Hierarchical Prior Models and Krylov-Bayes
Iterative Methods: Part 2
Daniela Calvetti

Case Western Reserve University

P D Calvetti, E Somersalo: Priorconditioners for linear systems. Inverse Problems 21 (2005) 13971418

P D Calvetti, F Pitolli, E Somersalo, B Vantaggi: Bayes meets Krylov: preconditioning CGLS for
underdetermined systems http://arxiv.org/abs/1503.06844



In the mood for Bayes

In the Bayesian framework for linear discrete inverse problems we
need to solve a linear system of equations

» The linear solver apparatus (least-squares solvers, iterative
methods, etc) can be used to update z in the MAP calculation

» Conversely, the Bayesian framework can be very helpful to
solve linear systems of equations

» More generally, the Bayesian approach can be used in the
solution of nonlinear systems

» The Bayesian approach is particularly well-suited for
under-determined linear systems



General setting

Consider the problem of estimating x € R"” from
b=F(x)+e, F:R" — R™
Here we focus the attention on the special case where
F(x) = Ax

with A is an m X n matrix of rank m, typically badly conditioned
and of ill-determined rank.

We solve the linear system with a Krylov subspace iterative
method.



Bayesian solution of inverse problems

In the Bayesian framework for the solution of inverse problems,

>

All unknown parameters are modeled as random variables and
described in terms of their probability density functions;

Here the unknowns are € and x

Toise(€) describes what we know about the statistics of the

noise and defines the fikelihood,

Tprior(X) expresses what we know about x before taking into
consideration the data and is called the prior

The solution of the inverse problem is 7(x | b) and is called

the posterior.

It follows from Bayes' formula that

7T(X | b) 08 Wprior(x)ﬂ'noise(b — AX)



The noise in a Bayesian way

The linear discrete inverse problem that we consider is b = Ax + €.

» The noise term € accounts for inaccuracies in the
measurements as well as model uncertainties, i.e. discrepancy
between reality and the model. (more on this tomorrow)

» We assume that € ~ N(0, /).
> If e = €. ~ N(ue,I'), we can proceed as follows:

» Compute a symmetric factorization of the precision matrix of €
rl'=G7G
» Make the change of variables

€= G(ec— pc) = G(b— Ax) — Gpc
> In the linear system

Gb = GAx + ¢

the noise is zero-mean white Gaussian.



The unknown in a Bayesian way

Assume that x ~ N(0, C), where C is symmetric positive definite.
It follows from Bayes formula that the posterior density is of the
form

7(x | b) o< exp <—;]Ax —b|? - ;XTC1X> .
Give a symmetric factorization of the precision matrix of x
cC'=8B"B
we can write the negative logarithm of the posterior, or Gibbs
energy in the form
2

() = lax bl + 1857 = | [ & ][ ]




MAP estimate

The Maximum a Posteriori (MAP) estimate of x, xyap is the
value of highest posterior probability, or equivalently, the minimizer
of G(x) .

The value of xyap is the least squares solution of the linear system

& )=lol

or, equivalently, the solution of the square linear system

(ATA+ BTB)x = ATh.



and Tikhonov regularization

The latter are the normal equations associated with the problem
XMAP :argmin{HAx—b||2—f—)\HBX||2} (1)
which is Tikhonov regularized solution with regularization

parameter A = 1 and linear regularization operator B.

» The computation of Tikhonov regularized solution with B
different from / requires attention: moreover, a suitable value
of the regularization parameter A must be chosen.

» This question has been studied extensively in the literature.



Regularization operator beyond Tikhonov

» The operator B brings into the solution additional information
about x

» When the matrix A is underdetermined, the operator B boosts
the rank of the matrix of the linear system actually solved.

» In Tikhonov regularization when n is large the introduction of
B may lead to a very large linear system

Question: How can we retain the benefits of B while containing
the computational costs?



The alternative: Krylov subspace methods

As an alternative to Tikhonov regularization consider solving the
linear system
b=Ax+e¢

with an iterative solver using the matrix B as a right
preconditioned. More specifically

» Consider the Conjugate Gradient for Least Squares method
(CGLS)

» WLOG assume the initial approximate solution is xg = 0

» Define a termination rule based on the discrepancy



Standard CGLS method

At the kth iteration step the approximate solution xx computed by
the CGLS method satisfies

xx = argmin{||b — Ax|| | x € 4},
where the kth Krylov subspace is
Hi = span{ATb, (ATA)ATb, ... (ATA)*ATb}.
The noise is additive, zero-mean white Gaussian, thus
E{llel*} = m;
we stop iterating as soon as
|Ax — b||*> < Tm,

where 7 = 1.2. Typically, kjaet << m.



The question of the null space

» |t follows from the canonical orthogonal decomposition in
terms of fundamental subspaces that

R" = .4 (A) & Z(AT)

» In standard CGLS any contribution to the solution from the
null space must be added separately

» The right CGLS priorconditioner implicitly selects null space
components based on the information contained in the data
with the belief about x.



CGLS with a whitened unknown

Assume that a prior we believe that x ~ N(0,C). If
C'=B"B

then
w = Bx, w ~ N(0, /).

Make the change of variable from x to w in the linear system
AB'w=b x=B"lw, 2)

let A= AB~! and solve by CGLS for w. The jth iterate of the
whitened problem satisfies

wj = argmin{H;&W — bl |we ICj(/X\Tb,KTZ\)}.



Priorconditioning and the null space

The corresponding jth priorconditioned CGLS solution X; = B~ 1w;
satisfies

X; € span{B~Y( )gﬁTb|0<€<j—1}
It follows from
B 1AT =B 1B TAT = CAT,

that
B~1(ATA)'AT = (CATA)'CAT, 0<¢<j—1.

Therefore
X € C(A(A)),

hence X; is not necessarily orthogonal to the null space of A.



Analizing the Krylov subspaces with the GSVD

Theorem
Given (A,B) with A € R™*" B € R™" m < n, there is a
factorization of the form

ln—m -
A:U[Om,n—m ZA}X_]-’ B:V|: ZB:|X1’

called the generalized singular value decomposition, where
UeR™™and V € R™" are orthogonal matrices, X € R™" is
invertible, and o € R™*™ and g € R™*™ are diagonal matrices.



The diagonal entries sz), ... ,5,(nA) and sz), R s,(nB) of the

matrices 2 and Xg are real, nonnegative and satisfy

s:fA) < séA)S- SSr(nA)
sB > Bl s > P
(V2 + (=1 1<j<m (3)

thus 0 < sj(A) <land0< S}B) < 1. The ratios S,J(A)/sj(B) for
1 <j < m are the generalized singular values of (A, B).
If A has full rank, the diagonal entries of 2 5 are positive.



C-orthogonality

Theorem
If we partition the matrix X € R"*" in GSVD above as

X = [ N ] ’ X' e Rnx(nfm)7 X" e Rnxm’

it follows that
span{X'} = ¥ (A),

and we can express R"” as a C-orthogonal direct sum,

R" = span{X’} Bc span{X”} = AN(A) &c span{X"}.



Orthogonality and not

Corollary 1

N (A =2(AT), N (A)c = span{X"}.

Corollary 2
If Z(AT) is an invariant subspace of the covariance matrix C, then
the iterates x; are orthogonal to the null space of A.

Corollary 3

When C(Z(AT)) is not C-orthogonal to .#(A), X; may have a
component in the null space of A. This component is invisible to
the data.



Priorconditionting and the Lanczos process

The first k residual vectors computed by CGLS normalized to have
unit length vg, v1, ..., vk_1 form an orthonormal basis for the
Krylov subspace K (AT b, ATA).

It can be shown that

ATAV, = V, T, — Y Okr, o1

VK€ - Vk = [vo,vl,...,vk_l].
Qg—1

It follows from the orthogonality of the v; that the tridiagonal
matrix T is the projection of ATA onto the Krylov subspace
Ki(ATh,ATA).

VIATA)V, = Ty.



The Lanczos tridiagonal matrix

The kth CGLS iterate can be expressed as
Xk = VY,
where yi solves the k x k linear system
Try = |roller

Thus the kth CGLS iterate x, is the lifting of y, via V.

The eigenvalues of Ty are the Ritz values of ATA and approximate
of the eigenvalues of ATA.



Ritz values and convergence rate

Theorem
For all k, 1 < k < r, where r is the rank of A, there exists
Eky A1 < &k < A such that the norm of the residual vector satisfies

Irell = 2k+12 H(A -6 ))2 (rOTq">2’

i=1 |j=1

where g; is the eigenvector of ATA corresponding to the eigenvalue
Aj, and 01(.1() is the jth eigenvalue of the tridiagonal matrix T.

The quality of the eigenvalues approximations in the projected
problem affects the number of iterations needed to meet the
stopping rule.



A simple deconvolution problem

Forward model: Deconvolution problem with few data,

1 2
Ji(kt
60 = [ ate-9yts)as, a() = (2U)
0 Kt
Discretize:
1 n
g(t)~ =) a(t—sk)f(sk), 1<j<n,
o
Discrete noisy observations at ti,..., ty,, m < n.

be = g(te) +e¢, 1<L<m,
or, in matrix notation, A € R™*",

b=Ax+¢, Xka(Sk).



Computed examples: Deconvolution

Prior: Define the precision matrix C™! as

«

-1 2 -1

C'=B"™B, B=g ,

-1 2 -1
[0

where o > 0 is chosen so that prior variance is as uniform as
possible over the interval.

Parameters: Set n = 150, m = 6.



Basis vectors

The six basis vectors that span Z(AT) (dashed line), and the
vectors that span C(Z(AT)) (solid line).



Approximate solutions

Iteration lteration

Iterations with low additive noise (o = 5 x 10~°) without prior
conditioner (left) and with preconditioner.



Observations

» Every vector whose support consists of points where all six
basis functions of Z(AT) vanish is in the null space .4/ (A)

» Consequently, plain CGLS produces approximate solutions
that are zero at those points

» The basis functions of C(#2(AT)) are non-zero everywhere
» Consequently, priorconditioned CGLS has no blind spots

» The price to pay is that priorconditioned CGLS requires more
iterations



Spectral approximation
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Spectral approximation: Plain CGLS (left) and preconditioned
CGLS (right). The grey band on the right is the spectral interval
of the non-preconditioned matrix ATA.



Convergence history and null space contributions
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Left: Convergence rates of the two algorithms. The dashed line
marks the stopping criterion. Right: Component of the computed
solution in the null space measured as
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Computed examples: X-ray tomography

Image size: N = 160 x 160 pixels. 20 illumination angles, 60
parallel beams per illumination angle.



Correlation priors

Matern-Whittle correlation priors: Define the precision matrix as

1
-1
C —_|n®D_D®In+F|N’

where D € R™" is the three-point finite difference approximation
of the one-dimensional Laplacian with Dirichlet boundary
conditions,

and A > 0 is the correlation length.



Basis functions

Y

Basis vector with no priorconditioning (upper left) and with
priorconditioning. Correlation length 2, 4, 8, 16 and 32 pixels.



Observations

» Every image whose support is on pixels not touched by a ray
is in the null space of A

» = plain CGLS iterates will be zero at those pixels

> Preconditioning makes the rays fuzzy, illuminating the dark
pixels

» Reconstruction will be slightly blurred, but has fewer
geometric artifacts

» Number of iterations needed will increase.



Computed solutions

Reconstructions with plain CGLS (left) and priorconditioned CGLS
(right).



Converge history and spectral approximation
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Convergence and spectral approximation.



