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In the mood for Bayes

In the Bayesian framework for linear discrete inverse problems we
need to solve a linear system of equations

I The linear solver apparatus (least-squares solvers, iterative
methods, etc) can be used to update z in the MAP calculation

I Conversely, the Bayesian framework can be very helpful to
solve linear systems of equations

I More generally, the Bayesian approach can be used in the
solution of nonlinear systems

I The Bayesian approach is particularly well-suited for
under-determined linear systems



General setting

Consider the problem of estimating x ∈ Rn from

b = F(x) + ε, F : Rn −→ Rm,

Here we focus the attention on the special case where

F(x) = Ax

with A is an m × n matrix of rank m, typically badly conditioned
and of ill-determined rank.

We solve the linear system with a Krylov subspace iterative
method.



Bayesian solution of inverse problems

In the Bayesian framework for the solution of inverse problems,

I All unknown parameters are modeled as random variables and
described in terms of their probability density functions;

I Here the unknowns are ε and x

I πnoise(ε) describes what we know about the statistics of the
noise and defines the likelihood;

I πprior(x) expresses what we know about x before taking into
consideration the data and is called the prior

I The solution of the inverse problem is π(x | b) and is called
the posterior.

It follows from Bayes’ formula that

π(x | b) ∝ πprior(x)πnoise(b − Ax).



The noise in a Bayesian way

The linear discrete inverse problem that we consider is b = Ax + ε.

I The noise term ε accounts for inaccuracies in the
measurements as well as model uncertainties, i.e. discrepancy
between reality and the model. (more on this tomorrow)

I We assume that ε ∼ N(0, Im).
I If ε = εc ∼ N(µε, Γ), we can proceed as follows:

I Compute a symmetric factorization of the precision matrix of ε
Γ−1 = GTG

I Make the change of variables

ε = G (εc − µc) = G (b − Ax)− Gµc

I In the linear system

Gb = GAx + ε

the noise is zero-mean white Gaussian.



The unknown in a Bayesian way

Assume that x ∼ N(0,C ), where C is symmetric positive definite.
It follows from Bayes formula that the posterior density is of the
form

π(x | b) ∝ exp

(
−1

2
‖Ax − b‖2 − 1

2
xTC−1x

)
.

Give a symmetric factorization of the precision matrix of x

C−1 = BTB

we can write the negative logarithm of the posterior, or Gibbs
energy in the form

G (x) = ‖Ax − b‖2 + ‖Bx‖2 =

∥∥∥∥[ A
B

]
x −

[
b
0

]∥∥∥∥2 .



MAP estimate

The Maximum a Posteriori (MAP) estimate of x , xMAP is the
value of highest posterior probability, or equivalently, the minimizer
of G(x) .
The value of xMAP is the least squares solution of the linear system[

A
B

]
x =

[
b
0

]
,

or, equivalently, the solution of the square linear system

(ATA + BTB)x = ATb.



... and Tikhonov regularization

The latter are the normal equations associated with the problem

xMAP = argmin
{
‖Ax − b‖2 + λ‖Bx‖2

}
(1)

which is Tikhonov regularized solution with regularization
parameter λ = 1 and linear regularization operator B.

I The computation of Tikhonov regularized solution with B
different from I requires attention: moreover, a suitable value
of the regularization parameter λ must be chosen.

I This question has been studied extensively in the literature.



Regularization operator beyond Tikhonov

I The operator B brings into the solution additional information
about x

I When the matrix A is underdetermined, the operator B boosts
the rank of the matrix of the linear system actually solved.

I In Tikhonov regularization when n is large the introduction of
B may lead to a very large linear system

Question: How can we retain the benefits of B while containing
the computational costs?



The alternative: Krylov subspace methods

As an alternative to Tikhonov regularization consider solving the
linear system

b = Ax + ε

with an iterative solver using the matrix B as a right
preconditioned. More specifically

I Consider the Conjugate Gradient for Least Squares method
(CGLS)

I WLOG assume the initial approximate solution is x0 = 0

I Define a termination rule based on the discrepancy



Standard CGLS method

At the kth iteration step the approximate solution xk computed by
the CGLS method satisfies

xk = argmin
{
‖b − Ax‖ | x ∈ Kk

}
,

where the kth Krylov subspace is

Kk = span
{

ATb, (ATA)ATb, . . . , (ATA)kATb
}
.

The noise is additive, zero-mean white Gaussian, thus

E
{
‖ε‖2

}
= m;

we stop iterating as soon as

‖Ax − b‖2 < τm,

where τ = 1.2. Typically, klast � m.



The question of the null space

I It follows from the canonical orthogonal decomposition in
terms of fundamental subspaces that

Rn = N (A)⊕R(AT)

I In standard CGLS any contribution to the solution from the
null space must be added separately

I The right CGLS priorconditioner implicitly selects null space
components based on the information contained in the data
with the belief about x .



CGLS with a whitened unknown

Assume that a prior we believe that x ∼ N(0,C). If

C−1 = BTB

then
w = Bx , w ∼ N(0, In).

Make the change of variable from x to w in the linear system

AB−1w = b x = B−1w , (2)

let Ã = AB−1 and solve by CGLS for w . The jth iterate of the
whitened problem satisfies

wj = argmin
{
‖Ãw − b‖ | w ∈ Kj(ÃTb, ÃTÃ)

}
.



Priorconditioning and the null space

The corresponding jth priorconditioned CGLS solution x̃j = B−1wj

satisfies

x̃j ∈ span
{

B−1(ÃTÃ)`ÃTb | 0 ≤ ` ≤ j − 1
}
.

It follows from

B−1ÃT = B−1B−TAT = CAT,

that
B−1

(
ÃTÃ

)`
ÃT =

(
CATA)`CAT, 0 ≤ ` ≤ j − 1.

Therefore
x̃j ∈ C

(
N (A)⊥

)
,

hence x̃j is not necessarily orthogonal to the null space of A.



Analizing the Krylov subspaces with the GSVD

Theorem
Given (A,B) with A ∈ Rm×n, B ∈ Rn×n, m < n, there is a
factorization of the form

A = U
[

0m,n−m ΣA

]
X−1, B = V

[
In−m

ΣB

]
X−1,

called the generalized singular value decomposition, where
U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, X ∈ Rn×n is
invertible, and ΣA ∈ Rm×m and ΣB ∈ Rm×m are diagonal matrices.



The diagonal entries s
(A)
1 , . . . , s

(A)
m and s

(B)
1 , . . . , s

(B)
m of the

matrices ΣA and ΣB are real, nonnegative and satisfy

s
(A)
1 ≤ s

(A)
2 ≤ . . . ≤ s

(A)
m

s
(B)
1 ≥ s

(B)
2 ≥ . . . ≥ s

(B)
m

(s
(A)
j )2 + (s

(B)
j )2 = 1, 1 ≤ j ≤ m. (3)

thus 0 < s
(A)
j ≤ 1 and 0 < s

(B)
j ≤ 1. The ratios s

(A)
j /s

(B)
j for

1 ≤ j ≤ m are the generalized singular values of (A,B).
If A has full rank, the diagonal entries of ΣA are positive.



C-orthogonality

Theorem
If we partition the matrix X ∈ Rn×n in GSVD above as

X =
[

X′ X′′
]
, X′ ∈ Rn×(n−m), X′′ ∈ Rn×m,

it follows that
span

{
X′
}

= N (A),

and we can express Rn as a C-orthogonal direct sum,

Rn = span
{

X′
}
⊕C span

{
X′′
}

= N (A)⊕C span
{

X′′
}
.



Orthogonality and not

Corollary 1

N (A)⊥ = R(AT), N (A)⊥C = span
{

X′′
}
.

Corollary 2
If R(AT) is an invariant subspace of the covariance matrix C, then
the iterates x̃j are orthogonal to the null space of A.

Corollary 3
When C

(
R(AT)

)
is not C-orthogonal to N (A), x̃j may have a

component in the null space of A. This component is invisible to
the data.



Priorconditionting and the Lanczos process

The first k residual vectors computed by CGLS normalized to have
unit length v0, v1, . . . , vk−1 form an orthonormal basis for the
Krylov subspace Kk(ATb,ATA).

It can be shown that

ATAVk = VkTk −
√
βk−1
αk−1

vke
T
k ., Vk = [v0, v1, . . . , vk−1].

It follows from the orthogonality of the vj that the tridiagonal
matrix Tk is the projection of ATA onto the Krylov subspace
Kk(ATb,ATA).

VT
k (ATA)Vk = Tk .



The Lanczos tridiagonal matrix

The kth CGLS iterate can be expressed as

xk = Vkyk ,

where yk solves the k × k linear system

Tky = ‖r0‖e1.

Thus the kth CGLS iterate xk is the lifting of yk via Vk .

The eigenvalues of Tk are the Ritz values of ATA and approximate
of the eigenvalues of ATA.



Ritz values and convergence rate

Theorem
For all k, 1 ≤ k ≤ r , where r is the rank of A, there exists
ξk , λ1 ≤ ξk ≤ λr such that the norm of the residual vector satisfies

‖rk‖2 =
1

ξ2k+1
k

n∑
i=1

 k∏
j=1

(
λi − θ

(k)
j

)2(rT0 qi)2 ,
where qi is the eigenvector of ATA corresponding to the eigenvalue

λi , and θ
(k)
j is the jth eigenvalue of the tridiagonal matrix Tk .

The quality of the eigenvalues approximations in the projected
problem affects the number of iterations needed to meet the
stopping rule.



A simple deconvolution problem

Forward model: Deconvolution problem with few data,

g(t) =

∫ 1

0
a(t − s)f (s)ds, a(t) =

(
J1(κt)

κt

)2

,

Discretize:

g(t) ≈ 1

n

n∑
k=1

a(t − sk)f (sk), 1 ≤ j ≤ n,

Discrete noisy observations at t1, . . . , tm, m� n.

b` = g(t`) + ε`, 1 ≤ ` ≤ m,

or, in matrix notation, A ∈ Rm×n,

b = Ax + ε, xk = f (sk).



Computed examples: Deconvolution

Prior: Define the precision matrix C−1 as

C−1 = BTB, B = β


α
−1 2 −1

. . .

−1 2 −1
α

 ,

where α > 0 is chosen so that prior variance is as uniform as
possible over the interval.

Parameters: Set n = 150, m = 6.



Basis vectors

The six basis vectors that span R(AT) (dashed line), and the
vectors that span C

(
R(AT)

)
(solid line).



Approximate solutions

Iterations with low additive noise (σ = 5× 10−5) without prior
conditioner (left) and with preconditioner.



Observations

I Every vector whose support consists of points where all six
basis functions of R(AT) vanish is in the null space N (A)

I Consequently, plain CGLS produces approximate solutions
that are zero at those points

I The basis functions of C
(
R(AT)

)
are non-zero everywhere

I Consequently, priorconditioned CGLS has no blind spots

I The price to pay is that priorconditioned CGLS requires more
iterations



Spectral approximation
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Spectral approximation: Plain CGLS (left) and preconditioned
CGLS (right). The grey band on the right is the spectral interval
of the non-preconditioned matrix ATA.



Convergence history and null space contributions
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Left: Convergence rates of the two algorithms. The dashed line
marks the stopping criterion. Right: Component of the computed
solution in the null space measured as
νk = ‖Px̃k‖

‖x̃k‖ , P : Rn−→⊥N (A).



Computed examples: X-ray tomography

−π/2 −π/4 0 π/4

−0.25

0

0.25

Image size: N = 160× 160 pixels. 20 illumination angles, 60
parallel beams per illumination angle.



Correlation priors

Matèrn-Whittle correlation priors: Define the precision matrix as

C−1 = −In ⊗ D− D⊗ In +
1

λ2
IN ,

where D ∈ Rn×n is the three-point finite difference approximation
of the one-dimensional Laplacian with Dirichlet boundary
conditions,

D =
1

n2


−2 1

1 −2
. . .

. . . 1
1 −2

 ,
and λ > 0 is the correlation length.



Basis functions

Basis vector with no priorconditioning (upper left) and with
priorconditioning. Correlation length 2, 4, 8, 16 and 32 pixels.



Observations

I Every image whose support is on pixels not touched by a ray
is in the null space of A

I ⇒ plain CGLS iterates will be zero at those pixels

I Preconditioning makes the rays fuzzy, illuminating the dark
pixels

I Reconstruction will be slightly blurred, but has fewer
geometric artifacts

I Number of iterations needed will increase.



Computed solutions

Reconstructions with plain CGLS (left) and priorconditioned CGLS
(right).



Converge history and spectral approximation
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Convergence and spectral approximation.


