11/12; h.n.p. 12
relaxation of the integrated response, 1D

observe all 3 properties of \textbf{ageing}:
- slow dynamics
- no TTI
- dynamical scaling

exponents $a = -1/3$, $\lambda_R/z = 2/3$, as expected from FDR

\textbf{N.B.} : numerical tests for 2 models in KPZ class
Simple ageing is also seen in \textit{space-time} observables

\begin{align*}
\text{correlator } & C(t, s; r) = s^{2/3} F_C \left(\frac{t}{s}, \frac{r^{3/2}}{s} \right) \\
\text{integrated response } & \chi(t, s; r) = s^{1/3} F_\chi \left(\frac{t}{s}, \frac{r^{3/2}}{s} \right) \quad \text{confirm } z = \frac{3}{2}
\end{align*}
Values of some growth and ageing exponents in 1D

<table>
<thead>
<tr>
<th>model</th>
<th>z</th>
<th>a</th>
<th>b</th>
<th>$\lambda_R = \lambda_C$</th>
<th>β</th>
<th>ζ</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPZ exp 1</td>
<td>$3/2$</td>
<td>$-1/3$</td>
<td>$-2/3$</td>
<td>1</td>
<td>$1/3$</td>
<td>$1/2$</td>
</tr>
<tr>
<td></td>
<td>$\approx -2/3$†</td>
<td>≈ 1†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1.5(2)$</td>
<td></td>
<td></td>
<td>$0.336(11)$</td>
<td>$0.50(5)$</td>
<td></td>
</tr>
<tr>
<td>KPZ exp 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EW</td>
<td>2</td>
<td>$-1/2$</td>
<td>$-1/2$</td>
<td>1</td>
<td>$1/4$</td>
<td>$1/2$</td>
</tr>
<tr>
<td>MH</td>
<td>4</td>
<td>$-3/4$</td>
<td>$-3/4$</td>
<td>1</td>
<td>$3/8$</td>
<td>$3/2$</td>
</tr>
</tbody>
</table>

Liquid crystals

Cancer cells

Takeuchi, Sano, Sasamoto, Spohn 10/11/12

Huergo, Pasquale, Gonzalez, Bolzan, Arvia 12

† scaling holds only for flat interface

Two-time space-time responses and correlators consistent with simple ageing for 1D KPZ

Similar results known for EW and MH universality classes

Roethlein, Baumann, Pleimling 06
3. Form of the scaling functions & LSI

Question: Are there model-independent results on the form of universal scaling functions?

‘Natural’ starting point: try to draw analogies with conformal invariance at equilibrium

* Equilibrium critical phenomena: **scale-invariance**
* For sufficiently **local** interactions: extend to conformal invariance

 space-dependent re-scaling (angles conserved) \(r \mapsto r/b(r) \)

In **two** dimensions: \(\infty \) many conformal transformations

 \(w \mapsto \beta(w) \) complex analytic

\(\Rightarrow \) exact predictions for critical exponents, correlators, . . .

Bateman & Cunningham 1909/10, Polyakov 70

BPZ 84
Hidden assumptions:

1) extension scale-invariance $\quad\rightarrow\quad$ conformal invariance $\quad?$
 formally: energy-momentum tensor symmetric & traceless $\quad\qua
What about **time**-dependent critical phenomena?

Characterised by **dynamical exponent** $z : t \mapsto tb^{-z}, r \mapsto rb^{-1}$

Can one extend to **local** dynamical scaling, with $z \neq 1$?

If $z = 2$, the **Schrödinger group** is an example:

$$t \mapsto \frac{\alpha t + \beta}{\gamma t + \delta}, \quad r \mapsto \frac{D r + vt + a}{\gamma t + \delta}; \quad \alpha \delta - \beta \gamma = 1$$

⇒ study **ageing** phenomena as paradigmatic example

essential: (i) absence of TTI & (ii) **Galilei**-invariance

Transformation $t \mapsto t'$ with $\beta(0) = 0$ and $\dot{\beta}(t') \geq 0$ and

$$t = \beta(t'), \quad \phi(t) = \left(\frac{d\beta(t')}{dt'}\right)^{-x/z} \left(\frac{d \ln \beta(t')}{dt'}\right)^{-2\xi/z} \phi'(t')$$

out of equilibrium, have 2 **distinct** scaling dimensions, x and ξ.

mean-field for **magnets** : expect \(\xi = 0\) in ordered phase $T < T_c$

$\xi \neq 0$ at criticality $T = T_c$

NB: if TTI (equilibrium criticality), then $\xi = 0$.

Cardy 85

Jacobi 1842, Lie 1881

MH et. al. 06
physical requirement:

co-variance of response functions under local scaling!

why: certain extended scaling symmetries **predict causality** for co-variant \(n\)-point functions!

⇒ set of linear differential equations for \(R(t, s)\)

\[
R(t, s) = \langle \phi(t) \tilde{\phi}(s) \rangle = s^{-1-a} f_R \left(\frac{t}{s} \right)
\]

\[
f_R(y) = f_0 y^{1+a'-\lambda_R/z} (y-1)^{-1-a'} \Theta(y-1)
\]

causality

\[
a = \frac{1}{z} (x + \tilde{x}) - 1 , \quad a' - a = \frac{2}{z} \left(\xi + \tilde{\xi} \right) , \quad \frac{\lambda_R}{z} = x + \xi
\]

magnetic example: 1D Glauber-Ising model at \(T = T_c = 0\):

\[
a = 0 , \quad a' - a = -\frac{1}{2} , \quad \lambda_R = 1 , \quad z = 2
\]
Particle models: comparison of $R(t, s)$ with LSI-prediction:

- Contact process (CP): $A \rightarrow 2A, A \rightarrow \emptyset$
- Nonequilibrium kinetic Ising (PC): $A \leftrightarrow 3A, 2A \rightarrow \emptyset$
- Voter Potts-3 (VP3)

CP: $a' - a \simeq 0.27$

PC: $a' - a \simeq 0.00(1)$

VP3: $a' - a \simeq -0.1$

Observation: the hidden assumption $a = a'$, uncritically taken over from equilibrium, is often invalid out of equilibrium. Observables cannot always be identified with scaling operators.
4. Logarithmic conformal & ageing invariance

generalise conformal invariance \(\rightarrow \) doubletts \(\Psi = \begin{pmatrix} \psi \\ \phi \end{pmatrix} \)

Rozansky & Saleur 92
Gurarie 93

generators: \(\ell_n = -w^{n+1} \partial_w - (n+1)w^n \begin{pmatrix} \Delta & 1 \\ 0 & \Delta \end{pmatrix} \)

two-point functions: have \(\Delta_1 = \Delta_2 \)

Gurarie 93, Rahimi Tabar et al. 97...

\[
F = \langle \phi_1(w_1)\phi_2(w_2) \rangle = 0
\]

\[
G = \langle \phi_1(w_1)\psi_2(w_2) \rangle = G_0|w|^{-2\Delta_1}
\]

\[
H = \langle \psi_1(w_1)\psi_2(w_2) \rangle = (H_0 - 2G_0 \ln |w|) |w|^{-2\Delta_1}
\]

\[
= w_2^{-2\Delta_1}(H_0 - 2G_0 \ln |y-1| - 2G_0\ln |w_2|) |y-1|^{-2\Delta_1}
\]

with \(w = w_1 - w_2 \) and \(y = w_1/w_2 \).

Simultaneous log corrections to scaling and modified scaling function

Logarithmic conformal invariance has been found in, e.g.

- critical 2D percolation
- Cardy 92, Watts 96, Mathieu & Ridout 07/08
- disordered systems
- Caux et al. 96
- sand-pile models
- Ruelle et al. 08-10
construct **logarithmic ageing-invariance** by the formal changes (generic case; $x' = 0$ or $x' = 1$):

$$x \mapsto \hat{x} = \begin{pmatrix} x & x' \\ 0 & x \end{pmatrix}, \quad \xi \mapsto \hat{\xi} = \begin{pmatrix} \xi & \xi' \\ 0 & \xi \end{pmatrix}$$

(must show: both dimension matrices $\hat{x}, \hat{\xi}$ are simultaneously Jordan!)

we find the **co-variant two-point functions** (with $y = t/s$):

$$\langle \phi(t) \bar{\phi}(s) \rangle = s^{-(x+\bar{x})/2} f(y)$$

$$\langle \phi(t) \bar{\psi}(s) \rangle = s^{-(x+\bar{x})/2} (g_{12}(y) + \ln s \cdot \gamma_{12}(y))$$

$$\langle \psi(t) \bar{\phi}(s) \rangle = s^{-(x+\bar{x})/2} (g_{21}(y) + \ln s \cdot \gamma_{21}(y))$$

$$\langle \psi(t) \bar{\psi}(s) \rangle = s^{-(x+\bar{x})/2} (h_0(y) + \ln s \cdot h_1(y) + \ln^2 s \cdot h_2(y))$$

all scaling functions explicitly known

Question: interesting models described by logarithmic **LSI**?
5. Numerical experiments

(A) Kardar-Parisi-Zhang (KPZ)
(B) directed percolation (DP)
(C) majority voter/Glauber models (MV) at $T = T_c$, triangular lattice

simple ageing of the correlators and responses, especially

\[C(t, s) = s^{-b} f_C \left(\frac{t}{s} \right), \quad R(t, s) = s^{-1-a} f_R \left(\frac{t}{s} \right) \]

\[f_C(y) \sim y^{-\lambda_C/z}, \quad f_R(y) \sim y^{-\lambda_R/z} \quad y \gg 1 \]

values of the non-equilibrium exponents & scaling relations

KPZ in 1D: $\lambda_C = \lambda_R = 1$, $1 + a = b + \frac{2}{z}$, $b = -2\beta = -\frac{2}{3}$, $z = \frac{3}{2}$

DP:

\[\lambda_C = \lambda_R = d + z + \frac{\beta}{\nu_\perp}, \quad 1 + a = b = \frac{2\beta}{\nu_\parallel} \]

MV in 2D:

\[\lambda_C = \lambda_R \approx 0.732 z, \quad a = b = \frac{2\beta}{\nu_\parallel}, \quad z \approx 2.17 \]

what can be said on the form of the scaling function of the auto-response?

N.B.: Galilei-invariance for KPZ is kept under renormalisation, unusual form
(A) assumption: \(R(t, s) = \langle \psi(t)\bar{\psi}(s) \rangle \)

1D KPZ equation/RSOS model

good collapse \(\Rightarrow \) no logarithmic corrections \(\Rightarrow \) \(x' = \tilde{x}' = 0 \)

no logarithmic factors for \(y \gg 1 \) \(\Rightarrow \) \(\xi' = 0 \)

\(\Rightarrow \) only \(\tilde{\xi}' = 1 \) remains

\[
f_R(y) = y^{-\lambda_R/z} \left(1 - \frac{1}{y} \right)^{-1-a'} \left[h_0 - g_0 \ln \left(1 - \frac{1}{y} \right) - \frac{1}{2} f_0 \ln^2 \left(1 - \frac{1}{y} \right) \right]
\]

use specific values of 1D KPZ class \(\frac{\lambda_R}{z} - a = 1 \)

find integrated autoresponse \(\chi(t, s) = \int_0^s du \ R(t, u) = s^{1/3} f_\chi(t/s) \)

\[
f_\chi(y) = y^{1/3} \left\{ A_0 \left[1 - \left(1 - \frac{1}{y} \right)^{-a'} \right] \\
+ \left(1 - \frac{1}{y} \right)^{-a'} \left[A_1 \ln \left(1 - \frac{1}{y} \right) + A_2 \ln^2 \left(1 - \frac{1}{y} \right) \right] \right\}
\]

with free parameters \(A_0, A_1, A_2 \) and \(a' \)
non-log LSI with $a = a'$: deviations $\approx 20\%$

non-log LSI with $a \neq a'$: works up to $\approx 5\%$

log LSI: works better than $\approx 0.1\%$

<table>
<thead>
<tr>
<th>R</th>
<th>a'</th>
<th>A_0</th>
<th>A_1</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle \phi\phi \rangle$ – LSI</td>
<td>-0.500</td>
<td>0.662</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\langle \phi\psi \rangle$ – L^1LSI</td>
<td>-0.500</td>
<td>0.663</td>
<td>$-6 \cdot 10^{-4}$</td>
<td>0</td>
</tr>
<tr>
<td>$\langle \psi\psi \rangle$ – L^2LSI</td>
<td>-0.8206</td>
<td>0.7187</td>
<td>0.2424</td>
<td>-0.09087</td>
</tr>
</tbody>
</table>

logarithmic LSI fits data at least down to $y \approx 1.01$, with
$a' - a \approx -0.4873$ (can we make a conjecture?)
(B) assumption: \(R(t, s) = \langle \psi(t)\tilde{\psi}(s) \rangle \)

1D critical contact process

good collapse \(\Rightarrow \) **no** logarithmic corrections \(\Rightarrow \) \(x' = \tilde{x}' = 0 \)

\[h_R(y) = \left(1 - \frac{1}{y}\right)^{a-a'} \left[h_0 - g_{12,0} \tilde{\xi}' \ln(1 - 1/y) - g_{21,0} \xi' \ln(y - 1) \right. \]

\[\left. - \frac{1}{2} f_0 \tilde{\xi}'^2 \ln^2(1 - 1/y) + \frac{1}{2} f_0 \xi'^2 \ln^2(y - 1) \right] \]

find empirically:

very small amplitude of \(\ln^2 \)-terms

\(\Rightarrow f_0 = 0 \)

require both \(\xi \neq 0, \tilde{\xi}' \neq 0 \)

BUT: logarithmic factor for \(y \gg 1 \) ?

logar. LSI fit data, at least down to \(y \approx 1.002 \); with \(a' - a \approx -0.002 \).
(C) assumption: \(R(t, s) = \langle \psi(t) \tilde{\psi}(s) \rangle \) 2D majority voter/Glauber model (triangular lattice)

good collapse ⇒ no logarithmic corrections ⇒ \(x' = \tilde{x}' = 0 \)

\[
h_R(y) = \left(1 - \frac{1}{y}\right)^{a-a'} \left[h_0 - g_{12,0} \ln(1 - 1/y) - \frac{1}{2} f_0 \ln^2(1 - 1/y) \right]
\]

no logarithmic terms for \(y \gg 1 \) ⇒ \(\xi' = 0 \)

can normalise \(\tilde{\xi}' = 1 \)

F. Sastre (2013) preliminary

logar. LSI fit data, at least down to \(y \approx 1.005 \).
6. Outlook: growth on semi-infinite substrates

properties of growing interfaces near to a boundary?
→ crystal dislocations, face boundaries . . .

Experiments: Family-Vicsek scaling not always sufficient
→ distinct global and local interface fluctuations

\[\begin{align*}
\text{anomalous scaling, growth exponent } \beta \text{ larger than expected} \\
\text{grainy interface morphology, facetting}
\end{align*} \]

! analyse simple models on a semi-infinite substrate !
frame co-moving with average interface deep in the bulk
characterise interface by
\[\begin{align*}
\text{height profile } & \langle h(t, r) \rangle \\
\text{width profile } & w(t, r) = \left\langle [h(t, r) - \langle h(t, r) \rangle]^2 \right\rangle^{1/2}
\end{align*} \]

\(h \to 0 \text{ as } |r| \to \infty \)
specialise to $d = 1$ space dimensions; boundary at $x = 0$, bulk $x \to \infty$

cross-over for the phenomenological growth exponent β near to boundary

bulk behaviour $w \sim t^\beta$

‘surface behaviour’ $w_1 \sim t^{\beta_1}$

cross-over, if causal interaction with boundary

experimentally observed, e.g. for semiconductor films

values of growth exponents (bulk & surface):

$\beta = 0.25 \quad \beta_{1,\text{eff}} \approx 0.32 \quad$ Edwards-Wilkinson class

$\beta \approx 0.32 \quad \beta_{1,\text{eff}} \approx 0.35 \quad$ Kardar-Parisi-Zhang class

Nascimento, Ferreira, Ferreira 11

EW-class

Allegra, Fortin, mh 13
need explicit boundary interactions in Langevin equation

\[h_1(t) = \partial_x h(t, x)|_{x=0} \]

\[
(\partial_t - \nu \partial_x^2) h(t, x) - \frac{\mu}{2} (\partial_x h(t, x))^2 + \eta(t, x) = \nu (\kappa_1 + \kappa_2 h_1(t)) \delta(x)
\]

height profile \[\langle h(t, x) \rangle = t^{1/\gamma} \Phi \left(xt^{-1/z} \right), \quad \gamma = \frac{z}{z - 1} = \frac{\zeta}{\zeta - \beta} \]

EW & exact solution, \(h(t, 0) \sim \sqrt{t} \) self-consistently

KPZ
Scaling of the width profile:

EW & exact solution $\lambda^{-1} = 4tx^{-2}$

bulk

boundary

same growth scaling exponents in the bulk and near to the boundary

large **intermediate scaling regime** with effective exponent (slopes)

agreement with **RG** for non-disordered, local interactions

Lopéz, Castro, Gallego 05

? ageing behaviour near to a boundary ?
7. Conclusions

- Physical ageing occurs naturally in many irreversible systems relaxing towards non-equilibrium stationary states considered here: absorbing phase transitions & surface growth.
- Scaling phenomenology analogous to simple magnets.
- But finer differences in relationships between non-equilibrium exponents.
- A major difference w/ equilibrium: intrinsic absence of time-translation-invariance ⇒ 2 scaling dimensions.
- Shape of scaling functions: logarithmic local scale-invariance?
- Performed numerical experiments on auto-response function:
 (i) 1D KPZ equation (ii) 1D critical directed percolation
 (iii) 2D majority voter/Glauber models
- Surprises in scaling near a boundary: height/width profiles.
- Studies of the ageing properties, via two-time observables, might become a new tool, also for the analysis of complex systems!