Energy integrals, metric embeddings and absolutely summing operators

Daniel Galicer1
Joint work with Daniel Carando and Damián Pinasco

1Universidad de Buenos Aires - CONICET;

University of Warwick - June 2015
Metric spaces arising from Euclidean spaces by a change of metric: some history

Metric spaces arising from Euclidean spaces by a change of metric: some history

Wilson investigated certain properties of those metric spaces which arise from a metric space by taking as its new metric a suitable (one variable) function of the old one.
Metric spaces arising from Euclidean spaces by a change of metric: some history

Wilson investigated certain properties of those metric spaces which arise from a metric space by taking as its new metric a suitable (one variable) function of the old one.

\[(X, d) \xrightarrow{f} (X, f(d)), \text{ where } f(d)(x,y) := f(d(x,y)).\]
For the metric space $(\mathbb{R}, |·|)$, Wilson considered the function $f(t) = t^{1/2}$. Denote $d_{1/2} := f(|·|) \Rightarrow d_{1/2}(x, y) = |x - y|^{1/2}$. He showed that $(\mathbb{R}, d_{1/2})$ may be isometrically imbedded in a separable Hilbert space. In other words, he proved that there exist a distance preserving (isometry) mapping $j: (\mathbb{R}, d_{1/2}) \to (\ell_2, \|·\|_{\ell_2})$. That is, $\|j(x) - j(y)\|_{\ell_2} = d_{1/2}(x, y) = |x - y|^{1/2}, \forall x, y \in \mathbb{R}$.
Metric spaces arising from Euclidean spaces by a change of metric: some history

For the metric space \((\mathbb{R}, | \cdot |)\), Wilson considered the function \(f(t) = t^{1/2}\).
Metric spaces arising from Euclidean spaces by a change of metric: some history

For the metric space \((\mathbb{R}, | \cdot |)\), Wilson considered the function \(f(t) = t^{1/2}\).

Denote \(d_{1/2} := f(| \cdot |) \sim d_{1/2}(x, y) = |x - y|^{1/2}\).
Metric spaces arising from Euclidean spaces by a change of metric: some history

For the metric space $(\mathbb{R}, | \cdot |)$, Wilson considered the function $f(t) = t^{1/2}$.

Denote $d_{1/2} := f(| \cdot |) \mapsto d_{1/2}(x, y) = |x - y|^{1/2}$.

- He showed that $(\mathbb{R}, d_{1/2})$ may be isometrically imbedded in a separable Hilbert space.
Metric spaces arising from Euclidean spaces by a change of metric: some history

For the metric space \((\mathbb{R}, | \cdot |)\), Wilson considered the function \(f(t) = t^{1/2}\).

Denote \(d_{1/2} := f(| \cdot |) \mapsto d_{1/2}(x, y) = |x - y|^{1/2}\).

- He showed that \((\mathbb{R}, d_{1/2})\) may be \textit{isometrically imbedded in a separable Hilbert space}.

In other words, he proved that there exist a distance preserving mapping (isometry)

\[j : (\mathbb{R}, d_{1/2}) \rightarrow (\ell_2, \| \cdot \|_2) \]
Metric spaces arising from Euclidean spaces by a change of metric: some history

For the metric space \((\mathbb{R}, | \cdot |)\), Wilson considered the function \(f(t) = t^{1/2}\).

Denote \(d_{1/2} := f(| \cdot |) \mapsto d_{1/2}(x, y) = |x - y|^{1/2}\).

- He showed that \((\mathbb{R}, d_{1/2})\) may be \textit{isometrically imbedded in a separable Hilbert space}.

In other words, he proved that there exist a distance preserving mapping (isometry)

\[
j : (\mathbb{R}, d_{1/2}) \rightarrow (\ell_2, \| \cdot \|_{\ell_2})
\]

That is,

\[
\|j(x) - j(y)\|_{\ell_2} = d_{1/2}(x, y) = |x - y|^{1/2}, \ \forall x, y \in \mathbb{R}.
\]
Metric spaces arising from Euclidean spaces by a change of metric: some history

They characterized those function f for which the metric space $(\mathbb{R}, f(| \cdot |))$ can be isometrically imbedded in a Hilbert space.
Metric spaces arising from Euclidean spaces by a change of metric: some history

They characterized those function f for which the metric space $(\mathbb{R}, f(| \cdot |))$ can be isometrically imbedded in a Hilbert space.

They proved that, for $0 < \alpha < 1$, $f(t) = t^\alpha$ becomes a suitable metric transformation.
Metric spaces arising from Euclidean spaces by a change of metric: some history

What happens for the \(n \)-dimensional real space \(\mathbb{R}^n \)?
Metric spaces arising from Euclidean spaces by a change of metric: some history

What happens for the n-dimensional real space \mathbb{R}^n?

Is the metric space $\left(\mathbb{R}^n, d_\alpha\right)$ isometrically imbeddable in ℓ_2, where $d_\alpha(x, y) = \|x - y\|^\alpha$?
Metric spaces arising from Euclidean spaces by a change of metric: some history

What happens for the n-dimensional real space \mathbb{R}^n? Is the metric space (\mathbb{R}^n, d_α) isometrically imbeddable in ℓ_2, where $d_\alpha(x, y) = \|x - y\|^\alpha$?

Theorem (Schoenberg)

For $0 < \alpha < 1$, the metric space (\mathbb{R}^n, d_α) is imbeddable in ℓ_2.
Moreover, by combining Schoenberg’s proof and a classic result of Menger, we have that for every compact set $K \subset \mathbb{R}^n$ the metric space (K, d_α) may be imbeddable in the surface of a Hilbert sphere.
Moreover, by combining Schoenberg’s proof and a classic result of Menger, we have that for every compact set \(K \subset \mathbb{R}^n \) the metric space \((K, d_\alpha)\) may be imbeddable in the surface of a Hilbert sphere.

Classic result

For every compact set \(K \subset \mathbb{R}^n \), there exist a positive number \(r \) and a distance preserving mapping

\[
j : (K, d_\alpha) \rightarrow (rS_{\ell_2}, \| \cdot \|_{\ell_2})
\]
Classic results

Moreover, by combining Schoenberg’s proof and a classic result of Menger, we have that for every compact set $K \subset \mathbb{R}^n$ the metric space (K, d_α) may be imbeddable in the surface of a Hilbert sphere.

Classic result

For every compact set $K \subset \mathbb{R}^n$, there exist a positive number r and a distance preserving mapping

$$j : (K, d_\alpha) \to (rS_{\ell_2}, \| \cdot \|_{\ell_2})$$

Note that $\|j(x)\|_{\ell_2} = r$, $\forall x \in K$.
Moreover, by combining Schoenberg’s proof and a classic result of Menger, we have that for every compact set $K \subset \mathbb{R}^n$ the metric space (K, d_α) may be imbeddable in the surface of a Hilbert sphere.

Classic result

For every compact set $K \subset \mathbb{R}^n$, there exist a positive number r and a distance preserving mapping

$$j : (K, d_\alpha) \rightarrow (rS_{\ell_2}, \| \cdot \|_{\ell_2})$$

Note that $\|j(x)\|_{\ell_2} = r$, $\forall x \in K$.

It is natural to define,

$$\rho_\alpha(K) := \inf r$$
Moreover, by combining Schoenberg’s proof and a classic result of Menger, we have that for every compact set $K \subset \mathbb{R}^n$ the metric space (K, d_α) may be imbeddable in the surface of a Hilbert sphere.

Classic result

For every compact set $K \subset \mathbb{R}^n$, there exist a positive number r and a distance preserving mapping

$$j : (K, d_\alpha) \to (rS_{\ell_2}, \| \cdot \|_{\ell_2})$$

Note that $\|j(x)\|_{\ell_2} = r$, $\forall x \in K$.

It is natural to define,

$$\rho_\alpha(K) := \inf r \sim \text{least possible radius (}\alpha\text{-Schoenberg’s radii of } K)$$
A connection with another area

All these results can be framed within a vast area called "metric geometry".
A connection with another area

All these results can be framed within a vast area called "metric geometry".

Link

Metric Geometry \leftrightarrow Potential Theory
Let $K \subset \mathbb{R}^n$ be a compact set and μ be a signed Borel measure supported on K of total mass one (i.e., $\mu(K) = 1$).
Let \(K \subset \mathbb{R}^n \) be a compact set and \(\mu \) be a signed Borel measure supported on \(K \) of total mass one (i.e., \(\mu(K) = 1 \)).

For a real number \(p \) (for us, \(0 < p < 2 \)), we define

\[
I_p(\mu; K) := \int_K \int_K \|x - y\|^p d\mu(x) d\mu(y)
\]

as the \(p \)-energy integral given by \(\mu \).

And define,

\[
M_p(K) := \sup \{ I_p(\mu; K) : \mu \text{ is a signed Borel measure on } K \text{ of total mass one} \}
\]

as the \(p \)-maximal energy of \(K \).
Let $K \subset \mathbb{R}^n$ be a compact set and μ be a signed Borel measure supported on K of total mass one (i.e., $\mu(K) = 1$).

For a real number p (for us, $0 < p < 2$), we define

$$I_p(\mu; K) := \int_K \int_K \|x-y\|^p \, d\mu(x) \, d\mu(y) \rightsquigarrow \text{p-energy integral given by μ.}$$
Energy Integrals: some definitions

Let $K \subset \mathbb{R}^n$ be a compact set and μ be a signed Borel measure supported on K of total mass one (i.e., $\mu(K) = 1$).

For a real number p (for us, $0 < p < 2$), we define

$$I_p(\mu; K) := \int_K \int_K \|x - y\|^p \, d\mu(x) \, d\mu(y) \rightsquigarrow \text{p-energy integral given by } \mu.$$

And define,

$$M_p(K) := \sup_{\mu} I_p(\mu; K)$$
Energy Integrals: some definitions

Let \(K \subset \mathbb{R}^n \) be a compact set and \(\mu \) be a signed Borel measure supported on \(K \) of total mass one (i.e., \(\mu(K) = 1 \)).

For a real number \(p \) (for us, \(0 < p < 2 \)), we define

\[
I_p(\mu; K) := \int_K \int_K \|x-y\|^p \, d\mu(x) \, d\mu(y) \quad \text{p-energy integral given by } \mu.
\]

And define,

\[
M_p(K) := \sup_{\mu} I_p(\mu; K) \quad \text{p-maximal energy of } K.
\]

Theorem (Alexander-Stolarsky)

Let $K \subset \mathbb{R}^n$ be a compact set. Then,

$$
\rho_\alpha(K) = \sqrt{\frac{M_{2\alpha}(K)}{2}}
$$
The connection!

Theorem (Alexander-Stolarsky)

Let $K \subset \mathbb{R}^n$ be a compact set. Then,

$$
\rho_\alpha(K) = \sqrt{\frac{M_{2\alpha}(K)}{2}}
$$

We will be focused on computing the value of $M_{2\alpha}(K)$.
Denote by B_n the unit ball in \mathbb{R}^n.

- $M_1(B_1) = M_1([-1, 1]) = 1$ (Alexander-Stolarsky, Trans. AMS. ’74)
Denote by B_n the unit ball in \mathbb{R}^n.

- $M_1(B_1) = M_1([-1, 1]) = 1$ (Alexander-Stolarsky, Trans. AMS. ’74)

- $M_1(B_3) = 2$ (Alexander, Proc. AMS. ’77)
Denote by B_n the unit ball in \mathbb{R}^n.

- $M_1(B_1) = M_1([-1, 1]) = 1$ (Alexander-Stolarsky, Trans. AMS. ’74)
- $M_1(B_3) = 2$ (Alexander, Proc. AMS. ’77)
- $M_1(B_n) =$???
Denote by B_n the unit ball in \mathbb{R}^n.

- $M_1(B_1) = M_1([-1, 1]) = 1$ (Alexander-Stolarsky, Trans. AMS. ’74)

- $M_1(B_3) = 2$ (Alexander, Proc. AMS. ’77)

- $M_1(B_n) =$??? \Rightarrow remained unknown for a very long time.

Theorem (Hinrichs, Nickolas and Wolf)

\[
M_1(B_n) = \frac{\pi^{1/2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}.
\]

Theorem (Hinrichs, Nickolas and Wolf)

\[M_1(B_n) = \frac{\pi^{1/2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}. \]

Question

- What is the value of \(M_p(B_n) \), for \(0 < p < 2 \)?

The number \(\frac{\pi^{1/2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \) is exactly \(\pi^{1/2} \) (id: \(\ell^2 \to \ell^2 \)).

Theorem (Hinrichs, Nickolas and Wolf)

\[M_1(B_n) = \frac{\pi^{1/2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}. \]

Question

- What is the value of \(M_p(B_n) \), for \(0 < p < 2 \)?
- What is the value of \(M_p(K) \) for other type of convex bodies \(K \) t’s (e.g., an ellipsoid or the unit ball of \(\ell^q \))?

Theorem (Hinrichs, Nickolas and Wolf)

\[M_1(B_n) = \frac{\pi^{1/2}\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}. \]

Question

- What is the value of \(M_p(B_n) \), for \(0 < p < 2 \)?
- What is the value of \(M_p(K) \) for other type of convex bodies \(K \) t’s (e.g., an ellipsoid or the unit ball of \(\ell_q^n \)?)
- Does the number \(\frac{\pi^{1/2}\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \) look familiar to you?

Theorem (Hinrichs, Nickolas and Wolf)

$$M_1(B_n) = \frac{\pi^{1/2}\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}.$$

Question

- What is the value of $M_p(B_n)$, for $0 < p < 2$?
- What is the value of $M_p(K)$ for other type of convex bodies K's (e.g., an ellipsoid or the unit ball of ℓ_q^n)?
- Does the number $\frac{\pi^{1/2}\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}$ look familiar to you?

Theorem (Hinrichs, Nickolas and Wolf)

\[M_1(B_n) = \frac{\pi^{1/2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}. \]

Question

- What is the value of \(M_p(B_n) \), for \(0 < p < 2 \)?
- What is the value of \(M_p(K) \) for other type of convex bodies \(K \)'s (e.g., an ellipsoid or the unit ball of \(\ell_q^n \))?
- Does the number \(\frac{\pi^{1/2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \) look familiar to you?

The number \(\frac{\pi^{1/2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \) is exactly \(\pi_1(id : \ell_2^n \to \ell_2^n) \).
Theorem (Carando, G., Pinasco: Int Math Res Notices)

\[M_p(B_n) = \frac{\pi^{1/2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right)\Gamma\left(\frac{n}{2}\right)} M_p([-1, 1]) \]
Theorem (Carando, G., Pinarosc: Int Math Res Notices)

\[M_p(B_n) = \frac{\pi^{1/2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right)\Gamma\left(\frac{n}{2}\right)} \ M_p([-1, 1]) \]

\[= \pi_p(id: \ell^m_2 \to \ell^m_2)^p \ M_p([-1, 1]) \]
Theorem (Carando, G., Pinasco: Int Math Res Notices)

\[M_p(B_n) = \frac{\pi^{1/2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right)\Gamma\left(\frac{n}{2}\right)} \cdot M_p([-1, 1]) \]

\[= \pi_p(id : \ell^n_2 \to \ell^n_2)^p \cdot M_p([-1, 1]) \]

Using \(\lim_{m \to \infty} \frac{\Gamma(m+c)}{\Gamma(m)m^c} = 1 \), and the previous result we get:

Corollary

\[\rho_\alpha(B_n) \asymp n^{\frac{\alpha}{2}}. \]
Theorem (Carando, G., Pinasco: Int Math Res Notices)

\[M_p(B_n) = \frac{\pi^{1/2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right)\Gamma\left(\frac{n}{2}\right)} M_p([-1, 1]) \]

\[= \pi_p(id: \ell^n_2 \rightarrow \ell^n_2)^p M_p([-1, 1]) \]

Using \(\lim_{m \to \infty} \frac{\Gamma(m+c)}{\Gamma(m)m^c} = 1 \), and the previous result we get:

Corollary

\[\rho_\alpha(B_n) \asymp n^{\frac{\alpha}{2}}. \]

In the case where the convex set is an ellipsoid \(\mathcal{E} \)?

\[M_p(\mathcal{E}) = M_p(T(B_n)) = \pi_p(T: \ell^n_2 \rightarrow \ell^n_2)^p M_p([-1, 1]) \]
How is the p-summing norm related with this problem?
How is the p-summing norm related with this problem?

Lemma

For every $x \in \mathbb{R}^n$, *we have*

$$
\|Tx\|^p = \pi_p(T : \ell_2^n \to \ell_2^n)^p \int_{S^{n-1}} |\langle x, t \rangle|^p d\nu(t),
$$

where ν is a probability measure on the unit sphere S^{n-1}.
How is the p-summing norm related with this problem?

Lemma

For every $x \in \mathbb{R}^n$, we have

$$\|Tx\|_p^p = \pi_p(T : \ell_2^n \to \ell_2^n)^p \int_{S^{n-1}} |\langle x, t \rangle|^p d\nu(t),$$

where ν is a probability measure on the unit sphere S^{n-1}.

If T is the identity...

$$\|x\|_p^p = \pi_p(id : \ell_2^n \to \ell_2^n)^p \int_{S^{n-1}} |\langle x, t \rangle|^p d\lambda(t),$$

*where λ is just the normalized Lebesgue surface measure on the sphere S^{n-1}.***
$$M_p(B_n) = \pi_p(id_{\ell_2^n})^p M_p([-1, 1])$$

Upper bound: sketch

Let μ be a signed borel measure on B_n of total mass one.

$$I_p(\mu; B_n) := \int_{B_n} \int_{B_n} \|x - y\|^p d\mu(x) d\mu(y)$$
Upper bound: sketch

Let μ be a signed borel measure on B_n of total mass one.

\[
I_p(\mu; B_n) := \int_{B_n} \int_{B_n} \|x - y\|^p d\mu(x)d\mu(y)
= \int_{B_n} \int_{B_n} \pi_p(id_{\ell_2^n})^p \int_{S^{n-1}} |\langle x - y, t \rangle|^p d\lambda(t) d\mu(x)d\mu(y)
\]
$$M_p(B_n) = \pi_p(id_{\ell_2^n})^p M_p([-1, 1])$$

Upper bound: sketch

Let μ be a signed borel measure on B_n of total mass one.

$$I_p(\mu; B_n) := \int_{B_n} \int_{B_n} \|x - y\|^p d\mu(x) d\mu(y)$$

$$= \int_{B_n} \int_{B_n} \pi_p(id_{\ell_2^n})^p \int_{S^{n-1}} |\langle x - y, t \rangle|^p d\lambda(t) d\mu(x) d\mu(y)$$

$$= \pi_p(id_{\ell_2^n})^p \int_{S^{n-1}} \left[\int_{B_n} \int_{B_n} |\langle x - y, t \rangle|^p d\mu(x) d\mu(y) \right] d\lambda(t)$$
\[M_p(B_n) = \pi_p(id_{\ell_2^n})^p M_p([-1, 1]) \]

Upper bound: sketch

Let \(\mu \) be a signed borel measure on \(B_n \) of total mass one.

\[
I_p(\mu; B_n) := \int_{B_n} \int_{B_n} \|x - y\|^p d\mu(x) d\mu(y)
\]

\[
= \int_{B_n} \int_{B_n} \pi_p(id_{\ell_2^n})^p \int_{S^{n-1}} |\langle x - y, t \rangle|^p d\lambda(t) d\mu(x) d\mu(y)
\]

\[
= \pi_p(id_{\ell_2^n})^p \int_{S^{n-1}} \left[\int_{B_n} \int_{B_n} |\langle x - y, t \rangle|^p d\mu(x) d\mu(y) \right] d\lambda(t)
\]
\[M_p(B_n) = \pi_p(id_{\ell_2^n})^p M_p([−1, 1]) \]

Upper bound: sketch

Let \(\mu \) be a signed borel measure on \(B_n \) of total mass one.

\[
I_p(\mu; B_n) := \int_{B_n} \int_{B_n} \|x - y\|^p d\mu(x) d\mu(y)
\]
\[
= \int_{B_n} \int_{B_n} \pi_p(id_{\ell_2^n})^p \int_{S^{n-1}} |\langle x - y, t \rangle|^p d\lambda(t) d\mu(x) d\mu(y)
\]
\[
= \pi_p(id_{\ell_2^n})^p \int_{S^{n-1}} \left[\int_{B_n} \int_{B_n} |\langle x - y, t \rangle|^p d\mu(x) d\mu(y) \right] d\lambda(t)
\]
Upper bound: sketch

Let μ be a signed borel measure on B_n of total mass one.

\[
I_p(\mu; B_n) := \int_{B_n} \int_{B_n} \|x - y\|^p d\mu(x) d\mu(y)
\]

\[
= \int_{B_n} \int_{B_n} \pi_p(id_{\ell_n^2})^p \int_{S^{n-1}} |\langle x - y, t \rangle|^p d\lambda(t) d\mu(x) d\mu(y)
\]

\[
= \pi_p(id_{\ell_2^n})^p \int_{S^{n-1}} \left[\int_{B_n} \int_{B_n} |\langle x - y, t \rangle|^p d\mu(x) d\mu(y) \right] d\lambda(t)
\]

\[
= \pi_p(id_{\ell_2^n})^p \int_{S^{n-1}} \left[\int_{-1}^{1} \int_{-1}^{1} |u - v|^p d\mu_t(u) d\mu_t(v) \right] d\lambda(t)
\]
Classic results

$M_p(B_n) = \pi_p(id_{\ell^2_n})^p M_p([-1, 1])$

Upper bound: sketch

Let μ be a signed borel measure on B_n of total mass one.

\[I_p(\mu; B_n) := \int_{B_n} \int_{B_n} \|x - y\|^p d\mu(x) d\mu(y) \]

\[= \int_{B_n} \int_{B_n} \pi_p(id_{\ell^2_n})^p \int_{S^{n-1}} |\langle x - y, t \rangle|^p d\lambda(t) d\mu(x) d\mu(y) \]

\[= \pi_p(id_{\ell^2_n})^p \int_{S^{n-1}} \left[\int_{B_n} \int_{B_n} |\langle x - y, t \rangle|^p d\mu(x) d\mu(y) \right] d\lambda(t) \]

\[= \pi_p(id_{\ell^2_n})^p \int_{S^{n-1}} \left[\int_{-1}^{1} \int_{-1}^{1} |u - v|^p d\mu_t(u) d\mu_t(v) \right] d\lambda(t) \]

\[\leq \pi_p(id_{\ell^2_n})^p \int_{S^{n-1}} M_p([-1, 1]) d\lambda(t) \]
$M_p(B_n) = \pi_p(id_{\ell^2_n})^p M_p([-1, 1])$

Upper bound: sketch

Let μ be a signed borel measure on B_n of total mass one.

$$I_p(\mu; B_n) := \int_{B_n} \int_{B_n} \|x - y\|^p d\mu(x) d\mu(y)$$

$$= \int_{B_n} \int_{B_n} \pi_p(id_{\ell^2_n})^p \int_{S^{n-1}} |\langle x - y, t \rangle|^p d\lambda(t) d\mu(x) d\mu(y)$$

$$= \pi_p(id_{\ell^2_n})^p \int_{S^{n-1}} \left[\int_{B_n} \int_{B_n} |\langle x - y, t \rangle|^p d\mu(x) d\mu(y) \right] d\lambda(t)$$

$$= \pi_p(id_{\ell^2_n})^p \int_{S^{n-1}} \left[\int_{-1}^1 \int_{-1}^1 |u - v|^p d\mu_t(u) d\mu_t(v) \right] d\lambda(t)$$

$$\leq \pi_p(id_{\ell^2_n})^p \int_{S^{n-1}} M_p([-1, 1]) d\lambda(t)$$

$$= \pi_p(id_{\ell^2_n})^p M_p([-1, 1])$$
\[M_p(B_n) = \pi_p=id_{\ell_2}^p M_p([-1, 1]) \]

How to get equality?
\[M_p(B_n) = \pi_p(id_{\ell_2^n})^p M_p([-1, 1]) \]

How to get equality? Recall that for any \(\mu \),

\[I_p(\mu; B_n) = \pi_p(id_{\ell_2^n})^p \int_{S^{n-1}} \left[\int_{-1}^{1} \int_{-1}^{1} |u - v|^p d\mu_t(u)d\mu_t(v) \right] d\lambda(t) \]
How to get equality? Recall that for any μ,

$$I_p(\mu; B_n) = \pi_p(id_{\ell_2^n})^p \int_{S^{n-1}} \left[\int_{-1}^{1} \int_{-1}^{1} |u - v|^p d\mu_t(u) d\mu_t(v) \right] d\lambda(t)$$

We found a sequence $(\mu^k)_k \in \mathbb{N}$ of signed measures of total mass one B_n such that

$$\int_{-1}^{1} \int_{-1}^{1} |u - v|^p d\mu^k_t(u) d\mu^k_t(v) \Rightarrow M_p([-1, 1]).$$
$M_p(B_n) = \pi_p(id_{\ell_2^n})^p M_p([-1, 1])$

How to get equality? Recall that for any μ,

$$I_p(\mu; B_n) = \pi_p(id_{\ell_2^n})^p \int_{S^{n-1}} \left[\int_{-1}^{1} \int_{-1}^{1} |u - v|^p d\mu_t(u) d\mu_t(v) \right] d\lambda(t)$$

We found a sequence $(\mu^k)_{k \in \mathbb{N}}$ of signed measures of total mass one B_n such that

$$\int_{-1}^{1} \int_{-1}^{1} |u - v|^p d\mu_t^k(u) d\mu_t^k(v) \Rightarrow M_p([-1, 1]).$$

Therefore, $M_p(B_n) \geq I_p(\mu^k; B_n) \to \pi_p(id_{\ell_2^n})^p M_p([-1, 1])$.

Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body, then K is just the unit ball of an n-dimensional Banach space $(E, \| \cdot \|_E)$.

Question: How can we estimate the value of $\rho_\alpha(B_E)$, $0 < \alpha < 1$? Or, equivalently, how can we compute $M_p(B_E)$, $0 < p < 2$?
Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body, then K is just the unit ball of an n-dimensional Banach space $(E, \| \cdot \|_E) \sim$ i.e., $K = B_E$.

Bounds for other convex bodies

Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body, then K is just the unit ball of an n-dimensional Banach space $(E, \| \cdot \|_E) \sim \text{i.e., } K = B_E$.

Question

How can we estimate the value of $\rho_\alpha(B_E)$, $0 < \alpha < 1$?
Let $K \subset \mathbb{R}^n$ be a centrally symmetric convex body, then K is just the unit ball of an n-dimensional Banach space $(E, \| \cdot \|_E) \sim$ i.e., $K = B_E$.

Question

How can we estimate the value of $\rho_\alpha(B_E)$, $0 < \alpha < 1$? Or, equivalently, how can we compute $M_p(B_E)$, $0 < p < 2$?
Theorem

(General upper bound)

\[M_p(B_E) \leq M_p([-1, 1]) \frac{\pi^{1/2}}{\Gamma\left(\frac{p+1}{2}\right)\Gamma\left(\frac{n}{2}\right)} \int_{S^{n-1}} \|t\|_{E'}^p d\lambda(t). \]
Theorem

(General upper bound)

\[M_p(B_E) \leq M_p([-1, 1]) \frac{\pi^{1/2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \int_{S^{n-1}} \|t\|_E^p \, d\lambda(t). \]

This bound is expressed in terms of the mean width of \(B_E \), and is good enough in many cases!
Theorem

(General upper bound)

\[M_p(B_E) \leq M_p([-1, 1]) \frac{\pi^{1/2}}{\Gamma\left(\frac{p+1}{2}\right)} \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right)} \int_{S^{n-1}} \|t\|_{E'}^p d\lambda(t). \]

This bound is expressed in terms of the mean width of \(B_E \), and is good enough in many cases!

Theorem (Carando, G., Pinasco)

Let \(1 < q \leq 2 \) then

\[M_p(B_{\ell_q^n}) \asymp n^{\frac{p}{q'}} . \]

In particular, \(\rho_\alpha(B_{\ell_q^n}) \asymp n^{\frac{\alpha}{q'}} \).
Theorem

(General upper bound)

\[
M_p(B_E) \leq M_p([-1, 1]) \frac{\pi^{1/2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \int_{S^{n-1}} \|t\|^p d\lambda(t).
\]

This bound is expressed in terms of the mean width of \(B_E\), and is good enough in many cases!

Theorem (Carando, G., Pinasco)

Let \(1 < q \leq 2\) then

\[
M_p(B_{\ell_q^n}) \asymp n^{\frac{p}{q'}}.
\]

In particular, \(\rho_\alpha(B_{\ell_q^n}) \asymp n^{\frac{\alpha}{q'}}\).

Remark:

- Upper bounds were given using the previous result.
Theorem

(General upper bound)

\[
M_p(B_E) \leq M_p([-1, 1]) \frac{\pi^{1/2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \int_{S^{n-1}} \|t\|_E^p d\lambda(t).
\]

This bound is expressed in terms of the mean width of \(B_E\), and is good enough in many cases!

Theorem (Carando, G., Pinasco)

Let \(1 < q \leq 2\) then

\[
M_p(B_{\ell_q^n}) \asymp n^{\frac{p}{q'}}.
\]

In particular, \(\rho_\alpha(B_{\ell_q^n}) \asymp n^{\frac{\alpha}{q'}}\).

Remark:

- Upper bounds were given using the previous result.
- For the lower bound we use \(n^{(q-2)/2q} \ B_{\ell_2^n} \subset B_{\ell_q^n}\) and the fact that \(M_p(\cdot)\) is monotone function (under inclusion).
Theorem

(General upper bound)

\[M_p(B_E) \leq M_p([-1, 1]) \frac{\pi^{1/2} \Gamma\left(\frac{n+p}{2}\right)}{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \int_{S^{n-1}} \|t\|^p_{E^1} d\lambda(t). \]

This bound is expressed in terms of the mean width of \(B_E \), and is good enough in many cases!

Theorem (Carando, G., Pinasco)

Let \(1 < q \leq 2 \) then

\[M_p(B_{\ell^n_q}) \asymp n^{\frac{p}{q'}}. \]

In particular, \(\rho_\alpha(B_{\ell^n_q}) \asymp n^{\frac{\alpha}{q'}}. \)

Remark:

- Upper bounds were given using the previous result.
- For the lower bound we use \(n^{(q-2)/2q} \ B_{\ell^2} \subset B_{\ell^n_q} \) and the fact that \(M_p(\cdot) \) is monotone function (under inclusion).
Several open questions

- What is the asymptotic behavior of $\rho_\alpha(B_{\ell_q^n})$, for $2 \leq q \leq \infty$ or $q = 1$?
Several open questions

- What is the asymptotic behavior of $\rho_\alpha(\mathcal{B}_{\ell_q^n})$, for $2 \leq q \leq \infty$ or $q = 1$?
- Is there a closed formula for $M_p([-1, 1])$?

