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Banach ideals and Schreier families

A class G of continuous linear operators is said to have the ideal
property just in case BTA ∈ G(W ,Z ) for all A ∈ L(W ,X ),
B ∈ L(Y ,Z ), and T ∈ G(X ,Y ).

If in addition G(X ,Y ) is always a
linear space containing the finite-rank operators F(X ,Y ), then we
say that class G is an operator ideal. A Banach ideal is any
operator ideal G equipped with an “ideal norm” ρ such that all
component spaces G(X ,Y ) are complete with respect to the norm
ρ.

Let 1 ≤ ξ < ω1 be a countable ordinal and let Sξ denote the ξth
Schreier family. The Schreier families contain only finite subsets
of N. For example, S1 is the set of all A ⊆ N satisfying
#A ≤ minA. Note that this includes the empty set.

For convenience, denote by Sω1 the family of all finite subsets of N.
(This is nonstandard notation, but it greatly simplifies the writing.)
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The classes WD(∞,ξ)
`p

Let us fix some 1 < p ≤ ∞ and 1 ≤ ξ ≤ ω1.

We denote by WD(∞,ξ)
`p

(X ,Y ) the set of all operators

T ∈ L(X ,Y ) for which there exists a uniform constant C > 0 with
the following property: Each normalized weakly null sequence
(xn) ⊂ X admits a subsequence (xnk ) such that for all (αk) ∈ c00
with support in Sξ we get

‖
∑

αkTxnk‖ ≤ C‖(αk)‖`p .
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Using Schreier families

An operator T : X → Y is called strictly singular (SS) just in
case for every normalized basic sequence (xn) ⊆ X and every ε > 0
there exists (αn) ∈ c00 such that ‖

∑
αnTxn‖ < ε‖

∑
αnxn‖.

An
operator T : X → Y is called Sξ-strictly singular (SSξ) whenever
(αn) can always be chosen to have support in Sξ.

An operator T : X → Y is weakly compact (W) just in case for
every normalized basic sequence (xn) ⊆ X and every ε > 0 there is
(αn) ∈ c00 such that ‖

∑
αnTxn‖ < ε‖

∑
αnsn‖, where (sn) is the

summing basis for c0. We say that T is Sξ-weakly compact
(Wξ) whenever we can always choose (αn) to have support in Sξ.

The Rosenthal (R) and Sξ-Rosenthal (Rξ) operators can be
similarly defined using the canonical basis for `1 instead of the
summing basis for c0.
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Using Schreier families

Theorem (Odell-Teixeira, 2010)

There exists X such that SS1(X ) is not closed under addition. In
particular, SS1 is not an operator ideal.

Question.

Is Wξ an operator ideal?

Proposition.

WD(∞,ξ)
`p

is an operator ideal.

Proposition (Causey-Freeman-anonymous)⋂
1≤ξ<ω1

WD(∞,ξ)
`p

(X ,Y ) =WD(∞,ω1)
`p

(X ,Y ).
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Operator ideal families with `p parameters

Several other families of operator ideals have been constructed
which have parameters related to the `p spaces. For example:

Np = the ideal of p-nuclear operators.

Ip = the ideal of p-integral operators.

Πp = the ideal of p-summing operators.

V = the norm-closed ideal of completely continuous operators.

The new family of ideals sits here:

Np ( Ip ( Πp ( V (WD(∞,ξ)
`p

.

Ben Wallis Upper `p -estimates 6/13



Operator ideal families with `p parameters

Several other families of operator ideals have been constructed
which have parameters related to the `p spaces. For example:

Np = the ideal of p-nuclear operators.

Ip = the ideal of p-integral operators.

Πp = the ideal of p-summing operators.

V = the norm-closed ideal of completely continuous operators.

The new family of ideals sits here:

Np ( Ip ( Πp ( V (WD(∞,ξ)
`p

.

Ben Wallis Upper `p -estimates 6/13



Operator ideal families with `p parameters

Several other families of operator ideals have been constructed
which have parameters related to the `p spaces. For example:

Np = the ideal of p-nuclear operators.

Ip = the ideal of p-integral operators.

Πp = the ideal of p-summing operators.

V = the norm-closed ideal of completely continuous operators.

The new family of ideals sits here:

Np ( Ip ( Πp ( V (WD(∞,ξ)
`p

.

Ben Wallis Upper `p -estimates 6/13



Operator ideal families with `p parameters

Several other families of operator ideals have been constructed
which have parameters related to the `p spaces. For example:

Np = the ideal of p-nuclear operators.

Ip = the ideal of p-integral operators.

Πp = the ideal of p-summing operators.

V = the norm-closed ideal of completely continuous operators.

The new family of ideals sits here:

Np ( Ip ( Πp ( V (WD(∞,ξ)
`p

.

Ben Wallis Upper `p -estimates 6/13



Operator ideal families with `p parameters

Several other families of operator ideals have been constructed
which have parameters related to the `p spaces. For example:

Np = the ideal of p-nuclear operators.

Ip = the ideal of p-integral operators.

Πp = the ideal of p-summing operators.

V = the norm-closed ideal of completely continuous operators.

The new family of ideals sits here:

Np ( Ip ( Πp ( V (WD(∞,ξ)
`p

.

Ben Wallis Upper `p -estimates 6/13



Operator ideal families with `p parameters

Several other families of operator ideals have been constructed
which have parameters related to the `p spaces. For example:

Np = the ideal of p-nuclear operators.

Ip = the ideal of p-integral operators.

Πp = the ideal of p-summing operators.

V = the norm-closed ideal of completely continuous operators.

The new family of ideals sits here:

Np ( Ip ( Πp ( V (WD(∞,ξ)
`p

.

Ben Wallis Upper `p -estimates 6/13



A seminorm for the spaces WD(∞,ξ)
`p

(X ,Y )

For each T in class WD(∞,ξ)
`p

, we denote

C(p,ξ)(T ) := inf C ,

where the “inf” ranges over all possible (uniform) domination

constants in the definition of WD(∞,ξ)
`p

.

Proposition.

C(p,ξ) is a seminorm on the space WD(∞,ξ)
`p

(X ,Y ).
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Classes WD(C ,ξ)
`p

For each 0 ≤ C <∞, define

WD(C ,ξ)
`p

(X ,Y ) =
{
T ∈ WD(∞,ξ)

`p
(X ,Y ) : C(p,ξ)(T ) ≤ C

}
.

It is evident that

WD(∞,ξ)
`p

(X ,Y ) =
⋃
C≥0
WD(C ,ξ)

`p
(X ,Y ) =

∞⋃
n=1

WD(n,ξ)
`p

(X ,Y ).

We also have
WD(0,ξ)

`p
= V.

However, when C ∈ (0,∞), the components WD(C ,ξ)
`p

(X ,Y ) do
not form linear spaces.
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WD(∞,ξ)
`p

fails to be norm-closed but WD(∞,1)
`p

is Fσ

In the special case ξ = 1, the sets WD(C ,1)
`p

(X ,Y ), 0 ≤ C <∞,

are always norm-closed in L(X ,Y ).

Consequently,

WD(∞,1)
`p

(X ,Y ) =
∞⋃
n=1

WD(n,1)
`p

(X ,Y )

is an Fσ-subset of L(X ,Y ).

Proposition.

For any 1 < p ≤ ∞ and any 1 ≤ ξ ≤ ω1, there exists a space X

such that WD(∞,ξ)
`p

(X ) is not norm-closed.
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WD(∞,1)
`p

is a Banach ideal

Define ‖T‖(p,ξ) := C(p,ξ)(T ) + ‖T‖op.

This is a norm on the space WD(∞,ξ)
`p

(X ,Y ), since it is the sum of
a norm and a seminorm. In fact, it is easily seen to be an ideal
norm.

Proposition.

In the special case ξ = 1, the space WD(∞,1)
`p

(X ,Y ) is complete

under the norm ‖·‖(p,1). In particular, class WD(∞,1)
`p

forms a
Banach ideal.

We do not yet know if the classes WD(∞,ξ)
`p

form Banach ideals
when ξ 6= 1.
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In the special case ξ = 1, the space WD(∞,1)
`p
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under the norm ‖·‖(p,1). In particular, class WD(∞,1)
`p

forms a
Banach ideal.
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Significance of p parameter

Proposition.

When ξ is fixed, the norm-closed operator ideals WD(∞,ξ)
`p are all

distinct as p ranges over 1 ≤ p ≤ ∞.

In particular, for 1 < q < p <∞,

WD(∞,ξ)
`p

(`q) = K(`q) 6= L(`q) =WD(∞,ξ)
`q

(`q).
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Significance of ξ parameter

Let Tp′ = Tp′ [Sξ, 12 ] denote the p′-convexified Tsirelson space of
order ξ (where 1

p + 1
p′ = 1).

Example

WD(∞,ξ)
`p

(T ∗p′) = L(T ∗p′) 6=WD
(∞,ω1)
`p (T ∗p′).

Recall again that
⋂

1≤ξ<ω1
WD(∞,ξ)

`p
(X ,Y ) =WD(∞,ω1)

`p
(X ,Y ).

Proposition.

There exists a strictly increasing sequence (ξn) of countable
ordinals 1 ≤ ξn < ξn+1 < ω1, n ∈ N, and a sequence (Xn) of
Banach spaces, such that for all m, n ∈ N with m < n we have

WD(∞,ξn)
`p (Xm) (WD(∞,ξm)

`p (Xm)
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That’s all folks!

Thank you for listening!
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