Hölder’s inequality on mixed L_p spaces and summability of multilinear operators

Nacib Albuquerque
Federal Rural University of Pernambuco

Relations Between Banach Space Theory and Geometric Measure Theory
The University of Warwick – Coventry, UK
10th June 2015
Motivation: interpolative puzzles

Let us suppose that we have the following two inequalities at hand, for certain complex scalar matrix \((a_{ij})_{i,j=1}^N:\)

\[
\sum_{i=1}^N \left(\sum_{j=1}^N |a_{ij}|^2 \right)^{\frac{1}{2}} \leq C_1 \quad \text{and} \quad \sum_{j=1}^N \left(\sum_{i=1}^N |a_{ij}|^2 \right)^{\frac{1}{2}} \leq C_2
\]

for some constant \(C > 0\) and all positive integers \(N\).
Let us suppose that we have the following two inequalities at hand, for certain complex scalar matrix \((a_{ij})_{i,j=1}^N\):

\[
\frac{1}{2} N \left(\sum_{j=1}^N |a_{ij}|^2 \right) \leq C_1 \quad \text{and} \quad \frac{1}{2} \left(\sum_{i=1}^N \sum_{j=1}^N |a_{ij}|^2 \right) \leq C_2
\]

for some constant \(C > 0\) and all positive integers \(N\).

How can one find an optimal exponent \(r\) and a constant \(C_1 > 0\) such that

\[
\left(\sum_{i,j=1}^N |a_{ij}|^r \right)^{\frac{1}{r}} \leq C_3, \quad \text{for all positive integers } N?
\]

Moreover, how can one get a good (small) constant \(C_3\)?
Using a consequence of Minkowski’s inequality and applying Hölder’s inequality successively:

\[
\sum_{i,j=1}^{N} |a_{ij}|^{\frac{4}{3}} = \sum_{i=1}^{N} \left(\sum_{j=1}^{N} |a_{ij}|^{\frac{2}{3}} |a_{ij}|^{\frac{2}{3}} \right)
\]

\[
\leq \sum_{i=1}^{N} \left(\left(\sum_{j=1}^{N} |a_{ij}|^{2} \right)^{\frac{1}{3}} \left(\sum_{j=1}^{N} |a_{ij}|^{\frac{2}{3}} \right) \right)
\]

\[
\leq \left(\sum_{i=1}^{N} \left(\sum_{j=1}^{N} |a_{ij}|^{2} \right)^{\frac{1}{2}} \right)^{\frac{2}{3}} \left(\sum_{i=1}^{N} \left(\sum_{j=1}^{N} |a_{ij}|^{\frac{2}{3}} \right) \right)^{\frac{1}{3}}
\]

\[
= \left[\sum_{i=1}^{N} \left(\sum_{j=1}^{N} |a_{ij}|^{2} \right)^{\frac{1}{2}} \right]^{\frac{2}{3}} \left[\left(\sum_{i=1}^{N} \left(\sum_{j=1}^{N} |a_{ij}|^{\frac{2}{3}} \right) \right)^{\frac{1}{2}} \right]^{\frac{2}{3}} \leq C_1^{\frac{2}{3}} \cdot C_2^{\frac{2}{3}}
\]
Using a consequence of Minkowski’s inequality and applying Hölder’s inequality successively:

\[
\sum_{i,j=1}^{N} |a_{ij}|^{\frac{4}{3}} = \sum_{i=1}^{N} \left(\sum_{j=1}^{N} |a_{ij}|^{\frac{2}{3}} \right) \left(\sum_{j=1}^{N} |a_{ij}|^{\frac{2}{3}} \right)
\]

\[
\leq \sum_{i=1}^{N} \left(\left(\sum_{j=1}^{N} |a_{ij}|^{2} \right)^{\frac{1}{3}} \left(\sum_{j=1}^{N} |a_{ij}| \right)^{\frac{2}{3}} \right)
\]

\[
\leq \left(\sum_{i=1}^{N} \left(\sum_{j=1}^{N} |a_{ij}|^{2} \right)^{\frac{1}{2}} \right)^{\frac{2}{3}} \left(\sum_{i=1}^{N} \left(\sum_{j=1}^{N} |a_{ij}| \right)^{2} \right)^{\frac{1}{3}}
\]

\[
= \left[\sum_{i=1}^{N} \left(\sum_{j=1}^{N} |a_{ij}|^{2} \right)^{\frac{1}{2}} \right]^{\frac{2}{3}} \left[\left(\sum_{i=1}^{N} \left(\sum_{j=1}^{N} |a_{ij}| \right)^{2} \right)^{\frac{1}{2}} \right]^{\frac{2}{3}} \leq C_1^{\frac{2}{3}} \cdot C_2^{\frac{2}{3}}
\]

Solution: “interpolation via Hölder’s inequality”.

Nacib Albuquerque

Hölder’s inequality and operators summability
A. Benedek and R. Panzone introduce the mixed L_p spaces notion on:

A. Benedek and R. Panzone introduce the mixed L_p spaces notion on:

Let (X_i, Σ_i, μ_i), $i = 1, \ldots, m$ be σ-finite measurable spaces, let

$$(X, \Sigma, \mu) := \left(\prod_{i=1}^{m} X_i, \prod_{i=1}^{m} \Sigma_i, \prod_{i=1}^{m} \mu_i \right)$$

be the product space and $p := (p_1, \ldots, p_m) \in [1, \infty]^m$.

Nacib Albuquerque
Hölder’s inequality and operators summability
A. Benedek and R. Panzone introduce the mixed L_p spaces notion on:

Let $(X_i, \Sigma_i, \mu_i), i = 1, \ldots, m$ be σ-finite measurable spaces, let

$$(X, \Sigma, \mu) := \left(\prod_{i=1}^{m} X_i, \prod_{i=1}^{m} \Sigma_i, \prod_{i=1}^{m} \mu_i \right)$$

be the product space and $\mathbf{p} := (p_1, \ldots, p_m) \in [1, \infty]^m$.

The space $L_\mathbf{p}(X)$ consists in all measurable functions $f : X \to \mathbb{K}$ with the following property:

$f(x_1, \ldots, x_{m-1}, \cdot) \in L_{p_m}(X_m)$, i.e., $\|f\|_{p_m} := \| f(x_1, \ldots, x_{m-1}, \cdot) \|_{p_m} < \infty$,

for any $(x_1, \ldots, x_{m-1}) \in \prod_{i=1}^{n-1} X_i$ and, also $\|f\|_{p_m}$, results in a measurable function;
A. Benedek and R. Panzone introduce the mixed L_p spaces notion on:

Let $(X_i, \Sigma_i, \mu_i), i = 1, \ldots, m$ be σ-finite measurable spaces, let

$$(X, \Sigma, \mu) := \left(\prod_{i=1}^{m} X_i, \prod_{i=1}^{m} \Sigma_i, \prod_{i=1}^{m} \mu_i \right)$$

be the product space and $p := (p_1, \ldots, p_m) \in [1, \infty]^m$.

The space $L_p(X)$ consists in all measurable functions $f : X \to \mathbb{K}$ with the following property:

$f(x_1, \ldots, x_{m-1}, \cdot) \in L_{p_m}(X_m)$, i.e., $\|f\|_{p_m} := \|f(x_1, \ldots, x_{m-1}, \cdot)\|_{p_m} < \infty$,

for any $(x_1, \ldots, x_{m-1}) \in \prod_{i=1}^{m-1} X_i$ and, also $\|f\|_{p_m}$, results in a measurable function; this process is repeated successively: the resulting p_{m-1}-norm, p_{m-2}-norm, \ldots, p_1-norm (in this order) are finite.
For instance, when all \(p_i < \infty \) a measurable function \(f : X \to \mathbb{K} \) it is an element of \(L_p(X) \) if, and only if,

\[
\|f\|_p := \left(\int_{X_1} \left(\cdots \left(\int_{X_m} |f|^{p_m} \, d\mu_m \right)^{\frac{p_m-1}{p_m}} \cdots \right)^{\frac{p_1}{p_2}} \, d\mu_1 \right)^{\frac{1}{p_1}} < \infty.
\]
For instance, when all $p_i < \infty$ a measurable function $f : X \to \mathbb{K}$ it is an element of $L_p(X)$ if, and only if,

$$
\|f\|_p := \left(\int_{X_1} \left(\cdots \left(\int_{X_m} |f|^{p_m} \, d\mu_m \right)^{\frac{p_m-1}{p_m}} \cdots \right)^{\frac{p_1}{p_2}} \, d\mu_1 \right)^{\frac{1}{p_1}} < \infty.
$$

Some classical properties and results concerning the L_p spaces:

- $L_p(X)$ is a Banach space;
- Monotone’s convergence classical theorems;
- Lebesgue’s dominated convergence theorem.
We are interested in a “simple” result:

Theorem (Mixed Hölder’s inequality)

Let $\mathbf{r} \in [1, \infty)^m$ and $\mathbf{p}(1), \ldots, \mathbf{p}(N) \in [1, \infty]^m$ be such that

$$\frac{1}{r_j} = \frac{1}{p_j(1)} + \cdots + \frac{1}{p_j(N)}, \quad \text{for } j = 1, \ldots, m.$$

If $f_k \in L_{\mathbf{p}(k)}(X)$ for $k = 1, \ldots, N$, then

$$f_1 f_2 \cdots f_N \in L_{\mathbf{r}}(X)$$

and, moreover,

$$\|f_1 \cdots f_N\|_{\mathbf{r}} \leq \|f_1\|_{\mathbf{p}(1)} \cdots \|f_N\|_{\mathbf{p}(N)}.$$
Corollary [Mixed interpolative Hölder’s inequality]

Let \(r, p(1), \ldots, p(N) \in [1, \infty]^m \) and \(\theta_1, \ldots, \theta_N \in [0, 1] \) be such that

\[
\theta_1 + \cdots + \theta_N = 1
\]

and

\[
\frac{1}{r_j} = \sum_{k=1}^{N} \frac{\theta_k}{p_j(k)} = \frac{\theta_1}{p_j(1)} + \cdots + \frac{\theta_N}{p_j(N)}, \quad \text{for } j = 1, \ldots, m.
\]

If \(f \in L_{p(k)}(X) \) for \(k = 1, \ldots, N \), then \(f \in L_r(X) \) and, moreover,

\[
\|f\|_r \leq \|f\|_{p(1)}^{\theta_1} \cdots \|f\|_{p(N)}^{\theta_N}.
\]
Let X be a Banach space and $p \in [1, \infty)^m$. The mixed norm sequence space

$$
\ell_p(X) := \ell_{p_1}(\ell_{p_2}(\ldots(\ell_{p_m}(X))\ldots))
$$

is formed by all multi-index vector valued matrices $(x_i)_{i \in \mathbb{N}^m}$ with finite p-norm that is,

$$
\| (x_i)_{i} \|_p := \left(\sum_{i_1=1}^{\infty} \left(\ldots \left(\sum_{i_m=1}^{\infty} \| x_i \|_{X}^{p_m} \right)^{\frac{p_m-1}{p_m}} \ldots \right)^{\frac{p_1}{p_2}} \right)^{\frac{1}{p_1}} < \infty.
$$

When $X = \mathbb{K}$, we just write ℓ_p instead of $\ell_p(\mathbb{K})$.
Hölder’s interpolative inequality for sequences

The next interpolation result on these mixed norm sequences spaces has a central role on the results we will present.

Corollary [Hölder’s interpolative inequality for mixed \(\ell_p \) spaces]

Let \(m, n, N \) be positive integers, \(r, p(1), \ldots, p(N) \in [1, \infty]^m \) and \(\theta_1, \ldots, \theta_N \in [0, 1] \) be such that \(\theta_1 + \cdots + \theta_N = 1 \) and

\[
\frac{1}{r_j} = \sum_{k=1}^{N} \frac{\theta_k}{p_j(k)} = \frac{\theta_1}{p_j(1)} + \cdots + \frac{\theta_N}{p_j(N)}, \quad \text{for } j = 1, \ldots, m.
\]

Then, for all scalar matrix \(a := (a_i)_{i \in \mathcal{M}(m,n)} \), we have

\[
\|a\|_r \leq \|a\|_{p(1)}^{\theta_1} \cdots \|a\|_{p(N)}^{\theta_N}.
\]
Hölder’s interpolative inequality for sequences

In particular, if each $p(k) \in [1, \infty)$, the previous inequality means that

$$
\left(\sum_{i_1=1}^{n} \left(\cdots \left(\sum_{i_m=1}^{n} |a_{i_1}|^{r_m} \right)^{\frac{r_m-1}{r_m}} \cdots \right)^{\frac{1}{r_1}} \right) \left(\sum_{i_1=1}^{N} \left(\cdots \left(\sum_{i_m=1}^{n} |a_{i_1}|^{p_{m}(k)} \right)^{\frac{p_{m-1}(k)}{p_{m}(k)}} \cdots \right)^{\frac{1}{p_{1}(k)}} \right)^{\theta_k} \leq \prod_{k=1}^{N} \left(\sum_{i_1=1}^{n} \left(\cdots \left(\sum_{i_m=1}^{n} |a_{i_1}|^{p_{m}(k)} \right)^{\frac{p_{m-1}(k)}{p_{m}(k)}} \cdots \right)^{\frac{1}{p_{1}(k)}} \right)^{\theta_k}.
$$

Thanks anonymous referee!
Hölder’s interpolative inequality for sequences

In particular, if each \(p(k) \in [1, \infty) \), the previous inequality means that

\[
\left(\sum_{i_1=1}^{n} \left(\ldots \left(\sum_{i_m=1}^{n} |a_i| r_m \right)^{r_m - 1 \over r_m} \ldots \right)^{r_1 \over r_2} \right)^{1 \over r_1} \leq \prod_{k=1}^{N} \left[\left(\sum_{i_1=1}^{n} \left(\ldots \left(\sum_{i_m=1}^{n} |a_i| p_m(k) \right)^{p_m - 1(k) \over p_m(k)} \ldots \right)^{p_1(k) \over p_2(k)} \right)^{1 \over p_1(k)} \right]^{\theta_k}.
\]

Thanks anonymous referee!

Nacib Albuquerque

Hölder’s inequality and operators summability

Theorem (Multilinear Bohnenblust-Hille’s inequality)

For each positive integer \(m \geq 1 \), there exists a constant \(C_m \geq 1 \) such that

\[
\left(\sum_{i_1, \ldots, i_m=1}^\infty \|A(e_{i_1}, \ldots, e_{i_m})\|^{\frac{2m}{m+1}} \right)^{\frac{m+1}{2m}} \leq C_m \|A\|,
\]

for all continuous \(m \)-linear forms \(A : c_0 \times \cdots \times c_0 \to \mathbb{K} \). Moreover, the exponent \(\frac{2m}{m+1} \) is optimal.
Multilinear Hardy-Littlewood’s inequality

- [1934] G. Hardy and J. P. Littlewood provided an ℓ_p-version for the bilinear case (Littlewood’s 4/3 inequality).
- [1981] T. Praciano-Pereira obtained a general result for multilinear forms on ℓ_p spaces.
G. Hardy and J. P. Littlewood provided an ℓ_p-version for the bilinear case (Littlewood’s 4/3 inequality).

T. Praciano-Pereira obtained a general result for multilinear forms on ℓ_p spaces.

Let us define $X_p := \ell_p, 1 \leq p < +\infty$ and $X_\infty := c_0$.

Theorem (Multilinear Hardy-Littlewood’s inequality)

Let $\mathbf{p} \in [1, +\infty]^m$ with $\left|\frac{1}{\mathbf{p}}\right| := \frac{1}{p_1} + \cdots + \frac{1}{p_m} \leq \frac{1}{2}$. Then there exists a constant $C_{m, \mathbf{p}} \geq 1$ such that, for every continuous m-linear form $A : X_{p_1} \times \cdots \times X_{p_m} \to \mathbb{C}$,

$$
\left(\sum_{i_1, \ldots, i_m=1}^{\infty} \left| A(e_{i_1}, \ldots, e_{i_m}) \right|^2 \right)^{\frac{2m}{m+1-2\left|\frac{1}{\mathbf{p}}\right|}} \leq C_{m, \mathbf{p}} \|A\|.
$$
After results...

- [2009] Defant and Sevilla-Peris;
- [2013] A., Bayart, Pellegrino and Seoane;
- [2013] Dimant and Sevilla-Peris.
Theorem (A., Bayart, Pellegrino, Seoane (2014))

Let \(p \in [1, +\infty]^m \) and \(1 \leq s \leq q \leq \infty \) be such that
\[
\left| \frac{1}{p} \right| < \frac{1}{2} + \frac{1}{s} - \frac{1}{\min\{q, 2\}}.
\]

If \(\lambda := \left[\frac{1}{2} + \frac{1}{s} - \frac{1}{\min\{q, 2\}} - \left| \frac{1}{p} \right| \right]^{-1} > 0 \) and \(t_1, \ldots, t_m \in [\lambda, \max\{\lambda, s, 2\}] \) are such that
\[
\frac{1}{t_1} + \cdots + \frac{1}{t_m} \leq \frac{1}{\lambda} + \frac{m - 1}{\max\{\lambda, s, 2\}},
\]
then there exists \(C > 0 \) satisfying, for every continuous \(m \)-linear map \(A : X_{p_1} \times \cdots \times X_{p_m} \to X_s \),
\[
\left(\sum_{i_1=1}^{+\infty} \left(\sum_{i_m=1}^{+\infty} \left\| A(e_{i_1}, \ldots, e_{i_m}) \right\|_{\ell_q}^{t_m} \right)_{t_m}^{\frac{t_m-1}{t_m}} \right)_{t_2}^{\frac{t_1}{t_2}} \leq C \|A\|.
\]

Moreover, the exponents are optimal except eventually if \(q \leq 2 \) and \(\left| \frac{1}{p} \right| > \frac{1}{2} \).
Tools for the proof (sufficiency)

- norm-mixed estimate for \((\ell_\lambda, \ell_q)\) or cotype version of Khinchinte’s inequality [Dimant and Sevilla-Peris (2013)];
Tools for the proof (sufficiency)

- norm-mixed estimate for (ℓ_λ, ℓ_q) or cotype version of Khinchinte’s inequality [Dimant and Sevilla-Peris (2013)];

- Bennet-Carl inequality;
Tools for the proof (sufficiency)

- norm-mixed estimate for \((\ell_\lambda, \ell_q)\) or cotype version of Khinchinte’s inequality [Dimant and Sevilla-Peris (2013)];
- Bennet-Carl inequality;
- Interpolative Hölder’s inequality.
From now on, E_1, E_2, \ldots, F shall denote Banach spaces.
From now on, E_1, E_2, \ldots, F shall denote Banach spaces.

Proposition [Bohnenblust-Hille re-written]

If $q \in [1, 2]^m$ is such that $\frac{1}{q} \leq \frac{1}{2}$, then

$$
\left(\sum_{j_1=1}^{\infty} \left(\ldots \left(\sum_{j_m=1}^{\infty} \left| T \left(x_{j_1}^{(1)}, \ldots, x_{j_m}^{(m)} \right) \right|^{q_m} \right)^{\frac{q_m-1}{q_m}} \right)^{\frac{q_1}{q_2}} \right)^{\frac{1}{q_1}}
$$

is less than or equal to $B_{m,(q_1,\ldots,q_m)}^K \|T\| \prod_{k=1}^{m} \left\| \left(x_{j_k}^{(k)} \right)_{j_k=1}^{\infty} \right\|_{w,1}$,

for all bounded m–linear forms $T : E_1 \times \cdots \times E_m \to K$ and all sequences

$$
\left(x_{j_k}^{(k)} \right)_{j_k=1}^{\infty} \in \ell_1^w (E_k), \ k = 1, \ldots, m.
$$
Proposition [Hardy-Littlewood re-written]

Let $m \geq 1$, $p \in [1, \infty]^m$. If $0 \leq \left| \frac{1}{p} \right| \leq \frac{1}{2}$ and $q \in \left[\left(1 - \left| \frac{1}{p} \right| \right)^{-1}, 2 \right]^m$ are such that

$$\left| \frac{1}{q} \right| \leq \frac{m + 1}{2} - \left| \frac{1}{p} \right|.$$

Then, for all continuous m–linear forms $T : E_1 \times \cdots \times E_m \rightarrow \mathbb{K}$,

$$\left(\sum_{i_1=1}^{\infty} \left(\cdots \left(\sum_{i_m=1}^{\infty} \left| T \left(x_{i_1}^{(1)}, \ldots, x_{i_m}^{(m)} \right) \right| q_m \right)^{\frac{q_m-1}{q_m}} \cdots \right) \right)^{\frac{1}{\frac{q_1}{q_1}}} \leq C_{m, p, q}^{\mathbb{K}} \| T \| \prod_{k=1}^{m} \left\| \left(x_i^{(k)} \right)_{i=1}^{\infty} \right\|_{w, p_k^*},$$

regardless of the sequences $\left(x_{j_k}^{(k)} \right)_{i=1}^{\infty} \in \ell^{w}_{p_k^*}(E_k)$, $k = 1, \ldots, m$.
Partially multiple summing operators: the designs

For Banach spaces E_1, \ldots, E_m and an element $x \in E_j$, for some $j \in \{1, \ldots, m\}$, the symbol $x \cdot e_j$ represents the vector $x \cdot e_j \in E_1 \times \cdots \times E_m$ such that the j-th coordinate is $x \in E_j$, and 0 otherwise.

Definition

Let E_1, \ldots, E_m, F be Banach spaces, m, k be positive integers with $1 \leq k \leq m$, and $(p, q) := (p_1, \ldots, p_m, q_1, \ldots, q_k) \in [1, \infty)^{m+k}$. Let also $I = \{I_1, \ldots, I_k\}$ a family of non-void disjoints subsets of $\{1, \ldots, m\}$ such that $\bigcup_{i=1}^k I_i = \{1, \ldots, m\}$, that is, I is a partition of $\{1, \ldots, m\}$. A multilinear operator $T: E_1 \times \cdots \times E_m \to F$ is I-partially multiple $(q; p)$-summing if there exists a constant $C > 0$ such that

$$
\left\| \sum_{i_1=1}^{\infty} \cdots \sum_{i_k=1}^{\infty} \left\| \sum_{j \in I_{i_1}} \sum_{j \in I_{i_2}} \cdots \sum_{j \in I_{i_k}} x(j) i_{i_1} \cdot e_{j} \right\|_{F}^{q_k} \right\|_{q_{k-1}} \cdots \left\| \sum_{j \in I_{i_1}} x(j) i_{i_1} \cdot e_{j} \right\|_{q_1} \leq C m \prod_{j=1}^{\infty} \left\| x(j) i_{i_1} \right\|_{w,p_{i_1}}
$$
Partially multiple summating operators: the designs

For Banach spaces E_1, \ldots, E_m and an element $x \in E_j$, for some $j \in \{1, \ldots, m\}$, the symbol $x \cdot e_j$ represents the vector $x \cdot e_j \in E_1 \times \cdots \times E_m$ such that the j-th coordinate is $x \in E_j$, and 0 otherwise.

Definition

Let E_1, \ldots, E_m, F be Banach spaces, m, k be positive integers with $1 \leq k \leq m$, and $(p, q) := (p_1, \ldots, p_m, q_1, \ldots, q_k) \in [1, \infty)^{m+k}$. Let also $\mathcal{I} = \{I_1, \ldots, I_k\}$ a family of non-void disjoints subsets of $\{1, \ldots, m\}$ such that $\bigcup_{i=1}^k I_i = \{1, \ldots, m\}$, that is, \mathcal{I} is a partition of $\{1, \ldots, m\}$. A multilinear operator $T : E_1 \times \cdots \times E_m \to F$ is \mathcal{I}–partially multiple $(q; p)$–summing if there exists a constant $C > 0$ such that

$$\left(\sum_{i_1=1}^{\infty} \cdots \left(\sum_{i_k=1}^{\infty} \left\| T \left(\sum_{n=1}^{k} \sum_{j \in I_n} x_{i_n}^{(j)} \cdot e_j \right) \right\|_{F}^{q_k} \right)^{\frac{q_k - 1}{q_k}} \cdots \right)^{\frac{q_1}{q_2}} \left(\prod_{j=1}^{m} \left\| (x_{i_j}^{(j)})_{i=1}^{\infty} \right\|_{w,p_j}^{q_1} \right) \leq C \prod_{j=1}^{m} \left\| (x_{i_j}^{(j)})_{i=1}^{\infty} \right\|_{w,p_j}^{q_1}$$

Hölder’s inequality and operators summability
Definition

for all \((x_i^{(j)})_{i=1}^\infty \in \ell_{p_j}^w (E_j) \), \(j = 1, \ldots, m \). We represent the class of all \(\mathcal{I} \)-partially multiple \((q; p)\)-summing operators by \(\Pi_{(q; p)}^{k,m} (E_1, \ldots, E_m; F) \). The infimum taken over all possible constants \(C > 0 \) satisfying the previous inequality defines a norm in \(\Pi_{(q; p)}^{k,m} (E_1, \ldots, E_m; F) \), which is denoted by \(\pi_{(q; p)}^{\mathcal{I}} \).
Definition

for all \(\left(x_i^{(j)} \right)_{i=1}^{\infty} \in \ell_{p_j}^w (E_j) \), \(j = 1, \ldots, m \). We represent the class of all \(\mathcal{I} \)–partially multiple \((q; p)\)–summing operators by \(\Pi_{(q; p)}^{k, m, \mathcal{I}} (E_1, \ldots, E_m; F) \). The infimum taken over all possible constants \(C > 0 \) satisfying the previous inequality defines a norm in \(\Pi_{(q; p)}^{k, m, \mathcal{I}} (E_1, \ldots, E_m; F) \), which is denoted by \(\pi_{(q; p)}^{\mathcal{I}} \).

Note that when

- \(k = 1 \), we recover the class of absolutely \((q; p_1, \ldots, p_m)\)–summing operators, with \(q := q_1 \);
- \(k = m \) and \(q_1 = \cdots = q_m =: q \), we recover the class of multiple \((q; p_1, \ldots, p_m)\)–summing operators.

From now on, \(m, k \) are positive integers with \(1 \leq k \leq m \), \((p, q) := (p_1, \ldots, p_m, q_1, \ldots, q_k) \in [1, \infty)^{m+k} \) and \(\mathcal{I} = \{I_1, \ldots, I_k\} \) is a partition of \(\{1, \ldots, m\} \).
Theorem [Bohnenblust-Hille’s partially summ. version]

Let \(q \in [1, 2]^k \) such that \(\frac{1}{q} \leq \frac{k+1}{2} \). Then

\[
\left(\sum_{i_1=1}^{\infty} \left(\cdots \left(\sum_{i_k=1}^{\infty} \left| T \left(\sum_{n=1}^{k} \sum_{j \in I_n} x_{i_n}^{(j)} \cdot e_j \right) \right| \right)^q \frac{q_k-1}{q_k} \right) \cdots \right) \left(\frac{q_1}{q_2} \right) \frac{1}{q_1} \leq B_{k, q}^{\mathbb{K}} \| T \| \prod_{j=1}^{m} \left\| \left(x_{i_1}^{(j)} \right)^{\infty} \right\|_{w, 1},
\]

for all \(m \)-linear forms \(T : E_1 \times \cdots \times E_m \to \mathbb{K} \) and all sequences

\[
\left(x_{i_1}^{(j)} \right)^{\infty} \in \ell^w_1 (E_j), \; j = 1, \ldots, m.
\]

In other words, when \(q \in [1, 2]^k \) such that \(\frac{1}{q} \leq \frac{k+1}{2} \) we have the following coincidence result:

\[
\Pi_{(q; 1)}^{k,m,F} (E_1, \ldots, E_m; F) = \mathcal{L} (E_1, \ldots, E_m; \mathbb{K}),
\]

with \(1 := (1, m \text{ times}, 1) \).
Theorem [Hardy-Littlewood’s partially summ. version]

Let $1 \leq k \leq m$, $p \in [1, \infty]^m$. If $0 \leq \left| \frac{1}{p} \right| \leq \frac{1}{2}$ and $q \in \left[\left(1 - \left| \frac{1}{p} \right| \right)^{-1}, 2 \right]^k$ are such that $\left| \frac{1}{p} \right| \leq \frac{k+1}{2} - \left| \frac{1}{p} \right|$, then, for all continuous m–linear forms $T : E_1 \times \cdots \times E_m \to \mathbb{K}$,

$$\left(\sum_{i_1=1}^{\infty} \cdots \left(\sum_{i_k=1}^{\infty} \right) \left| T \left(\sum_{n=1}^{k} \sum_{j \in I_n} x_{i_n}^{(j)} \cdot e_j \right) \right| q_k \right) \left(\left(\frac{q_k}{q_1} \right)^{q_k} \left(\frac{q_1}{q_2} \right)^{q_1} \right) \leq C_{k,m,p,q}^{\|T\| \prod_{j=1}^{m} \left\| \left(x_{i}^{(j)} \right)_{i=1}^{\infty} \right\|_{w, p_j^*}^{ \prod_{j=1}^{m} \left\| x_{i}^{(j)} \right\|_{w, p_j^*}}$$

regardless of the sequences $(x_{i}^{(j)})_{i=1}^{\infty} \in \ell_{w, p_j}^{p_j^*} (E_j)$, $j = 1, \ldots, m$.

In other words, we have the coincidence $\prod_{k,m}(q;p^*)_{E_1, \ldots, E_m} = L_{E_1, \ldots, E_m}$, with $p^* : = (p_1^*, \ldots, p_m^*)$.

Nacib Albuquerque

Hölder’s inequality and operators summability
Theorem [Hardy-Littlewood’s partially summ. version]

Let \(1 \leq k \leq m\), \(p \in [1, \infty]^m\). If \(0 \leq \left| \frac{1}{p} \right| \leq \frac{1}{2}\) and \(q \in \left[\left(1 - \left| \frac{1}{p} \right| \right)^{-1}, 2 \right]\) are such that \(\left| \frac{1}{q} \right| \leq \frac{k+1}{2} - \left| \frac{1}{p} \right|\), then, for all continuous \(m\)-linear forms \(T : E_1 \times \cdots \times E_m \to \mathbb{K}\),

\[
\left(\sum_{i_1=1}^{\infty} \cdots \left(\sum_{i_k=1}^{\infty} \left| T \left(\sum_{n=1}^{k} \sum_{j \in I_n} x_{i_n}^{(j)} \cdot e_j \right) \right|^{q_k} \right) \right)^{\frac{q_k-1}{q_k}} \cdot \left(\frac{q_1}{q_2} \right)^{\frac{1}{q_1}} \leq C_{k,m,p,q}^{\mathbb{K}} \left\| T \right\| \prod_{j=1}^{m} \left\| \left(x_{i_j}^{(j)} \right)^{\infty}_{i_1=1} \right\|_{w,p_j^*},
\]

regardless of the sequences \(\left(x_{i_j}^{(j)} \right)^{\infty}_{i_1=1} \in \ell^w_{p_j^*} (E_j), j = 1, \ldots, m\).

In other words, we have the coincidence

\[
\Pi_{(q;p^*)}^{k,m}(E_1, \ldots, E_m; F) = \mathcal{L} (E_1, \ldots, E_m; \mathbb{K}),
\]

with \(p^* := (p_1^*, \ldots, p_m^*)\).
This lecture is related to papers from 2013-2015 in collaboration with

- G. Araújo (João Pessoa, Brazil);
- F. Bayart (Clermont-Ferrand, France);
- D. Pellegrino (João Pessoa, Brazil);
- D. Nuñez-Alarcón (Recife, Brazil);
- P. Rueda (Valence, Spain);
- J. Seoane (Madrid, Spain);
Thank you very much!