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Spontaneous symmetry breaking

General question: rigorous understanding of the
phenomenon of spontaneous breaking of a
continuous symmetry.

Easier case: abelian continuous symmetry.
Several rigorous results based on:

reflection positivity,

vortex loop representation

cluster and spin-wave expansions,

by Fröhlich-Simon-Spencer, Dyson-Lieb-Simon, Bricmont-Fontaine-

-Lebowitz-Lieb-Spencer, Fröhlich-Spencer, Kennedy-King, ...
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Spontaneous symmetry breaking

Harder case: non-abelian symmetry.
Few rigorous results on:

classical Heisenberg (Fröhlich-Simon-Spencer by RP)

quantum Heisenberg antiferromagnet (Dyson-Lieb-Simon by RP)

classical N-vector models (Balaban by RG)

Notably absent: quantum Heisenberg ferromagnet



Spontaneous symmetry breaking

Harder case: non-abelian symmetry.
Few rigorous results on:
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Quantum Heisenberg ferromagnet

The simplest quantum model for the spontaneous
symmetry breaking of a continuous symmetry:

HΛ :=
∑
〈x ,y〉⊂Λ

(S2 − ~Sx · ~Sy)

where:

Λ is a cubic subset of Z3 with (say) periodic b.c.

~Sx = (S1
x ,S

2
x ,S

3
x ) and S i

x are the generators of a (2S + 1)-dim
representation of SU(2), with S = 1

2 , 1,
3
2 , ...:

[S i
x ,S

j
y ] = iεijkS

k
x δx,y

The energy is normalized s.t. inf spec(HΛ) = 0.
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Ground states

One special ground state is

|Ω〉 := ⊗x∈Λ|S3
x = −S〉

All the other ground states have the form

(S+
T )n|Ω〉, n = 1, . . . , 2S |Λ|

where S+
T =

∑
x∈Λ S

+
x and S+

x = S1
x + iS2

x .
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Excited states: spin waves

A special class of excited states (spin waves) is
obtained by raising a spin in a coherent way:

|1k〉 :=
1√

2S |Λ|

∑
x∈Λ

e ikxS+
x |Ω〉 ≡

1√
2S

Ŝ+
k |Ω〉

where k ∈ 2π
L Z

3. They are such that

HΛ|1k〉 = Sε(k)|1k〉

where ε(k) = 2
∑3

i=1(1− cos ki).
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Excited states: spin waves

More excited states?

They can be looked for in the vicinity of

|{nk}〉 =
∏
k

(2S)−nk/2 (Ŝ+
k )n+

√
nk!
|Ω〉

If N =
∑

k nk > 1, these are not eigenstates.

They are neither normalized nor orthogonal.

However, HΛ is almost diagonal on |{nk}〉 in the
low-energy (long-wavelengths) sector.
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Spin waves

Expectation:

low temperatures ⇒
⇒ low density of spin waves ⇒
⇒ negligible interactions among spin waves.

The linear theory obtained by neglecting spin wave
interactions is the spin wave approximation,
in very good agreement with experiment.
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Spin waves

In 3D, it predicts

f (β) ' 1

β

∫
d3k

(2π)3
log(1− e−βSε(k))

m(β) ' S −
∫

d3k

(2π)3

1

eβSε(k) − 1
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Holstein-Primakoff representation

A convenient representation:

S+
x =
√

2S a+
x

√
1− a+

x ax
2S

, S3
x = a+

x ax − S ,

where [ax , a
+
y ] = δx ,y are bosonic operators.

Hard-core constraint: nx = a+
x ax ≤ 2S .
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Holstein-Primakoff representation

In the bosonic language

HΛ = S
∑
〈x ,y〉
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x
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1− nx
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√
1− ny

2S
ay

−a+
y
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√
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2S
ax + nx + ny −

1

S
nxny

)

≡ S
∑
〈x ,y〉

(a+
x − a+

y )(ax − ay)− K ≡ T − K

The spin wave approximation consists in neglecting
K and the on-site hard-core constraint.
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Previous results

HΛ = S
∑
〈x ,y〉

(a+
x − a+

y )(ax − ay)− K

For large S , the interaction K is of relative size
O(1/S) as compared to the hopping term.

Easier case: S →∞ with βS constant (CG 2012)
[The classical limit is S →∞ with βS2 constant (Lieb 1973).

See also Conlon-Solovej (1990-1991).]

Harder case: fixed S , say S = 1/2. So far, not even
a sharp upper bound on the free energy was known.
Rigorous upper bounds, off by a constant, were
given by Conlon-Solovej and Toth in the early 90s.
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Bosons and random walk

Side remark: the Hamiltonian can be rewritten as

HΛ = S
∑
〈x ,y〉

(
a+
x

√
1− ny

2S
− a+

y

√
1− nx

2S

)
·

·
(
ax

√
1− ny

2S
− ay

√
1− nx

2S

)
i.e., it describes a weighted hopping process of
bosons on the lattice. The hopping on an occupied
site is discouraged (or not allowed).

The spin wave approximation corresponds to the
uniform RW, without hard-core constraint.
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Main theorem

Theorem [Correggi-G-Seiringer 2013]
(free energy at low temperature).

For any S ≥ 1/2,

lim
β→∞

f (S , β)β5/2S3/2 =

∫
log
(

1− e−k
2
) d3k

(2π)3
.



Remarks

The proof is based on upper and lower bounds.
It comes with explicit estimates on the
remainder.

Relative errors: • O((βS)−3/8) (upper bound)

• O((βS)−1/40+ε) (lower bound)

We do not really need S fixed. Our bounds are
uniform in S , provided that βS →∞.

The case S →∞ with βS =const. is easier and
it was solved by Correggi-G (JSP 2012).



Remarks

The proof is based on upper and lower bounds.
It comes with explicit estimates on the
remainder.

Relative errors: • O((βS)−3/8) (upper bound)

• O((βS)−1/40+ε) (lower bound)

We do not really need S fixed. Our bounds are
uniform in S , provided that βS →∞.

The case S →∞ with βS =const. is easier and
it was solved by Correggi-G (JSP 2012).



Remarks

The proof is based on upper and lower bounds.
It comes with explicit estimates on the
remainder.

Relative errors: • O((βS)−3/8) (upper bound)

• O((βS)−1/40+ε) (lower bound)

We do not really need S fixed. Our bounds are
uniform in S , provided that βS →∞.

The case S →∞ with βS =const. is easier and
it was solved by Correggi-G (JSP 2012).



Outline

1 Introduction: continuous symmetry breaking and spin waves

2 Main results: free energy at low temperatures

3 Sketch of the proof: upper and lower bounds



S = 1/2

We sketch the proof for S = 1/2 only.

In this case the Hamiltonian takes the form:

HΛ =
1

2

∑
〈x ,y〉

[
(a+

x − a+
y )(ax − ay)− 2nxny

]
≡ T − K

or, in the “random hopping” language,

HΛ =
1

2

∑
〈x ,y〉

(
a+
x (1−ny)−a+

y (1−nx)
)(
ax(1−ny)−ay(1−nx)

)
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Upper bound

We localize in Dirichlet boxes B of side `:

f (β,Λ) ≤
(
1 + `−1

)−3
f D(β,B)

In each box, we use the Gibbs variational principle:

f D(β,B) =
1

`3
inf

Γ

[
TrHD

B Γ +
1

β
TrΓ ln Γ

]
For an upper bound we use as trial state

Γ0 =
Pe−βT

D

P

Tr(Pe−βTDP)
,

where P =
∏

x Px and Px enforces nx ≤ 1.
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Upper bound

To bound the effect of the projector, we use

1− P ≤
∑
x

(1− Px) ≤ 1

2

∑
x

nx(nx − 1)

Therefore, 〈1− P〉 can be bounded via the Wick’s
rule: using 〈axa+

x 〉 ' (const.)β−3/2 we find

Tre−βT
D

(1− P)

Tre−βTD ≤ (const.)`3β−3

Optimizing, we find ` ∝ β7/8, which implies

f (β) ≤ C0β
−5/2

(
1− O(β−3/8)

)
.
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Lower bound. Main steps

Proof of the lower bound: three main steps.

1 localization and preliminary lower bound

2 restriction of the trace to the low energy sector

3 estimate of the interaction on the low energy
sector
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Lower bound. Step 1.

We localize the system into boxes B of side `:

f (β,Λ) ≥ f (β,B).

Key ingredient for a preliminary lower bound:

Lemma 1.

HB ≥ c`−2(
1

2
`3 − ST ).

where ~ST =
∑

x
~Sx and |~ST |2 = ST (ST + 1).
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Lower bound. Step 1.

Lemma 1 ⇒ apriori bound on the particle number:
in fact, since HB commutes with ~ST ,

Tr(e−βHB) =

`3/2∑
ST=0

(2ST + 1)TrS3
T=−ST (e−βHB)

By Lemma 1, the r.h.s. is bounded from above by

(`3+1)

`3/2∑
N=0

(
`3

N

)
e−cβ`

−2N ≤ (`3+1)
(

1 + e−cβ`
−2
)`3

,

where N = 1
2`

3 + S3
T = 1

2`
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Lower bound. Steps 1 and 2.

Optimizing over ` we find

f (β,Λ) ≥ −(const.)β−5/2(log β)5/2.

We can now cut off the “high” energies:

TrPHB≥E0
e−βHB ≤ e−βE0/2e−

β
2 `

3f (β/2,B) ≤ 1 ,

if E0 ' `3β−5/2(log β)
5
2 .

We are left with the trace on HB ≤ E0, which we
compute on the sector S3

T = −ST .

The problem is to show that on this sector

1

`3
〈E |K |E 〉 � β−5/2
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Lower bound. Step 3.

If ρE (x , y) is the two-particle density matrix,

〈E |K |E 〉 =
∑
〈x ,y〉

〈E |nxny |E 〉 ≤ 3`3||ρE ||∞

Key estimate:

Lemma 2. For all E ≤ E0

‖ρE‖∞ ≤ (const.)E 3
0

Now: ` = β1/2+ε ⇒ E0 ' `−2+O(ε) ⇒ ‖ρE‖∞ ≤ `−6+O(ε)

⇒ 1

`3
〈E |K |E 〉 ≤ `−6+O(ε) = β−3+O(ε), as desired.
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Lower bound. Step 3: Proof of Lemma 2.

Key observation: the eigenvalue equation implies

−∆̃ρE (x , y) ≤ 4EρE (x , y),

where ∆̃ is the Neumann Laplacian on

B2 \ {(x , x) : x ∈ B}.

Remarkable: the many-body problem has been
reduced to a 2-body problem!!!
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Lower bound. Step 3: Proof of Lemma 2.

We extend ρ on Z6 by Neumann reflections and find

−∆ρE (z) ≤ 4EρE (z) + 2ρE (z)χR
1 (z)

where χR
1 (z1, z2) is equal to 1 if z1 is at distance 1

from one of the images of z2, and 0 otherwise.
Therefore,

ρE (z) ≤ (1− E/3)−1
(
〈ρE 〉z +

1

6
‖ρE‖∞χR

1 (z)
)
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Iterating,

ρE (z) ≤
(

1−E
3

)−n(
(Pn∗ρE )(z)+

1

6
‖ρE‖∞

n−1∑
j=0

Pj∗χR
1 (z)

)
where Pn(z , z ′) is the probability that a SSRW on
Z6 starting at z ends up at z ′ in n steps. For large n:

Pn(z , z ′) '
( 3

πn

)3

e−3|z−z ′|2/n .

Moreover, if G is the Green function on Z6,
n−1∑
j=0

Pj(z , z
′) ≤

∞∑
j=0

Pj(z , z
′) = 12G (z − z ′)
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Lower bound. Step 3: Proof of Lemma 2.

Let us now pretend for simplicity that χR
1 is equal to

χ1. In this simplified case we find:

ρ(z) ≤ 1

(1− E
3 )n

(
27

π3n3

∑
w∈Z6

e−
3
n |z−w |

2

ρ(w)+2‖ρ‖∞G∗χ1(z)

)
Picking n ∼ E−1 we get:

ρ(z) ≤ (const.) max{E 3, `−6}+(1+δ)×2×0.258×‖ρ‖∞

where we used the fact that

(G∗χ)(z1, z2) ≤ 1

2

∫ ∑3
i=1 cos pi∑3

i=1(1− cos pi)

d3p

(2π)3
= 0.258
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Summary

Using the Holstein-Primakoff representation of
the 3D quantum Heisenberg ferromagnet, we
proved the correctness of the spin wave
approximation to the free energy at the lowest
non trivial order in a low temperature expansion,
with explicit estimates on the remainder.

The proof is based on upper and lower bounds.
In both cases we localize the system in boxes of
side ` = β1/2+ε.
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Summary

The upper bound is based on a trial density
matrix that is the natural one, i.e., the Gibbs
measure associated with the quadratic part of
the Hamiltonian projected onto the subspace
satisfying the local hard-core constraint.

The lower bound is based on a preliminary rough
bound, off by a log. This uses an estimate on
the excitation spectrum

HB ≥ (const.)`−2(Smax − ST )
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Summary

The preliminary rough bound is used to cutoff
the energies higher than `3β−5/2(log β)5/2. In
the low energy sector we pass to the bosonic
representation.

In order to bound the interaction energy in the
low energy sector, we use a new functional
inequality, which allows us to reduce to a 2-body
problem. The latter is studied by random walk
techniques on a modified graph.



Summary

The preliminary rough bound is used to cutoff
the energies higher than `3β−5/2(log β)5/2. In
the low energy sector we pass to the bosonic
representation.

In order to bound the interaction energy in the
low energy sector, we use a new functional
inequality, which allows us to reduce to a 2-body
problem. The latter is studied by random walk
techniques on a modified graph.



Thank you!
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