Classification of "Real" Bloch-bundles: topological insulators of type Al

Giuseppe De Nittis

(FAU, Universität Erlangen-Nürnberg)

EPSRC Symposium: Many-Body Quantum Systems
University of Warwick, U.K. 17-21 March, 2014

Joint work with:

K. Gomi

Reference:

arXiv:1402.1284

Outline

- 1 Topological Insulators and symmetries
 - What is a Topological Insulator?
 - What it means to classify Topological Insulators?
 - The rôle of symmetries
- 2 Classification of "Real" Bloch-bundles
 - The Borel equivariant cohomology
 - The classification table
 - The case d = 4

Band Insulators

■ For an enlightened explanation about the physical point of view the main reference is

!! Graf's talk of last Tuesday 18th !!

I will focus only on the mathematical (topological) aspects.

- The Bloch-Floquet theory exploits the translational symmetry of a crystal structure to describe electronic states in terms of their crystal momentum *k*, defined in a periodic Brillouin zone B.
- A little bit more in general one can assume that:

"the electronic properties of a crystal are described by a family of Hamiltonians labelled by points of a manifold \mathbb{B} "

$$\mathbb{B}\ni \pmb{k}\longmapsto \pmb{H}(\pmb{k}).$$

In a band insulator an energy gap separates the filled valence bands from the empty conduction bands. The Fermi level E_F characterizes the gap.

The energy bands E(k) are the eigenvalues of H(k)

$$H(k) \psi(k) = E(k) \psi(k)$$
 $k \in \mathbb{B}$.

Outline

- 1 Topological Insulators and symmetries
 - What is a Topological Insulator?
 - What it means to classify Topological Insulators?
 - The rôle of symmetries
- 2 Classification of "Real" Bloch-bundles
 - The Borel equivariant cohomology
 - The classification table
 - The case d = 4

A rigorous classification scheme requires (in my opinion !!) three ingredients:

- «A» The interpretation of the "vague" notion of topological insulator in terms of a mathematical structure (category) for which the notion of classification makes sense (objects, isomorphisms, equivalence classes, ...).
- «B» A classification theorem.
- «C» An (hopefully !!) algorithmic method to compute the classification and a set of proper labels to discern between different (non-isomorphic) objects.

For all $k \in \mathbb{B}$ the operator H(k) is a self-adjoint $\mathbb{N} \times \mathbb{N}$ matrix with real eigenvalues

$$E_1(k) \leqslant E_2(k) \leqslant \ldots \leqslant E_{N-1}(k) \leqslant E_N(k)$$

and related eigenvectors $\psi_i(k)$, $j=1,\ldots,N$.

Definition (Gap condition)

There exists a $E_F \in \mathbb{R}$ and an integer 1 < M < N such that:

$$\begin{cases} E_{M}(k) < E_{F} \\ E_{M+1}(k) > E_{F} \end{cases} \quad \forall k \in \mathbb{B} .$$

The Fermi projection onto the filled states is the matrix-valued map $\mathbb{B} \ni k \mapsto P_F(k)$ defined by

$$P_{F}(k):=\sum_{j=1}^{M}|\psi_{j}(k)
angle\langle\psi_{j}(k)|$$
 .

■ For each $k \in \mathbb{B}$

$$\mathscr{H}_{\mathbf{k}} := \operatorname{Ran} P_{\mathbf{F}}(\mathbf{k}) \subset \mathscr{H}$$

is a subspace of \mathbb{C}^N of dimension M.

■ The collection

$$\mathscr{E}_{\mathsf{F}} := \bigsqcup_{\mathsf{k} \in \mathbb{R}} \mathscr{H}_{\mathsf{k}}$$

is a topological space (said total space) and the map

$$\pi:\mathscr{E}_{\mathsf{F}}\longrightarrow\mathbb{B}$$

defined by $\pi(k, v) = k$ is continuous (and open).

■ π : $\mathscr{E}_F \to \mathbb{B}$ is a complex vector bundle called Bloch bundle.

Gapped band insulator (of type A) at Fermi energy
$$E_F$$

$$\updownarrow$$
Rank M complex vector bundle over $\mathbb B$

$$\updownarrow$$
 (homotopy classification theorem)
$$\operatorname{Vec}_{\mathbb C}^M(\mathbb B)\simeq [\mathbb B,\operatorname{Gr}_M(\mathbb C^N)] \qquad (N\gg 1)$$

The space

$$\operatorname{Gr}_{M}(\mathbb{C}^{N}) := \mathbb{U}(N) / (\mathbb{U}(M) \times \mathbb{U}(N-M)).$$

is the Grasmannian of M-planes in \mathbb{C}^N .

Remark: The computation of $[\mathbb{B}, \operatorname{Gr}_M(\mathbb{C}^N)]$ is, generally, an extremely difficult task (non algorithmic problem !!). Explicit computations are available only for simple spaces \mathbb{B} .

The Case of Free Fermions: $\mathbb{B} \equiv \mathbb{S}^d$

For a system of free fermions (after a Fourier transform)

$$\mathbf{S}^{d} \,:=\, \left\{ k \in \mathbb{R}^{d+1} \mid \|k\| = 1 \right\} \simeq \mathbb{R}^{d} \cup \left\{ \infty \right\}.$$

Number of different phases of a band insulator of type A

$$\frac{\pi_d}{\operatorname{Gr}_M(\mathbb{C}^N)} := [\mathbb{S}^d, \operatorname{Gr}_M(\mathbb{C}^N)]$$

 $\pi_d(X)$ is the <u>d</u>-th homotopy group of the space X.

ightharpoonup Problem: How to compute the homotopy of $Gr_M(\mathbb{C}^N)$?

Theorem (Bott, 1959)

$$\pi_d(\operatorname{Gr}_M(\mathbb{C}^N)) = \pi_{d-1}(\mathbb{U}(M))$$
 if $2N \geqslant 2M + d + 1$.

Homotopy groups of $\mathbb{U}(M)$

$\pi_{d}(\mathbb{U}(M))$	<i>d</i> = 0	<i>d</i> = 1	<u>d</u> = 2	<i>d</i> = 3	<i>d</i> = 4	<i>d</i> = 5
M=1	0	\mathbb{Z}	0	0	0	0
M=2	0	Z	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2
M=3	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
M=4	0	Z	0	\mathbb{Z}	0	\mathbb{Z}
M=5	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}

The stable regime is defined by d < 2M (in blu the values for the unstable case). In the stable regime one has the Bott periodicity

$$\pi_{oldsymbol{d}}ig(\mathbb{U}(oldsymbol{M})ig) \,=\, egin{cases} 0 & ext{if} & oldsymbol{d} & ext{even} & ext{or} & oldsymbol{d} = 0 \ \mathbb{Z} & ext{if} & oldsymbol{d} & ext{odd} \ \mathbb{Z}_{oldsymbol{M}!} & ext{if} & oldsymbol{d} = 2oldsymbol{M} \,. \end{cases} \qquad \qquad (oldsymbol{d} \leqslant 2oldsymbol{M})$$

Topological Insulators in class A ($\mathbb{B} = \mathbb{S}^d$)

The number of topological phases depends on the dimension d and on the number of filled states M (this is missed in K-theory !!)

<i>d</i> = 1	<u>d</u> = 2	<i>d</i> = 3	d = 4	<i>d</i> = 5	
0	Z	0	$\begin{array}{cc} 0 & (M=1) \\ \mathbb{Z} & (M\geqslant 2) \end{array}$	$ \begin{array}{c c} 0 & (M=1) \\ \mathbb{Z}_2 & (M=2) \\ 0 & (M \geqslant 3) \end{array} $	

- d=1 Band insulators show only the trivial phase (ordinary insulators).
- d = 2 For every integer there exists a topological phase and band insulators in different phases cannot be deformed into each other without "altering the nature" of the system (e.g. quantum Hall insulators).
- d = 3 As in the case d = 1.
- d = 4 A difference between the non-stable case M = 1 and the stable case $M \ge 2$ appears. The value of M is dictated by physics !!

Ordinary insulator:

Exists a global frame of continuous Bloch functions

■ Allowed (adiabatic) deformations:

Transformations which doesn't alter the nature of the system

\$\timega\$

Stability of the topological phase

\$\timega\$

Vector bundle isomorphism

Electrons interacting with the crystalline structure of a metal (Bloch-Floquet)

$$\mathbb{B} = \mathbb{T}^{d} := \mathbb{S}^{1} \times ... \times \mathbb{S}^{1} \qquad (d\text{-times}).$$

The computation of $[\mathbb{T}^d, \operatorname{Gr}_M(\mathbb{C}^N)]$ is non trivial. The theory of characteristic class becomes relevant (since algorithmic !!).

Theorem (Peterson, 1959)

If $\dim(X) \leq 4$ then

$$\operatorname{Vec}^1_{\mathbb{C}}(X) \simeq H^2(X,\mathbb{Z})$$

 $\operatorname{Vec}^M_{\mathbb{C}}(X) \simeq H^2(X,\mathbb{Z}) \oplus H^4(X,\mathbb{Z})$ $(M \geqslant 2)$

and the isomorphism

$$\operatorname{Vec}_{\mathrm{C}}^{M}(X)\ni [\mathscr{E}]\longmapsto (c_{1},c_{2})\in H^{2}(X,\mathbb{Z})\oplus H^{4}(X,\mathbb{Z})$$

is given by the first two Chern classes ($c_2 = 0$ if M = 1).

	<i>d</i> = 1	<u>d</u> = 2	<u>d</u> = 3	<u>d</u> = 4
$\mathbb{B} = \mathbb{S}^d$	0	\mathbb{Z}	0	$0 (M=1)$ $\mathbb{Z} (M \geqslant 2)$
$\mathbb{B}=\mathbb{T}^d$	0	\mathbb{Z}	\mathbb{Z}^3	$\mathbb{Z}^6 (M=1)$ $\mathbb{Z}^7 (M\geqslant 2)$

		TRS	PHS	SLS	d=1	d=2	d=3
Standard	A (unitary)	0	0	0	-	Z	-
(Wigner-Dyson)	AI (orthogonal)	+1	0	0	-	-	-
	AII (symplectic)	-1	0	0	-	\mathbb{Z}_2	\mathbb{Z}_2

Table taken from [SRFL]

 ${\it d}=3$ The cases $\mathbb{B}=\mathbb{S}^3$ and $\mathbb{B}=\mathbb{T}^3$ are different. In the periodic case one has \mathbb{Z}^3 distinct quantum phases. These are three-dimensional versions of a 2D quantum Hall insulators.

Outline

- 1 Topological Insulators and symmetries
 - What is a Topological Insulator?
 - What it means to classify Topological Insulators?
 - The rôle of symmetries
- 2 Classification of "Real" Bloch-bundles
 - The Borel equivariant cohomology
 - The classification table
 - The case d = 4

		TRS	PHS	SLS	d=1	d=2	d=3
Standard	A (unitary)	0	0	0	-	Z	-
(Wigner-Dyson)	AI (orthogonal)	+1	0	0	-	-	-
	AII (symplectic)	-1	0	0	-	\mathbb{Z}_2	\mathbb{Z}_2

Table taken from [SRFL]

Let H acts on a space \mathcal{H} and C is a (anti-linear) complex conjugation on \mathcal{H} .

Definition (Time Reversal Symmetry)

The Hamiltonian H has a Time Reversal Symmetry (TRS) if there exists a unitary operator U such that:

$$\begin{array}{c} \textit{U} \textit{H} \; \textit{U}^* = \textit{C} \textit{H} \; \textit{C} \,. \\ \\ \textit{H} \; \; \text{is in class} \; \begin{cases} \mathsf{AI} \; \; \text{if} \; \; \textit{CUC} = +\textit{U}^* \; & \text{(even)} \\ \\ \mathsf{AII} \; \; \text{if} \; \; \textit{CUC} = -\textit{U}^* \; & \text{(odd)} \,. \end{cases} \end{array}$$

Involutions over the Brillouin Zone

Let $\mathbb{B} \ni \overset{\mathbf{k}}{\mapsto} P_F(\overset{\mathbf{k}}{k})$ be the fibered Fermi projection of a band insulator H. If H has a TRS, $\overset{\mathbf{U}}{\cup}$ acts by "reshuffling the fibers"

$$U P_F(k) U^* = C P_F(\tau(k)) C$$
 $\forall k \in \mathbb{B}.$

Here $\tau : \mathbb{B} \to \mathbb{B}$ is an involution:

Definition (Involution)

Let X be a topological space and $\tau: X \to X$ a homeomorphism. We said that τ is an involution if $\tau^2 = \operatorname{Id}_X$. The pair (X, τ) is called an involutive space.

Remark: Each space X admits the trivial involution $\tau_{triv} := Id_X$.

Continuous case $\mathbb{B} = \mathbb{S}^d$

$$\mathbb{S}^{d} \xrightarrow{\tau_{d}} \mathbb{S}^{d}$$

$$(+k_{0}, +k_{1}, \dots, +k_{d}) \xrightarrow{\tau_{d}} (+k_{0}, -k_{1}, \dots, -k_{d})$$

$$\tilde{\mathbb{S}}^{d} := (\mathbb{S}^{d}, \tau_{d})$$

Periodic case $\mathbb{B} = \mathbb{T}^d$

$$\mathbb{T}^d = \mathbb{S}^1 \times \ldots \times \mathbb{S}^1 \xrightarrow{\quad \tau_d := \ \tau_1 \times \ldots \times \tau_1 \quad} \mathbb{T}^d = \mathbb{S}^1 \times \ldots \times \mathbb{S}^1$$

$$\tilde{\mathbb{T}}^d := (\mathbb{T}^d, \tau_d)$$

$$U P_F(k) U^* = C P_F(\tau(k)) C \quad \forall k \in \mathbb{B}$$

induces an additional structure on the Bloch-bundle $\mathscr{E} \to \mathbb{B}$.

Definition (Atiyah, 1966)

Let (X, τ) be an involutive space and $\mathscr{E} \to X$ an complex vector bundle. Let $\Theta : \mathscr{E} \to \mathscr{E}$ an homeomorphism such that

$$\Theta: \mathscr{E}|_{X} \longrightarrow \mathscr{E}|_{\tau(X)}$$
 is anti-linear.

■ The pair (\mathcal{E}, τ) is a "Real"-bundle over (X, τ) if

$$\Theta^2$$
: $\mathscr{E}|_X \xrightarrow{+1} \mathscr{E}|_X \quad \forall x \in X$;

■ The pair (\mathcal{E}, τ) is a "Quaternionic"-bundle over (X, τ) if

$$\Theta^2$$
: $\mathscr{E}|_X \xrightarrow{-1} \mathscr{E}|_X \qquad \forall x \in X$.

AZC	TRS	Category	VB
Α	0	complex	$\operatorname{Vec}^M_{\mathbb C}(X)$
Al	+	"Real"	$\operatorname{Vec}_{\mathscr{R}}^{M}(X,\tau)$
All	_	"Quaternionic"	$\operatorname{Vec}_{\mathscr{Q}}^{M}(X,\tau)$

The names are justified by the following isomorphisms:

$$\operatorname{Vec}_{\mathscr{R}}^{M}(X, \operatorname{Id}_{X}) \simeq \operatorname{Vec}_{\mathbb{R}}^{M}(X)$$

$$\operatorname{Vec}_{\mathscr{Q}}^{M}(X,\operatorname{Id}_{X}) \simeq \operatorname{Vec}_{\mathbb{H}}^{M}(X)$$

Outline

- 1 Topological Insulators and symmetries
 - What is a Topological Insulator?
 - What it means to classify Topological Insulators?
 - The rôle of symmetries
- 2 Classification of "Real" Bloch-bundles
 - The Borel equivariant cohomology
 - The classification table
 - The case d = 4

```
Gapped band insulator of type A at Fermi energy E_F
\updownarrow
Rank M complex vector bundle over \mathbb B
\updownarrow
\mathsf{Vec}^M_{\mathbb C}(\mathbb B) \simeq [\mathbb B, \mathsf{Gr}_{\mathsf M}(\mathbb C^N)] \qquad (N \gg 1)
```

```
Gapped band insulator of type AI at Fermi energy E_F
\updownarrow
Rank M "Real" vector bundle over \mathbb{B}
\updownarrow
\bigvee_{\mathbb{Z}^M}(\mathbb{B},\tau)\simeq [\mathbb{B},\mathrm{Gr}_M(\mathbb{C}^N)]_{\mathbb{Z}_2} \qquad (N\gg 1)
```

 $[\mathbb{B}, \operatorname{Gr}_M(\mathbb{C}^N)]_{\mathbb{Z}_2}$ \mathbb{Z}_2 -homotopy classes of equivariant maps $f(\tau(k)) = \overline{f(k)}$, (the Grassmannian is an involutive space w.r.t. the complex conjugation).

- The computation of $[\mathbb{B}, Gr_M(\mathbb{C}^N)]_{\mathbb{Z}_2}$ is generally extremely difficult.
- Nevertheless, we proved $[\tilde{\mathbb{S}}^1, \operatorname{Gr}_M(\mathbb{C}^N)]_{\mathbb{Z}_2} = 0$ (in d = 1 no topology !!).
- We need a new tool like the Peterson's Theorem in the complex case (A)

$$\operatorname{Vec}_{\mathbb{C}}^{M}(X) \simeq H^{2}(X,\mathbb{Z})$$
 if $\dim(X) \leq 3$.

Indeed, this extends to the "Real" case (AI) if one "refines" the cohomology.

Theorem (D. & Gomi, 2014)

$$\operatorname{Vec}_{\mathscr{R}}^{M}(X,\tau) \simeq H^{2}_{\mathbb{Z}_{2}}(X,\mathbb{Z}(1))$$
 if $\dim(X) \leq 3$

the isomorphism $\mathscr{E} \mapsto \tilde{\mathbf{c}}(\mathscr{E})$ is called "Real" (first) Chern class.

− In this case trivial phase \Leftrightarrow exists a global frame of continuous Bloch functions such that $\psi(\tau(k)) = (\Theta\psi)(k)$ ("Real" frame).

The Borel's construction

■ (X, τ) any involutive space and (S^{∞}, θ) the infinite sphere (contractible space) with the antipodal (free) involution:

$$X_{\sim \tau} := \frac{\mathbb{S}^{\infty} \times X}{\theta \times \tau}$$
 (homotopy quotient).

■ 2 any abelian ring (module, system of coefficients, ...)

$$H^{j}_{\mathbb{Z}_{2}}(X,\mathscr{Z}):=H^{j}(X_{\sim\tau},\mathscr{Z})$$
 (eq. cohomology groups).

 \blacksquare $\mathbb{Z}(m)$ the \mathbb{Z}_2 -local system on X based on the module \mathbb{Z}

$$\mathbb{Z}(m) \simeq X \times \mathbb{Z}$$
 endowed with $(x,\ell) \mapsto (\tau(x), (-1)^m \ell)$.

Outline

- 1 Topological Insulators and symmetries
 - What is a Topological Insulator?
 - What it means to classify Topological Insulators?
 - The rôle of symmetries
- 2 Classification of "Real" Bloch-bundles
 - The Borel equivariant cohomology
 - The classification table
 - The case d = 4

Theorem (D. & Gomi, 2014)

$$H^2_{\mathbb{Z}_2}(\tilde{\mathbb{S}}^d,\mathbb{Z}(1)) = H^2_{\mathbb{Z}_2}(\tilde{\mathbb{T}}^d,\mathbb{Z}(1)) = 0 \qquad \forall d \in \mathbb{N}.$$

The proof requires an equivariant generalization of the Gysin sequence and the suspension periodicity.

VB	AZC	d = 1	d = 2	d = 3	d = 4	
$\mathrm{Vec}^{oldsymbol{M}}_{\mathbb{C}}(\mathbb{S}^d)$	Α	0	\mathbb{Z}	0	$\begin{array}{cc} 0 & (M=1) \\ \mathbb{Z} & (M\geqslant 2) \end{array}$	Free
$\operatorname{Vec}_{\mathscr{R}}^{oldsymbol{M}}(\tilde{\mathbb{S}}^{oldsymbol{d}})$	AI	0	0	0	$ \begin{array}{cc} 0 & (M=1) \\ 2\mathbb{Z} & (M\geqslant 2) \end{array} $	systems
$\operatorname{Vec}^{M}_{\mathbb{C}}(\mathbb{T}^d)$	Α	0	\mathbb{Z}	\mathbb{Z}^3	$ \begin{array}{cc} \mathbb{Z}^6 & (M=1) \\ \mathbb{Z}^7 & (M\geqslant 2) \end{array} $	Periodic
$\operatorname{Vec}^{M}_{\mathscr{R}}(ilde{\mathbb{T}}^d)$	AI	0	0	0	$0 \qquad (M=1) \\ 2\mathbb{Z} \qquad (M\geqslant 2)$	systems

Outline

- 1 Topological Insulators and symmetries
 - What is a Topological Insulator?
 - What it means to classify Topological Insulators?
 - The rôle of symmetries
- 2 Classification of "Real" Bloch-bundles
 - The Borel equivariant cohomology
 - The classification table
 - The case d = 4

The case d = 4 is interesting for the magneto-electric response (space-time variables) [QHZ,HPB]

Theorem (D. & Gomi, 2014)

Class AI topological insulators in d=4 are completely classified by the 2-nd "Real" Chern class. These classes are representable as even integers and the isomorphisms

$$\operatorname{Vec}_{\mathscr{R}}^{\mathsf{M}}(\tilde{\mathbb{T}}^{\mathsf{4}}) \simeq 2\mathbb{Z}, \qquad \operatorname{Vec}_{\mathscr{R}}^{\mathsf{M}}(\tilde{\mathbb{S}}^{\mathsf{4}}) \simeq 2\mathbb{Z}$$

are given by the (usual) 2-nd Chern number.

Remark: In d = 4 to have an even 2-nd Chern number is a necessary condition for a complex vector bundle to admit a "Real"-structure!!

Models for Non-Trivial Phases

$$H:=\sum_{i=0}^4 f_j(-\mathrm{i}\partial_{X_1},\ldots,-\mathrm{i}\partial_{X_4})\otimes \Sigma_j \qquad \text{on} \qquad L^2(\mathbb{R}^4)\otimes \mathbb{C}^4 \,.$$

 \blacksquare $\{\Sigma_i\}_{i=0,1,\dots,4}$ is a Clifford basis such that

$$\Sigma_{i}^{*} = \Sigma_{j} \;, \qquad \overline{\Sigma}_{j} = (-1)^{j} \; \Sigma_{j} \;, \qquad \Sigma_{0} \; \Sigma_{1} \; \Sigma_{2} \; \Sigma_{3} \; \Sigma_{4} \; = \; -\mathbb{1}_{4} \;;$$

 \blacksquare $f_i: \mathbb{R}^4 \to \mathbb{R}$ are bounded functions such that

$$f_j(-k) = \underbrace{\varepsilon_j} f_j(k)$$
, $k \in \mathbb{R}^4$ $\underbrace{\varepsilon_j} \in \{-1, +1\}$.

■ $U := \mathbb{1} \otimes \Theta$ with $\Theta \in \{\mathbb{1}_4, \Sigma_0, \Sigma_2, \Sigma_4\}$

Θ	ϵ_0	$arepsilon_1$	ε_2	$arepsilon_3$	ε ₄	
14	+	_	+	_	+	
Σ	+	+	-	+	_	AI
Σ2	_	+	+	+	_	
Σ4	_	+	_	+	+	

Thank you for your attention

Recommended Bibliography

Classification of Topological Insulators:

```
[Ki] Kitaev, A.: AIP Conf. Proc. 1134, 22-30 (2009)
```

[SRFL] Schnyder, A.; Ryu, S.; Furusaki, A. & Ludwig, A.: Phys. Rev. B **78**, 195125 (2008)

Topology:

```
[At] Atiyah, M. F.: Quart. J. Math. Oxford Ser. (2) 17, 367-386 (1966)
```

[Bo] Bott, R.: Ann. of Math. 70, 313-337 (1959)

[Pe] Peterson, F. P.: Ann. of Math. 69, 414-420 (1959)

Magneto-electric Response:

```
[HPB] Hughes, T. L.; Prodan, E.; Bernevig, B. A.: Phys. Rev. B 83, 245132 (2011)
```

[QHZ] Qi, X.-L.; Hughes, T. L.; Zhang, S.-C.: Phys. Rev. B 78, 195424 (2008)