Constructing Banach ideals using upper ℓ_p -estimates

Ben Wallis

Northern Illinois University Dekalb, IL, USA

Tuesday, 2015 June 09
Relations between Banach space theory
and geometric measure theory
at the University of Warwick,
Coventry, UK

A class \mathcal{G} of continuous linear operators is said to have the **ideal property** just in case $BTA \in \mathcal{G}(W, Z)$ for all $A \in \mathcal{L}(W, X)$, $B \in \mathcal{L}(Y, Z)$, and $T \in \mathcal{G}(X, Y)$.

A class \mathcal{G} of continuous linear operators is said to have the **ideal property** just in case $BTA \in \mathcal{G}(W,Z)$ for all $A \in \mathcal{L}(W,X)$, $B \in \mathcal{L}(Y,Z)$, and $T \in \mathcal{G}(X,Y)$. If in addition $\mathcal{G}(X,Y)$ is always a linear space containing the finite-rank operators $\mathcal{F}(X,Y)$, then we say that class \mathcal{G} is an **operator ideal**.

A class $\mathcal G$ of continuous linear operators is said to have the **ideal property** just in case $BTA \in \mathcal G(W,Z)$ for all $A \in \mathcal L(W,X)$, $B \in \mathcal L(Y,Z)$, and $T \in \mathcal G(X,Y)$. If in addition $\mathcal G(X,Y)$ is always a linear space containing the finite-rank operators $\mathcal F(X,Y)$, then we say that class $\mathcal G$ is an **operator ideal**. A **Banach ideal** is any operator ideal $\mathcal G$ equipped with an "ideal norm" ρ such that all component spaces $\mathcal G(X,Y)$ are complete with respect to the norm ρ .

A class $\mathcal G$ of continuous linear operators is said to have the **ideal property** just in case $BTA \in \mathcal G(W,Z)$ for all $A \in \mathcal L(W,X)$, $B \in \mathcal L(Y,Z)$, and $T \in \mathcal G(X,Y)$. If in addition $\mathcal G(X,Y)$ is always a linear space containing the finite-rank operators $\mathcal F(X,Y)$, then we say that class $\mathcal G$ is an **operator ideal**. A **Banach ideal** is any operator ideal $\mathcal G$ equipped with an "ideal norm" ρ such that all component spaces $\mathcal G(X,Y)$ are complete with respect to the norm ρ .

Let $1 \le \xi < \omega_1$ be a countable ordinal and let \mathcal{S}_{ξ} denote the $\boldsymbol{\xi}$ th Schreier family.

A class $\mathcal G$ of continuous linear operators is said to have the **ideal property** just in case $BTA \in \mathcal G(W,Z)$ for all $A \in \mathcal L(W,X)$, $B \in \mathcal L(Y,Z)$, and $T \in \mathcal G(X,Y)$. If in addition $\mathcal G(X,Y)$ is always a linear space containing the finite-rank operators $\mathcal F(X,Y)$, then we say that class $\mathcal G$ is an **operator ideal**. A **Banach ideal** is any operator ideal $\mathcal G$ equipped with an "ideal norm" ρ such that all component spaces $\mathcal G(X,Y)$ are complete with respect to the norm ρ .

Let $1 \leq \xi < \omega_1$ be a countable ordinal and let \mathcal{S}_{ξ} denote the $\boldsymbol{\xi}$ th Schreier family. The Schreier families contain only finite subsets of \mathbb{N} .

A class $\mathcal G$ of continuous linear operators is said to have the **ideal property** just in case $BTA \in \mathcal G(W,Z)$ for all $A \in \mathcal L(W,X)$, $B \in \mathcal L(Y,Z)$, and $T \in \mathcal G(X,Y)$. If in addition $\mathcal G(X,Y)$ is always a linear space containing the finite-rank operators $\mathcal F(X,Y)$, then we say that class $\mathcal G$ is an **operator ideal**. A **Banach ideal** is any operator ideal $\mathcal G$ equipped with an "ideal norm" ρ such that all component spaces $\mathcal G(X,Y)$ are complete with respect to the norm ρ .

Let $1 \leq \xi < \omega_1$ be a countable ordinal and let \mathcal{S}_ξ denote the ξ th Schreier family. The Schreier families contain only finite subsets of \mathbb{N} . For example, \mathcal{S}_1 is the set of all $A \subseteq \mathbb{N}$ satisfying $\#A \leq \min A$. Note that this includes the empty set.

A class $\mathcal G$ of continuous linear operators is said to have the **ideal property** just in case $BTA \in \mathcal G(W,Z)$ for all $A \in \mathcal L(W,X)$, $B \in \mathcal L(Y,Z)$, and $T \in \mathcal G(X,Y)$. If in addition $\mathcal G(X,Y)$ is always a linear space containing the finite-rank operators $\mathcal F(X,Y)$, then we say that class $\mathcal G$ is an **operator ideal**. A **Banach ideal** is any operator ideal $\mathcal G$ equipped with an "ideal norm" ρ such that all component spaces $\mathcal G(X,Y)$ are complete with respect to the norm ρ .

Let $1 \leq \xi < \omega_1$ be a countable ordinal and let \mathcal{S}_ξ denote the ξ th Schreier family. The Schreier families contain only finite subsets of \mathbb{N} . For example, \mathcal{S}_1 is the set of all $A \subseteq \mathbb{N}$ satisfying $\#A \leq \min A$. Note that this includes the empty set.

For convenience, denote by S_{ω_1} the family of all finite subsets of \mathbb{N} .

A class $\mathcal G$ of continuous linear operators is said to have the **ideal property** just in case $BTA \in \mathcal G(W,Z)$ for all $A \in \mathcal L(W,X)$, $B \in \mathcal L(Y,Z)$, and $T \in \mathcal G(X,Y)$. If in addition $\mathcal G(X,Y)$ is always a linear space containing the finite-rank operators $\mathcal F(X,Y)$, then we say that class $\mathcal G$ is an **operator ideal**. A **Banach ideal** is any operator ideal $\mathcal G$ equipped with an "ideal norm" ρ such that all component spaces $\mathcal G(X,Y)$ are complete with respect to the norm ρ .

Let $1 \leq \xi < \omega_1$ be a countable ordinal and let \mathcal{S}_ξ denote the ξ th Schreier family. The Schreier families contain only finite subsets of \mathbb{N} . For example, \mathcal{S}_1 is the set of all $A \subseteq \mathbb{N}$ satisfying $\#A \leq \min A$. Note that this includes the empty set.

For convenience, denote by S_{ω_1} the family of all finite subsets of \mathbb{N} . (This is nonstandard notation, but it greatly simplifies the writing.)

The classes $\mathcal{WD}_{\ell_p}^{(\infty,\xi)}$

Let us fix some $1 and <math>1 \le \xi \le \omega_1$.

The classes $\mathcal{WD}_{\ell_p}^{(\infty,\xi)}$

Let us fix some $1 and <math>1 \le \xi \le \omega_1$.

We denote by $\mathcal{WD}_{\ell_p}^{(\infty,\xi)}(X,Y)$ the set of all operators $T\in\mathcal{L}(X,Y)$ for which there exists a uniform constant C>0 with the following property: Each normalized weakly null sequence $(x_n)\subset X$ admits a subsequence (x_{n_k}) such that for all $(\alpha_k)\in c_{00}$ with support in $\mathcal{S}_{\mathcal{E}}$ we get

$$\|\sum \alpha_k Tx_{n_k}\| \leq C\|(\alpha_k)\|_{\ell_p}.$$

An operator $T: X \to Y$ is called **strictly singular** (SS) just in case for every normalized basic sequence $(x_n) \subseteq X$ and every $\epsilon > 0$ there exists $(\alpha_n) \in c_{00}$ such that $\|\sum \alpha_n T x_n\| < \epsilon \|\sum \alpha_n x_n\|$.

An operator $T: X \to Y$ is called **strictly singular** (\mathcal{SS}) just in case for every normalized basic sequence $(x_n) \subseteq X$ and every $\epsilon > 0$ there exists $(\alpha_n) \in c_{00}$ such that $\|\sum \alpha_n T x_n\| < \epsilon \|\sum \alpha_n x_n\|$. An operator $T: X \to Y$ is called \mathcal{S}_{ξ} -strictly singular (\mathcal{SS}_{ξ}) whenever (α_n) can always be chosen to have support in \mathcal{S}_{ξ} .

An operator $T: X \to Y$ is called **strictly singular** (\mathcal{SS}) just in case for every normalized basic sequence $(x_n) \subseteq X$ and every $\epsilon > 0$ there exists $(\alpha_n) \in c_{00}$ such that $\|\sum \alpha_n T x_n\| < \epsilon \|\sum \alpha_n x_n\|$. An operator $T: X \to Y$ is called \mathcal{S}_{ξ} -strictly singular (\mathcal{SS}_{ξ}) whenever (α_n) can always be chosen to have support in \mathcal{S}_{ξ} .

An operator $T: X \to Y$ is **weakly compact** (\mathcal{W}) just in case for every normalized basic sequence $(x_n) \subseteq X$ and every $\epsilon > 0$ there is $(\alpha_n) \in c_{00}$ such that $\|\sum \alpha_n T x_n\| < \epsilon \|\sum \alpha_n s_n\|$, where (s_n) is the summing basis for c_0 .

An operator $T: X \to Y$ is called **strictly singular** (\mathcal{SS}) just in case for every normalized basic sequence $(x_n) \subseteq X$ and every $\epsilon > 0$ there exists $(\alpha_n) \in c_{00}$ such that $\|\sum \alpha_n T x_n\| < \epsilon \|\sum \alpha_n x_n\|$. An operator $T: X \to Y$ is called \mathcal{S}_{ξ} -strictly singular (\mathcal{SS}_{ξ}) whenever (α_n) can always be chosen to have support in \mathcal{S}_{ξ} .

An operator $T: X \to Y$ is **weakly compact** (\mathcal{W}) just in case for every normalized basic sequence $(x_n) \subseteq X$ and every $\epsilon > 0$ there is $(\alpha_n) \in c_{00}$ such that $\|\sum \alpha_n T x_n\| < \epsilon \|\sum \alpha_n s_n\|$, where (s_n) is the summing basis for c_0 . We say that T is \mathcal{S}_{ξ} -weakly compact (\mathcal{W}_{ξ}) whenever we can always choose (α_n) to have support in \mathcal{S}_{ξ} .

An operator $T: X \to Y$ is called **strictly singular** (\mathcal{SS}) just in case for every normalized basic sequence $(x_n) \subseteq X$ and every $\epsilon > 0$ there exists $(\alpha_n) \in c_{00}$ such that $\|\sum \alpha_n T x_n\| < \epsilon \|\sum \alpha_n x_n\|$. An operator $T: X \to Y$ is called \mathcal{S}_{ξ} -strictly singular (\mathcal{SS}_{ξ}) whenever (α_n) can always be chosen to have support in \mathcal{S}_{ξ} .

An operator $T: X \to Y$ is **weakly compact** (\mathcal{W}) just in case for every normalized basic sequence $(x_n) \subseteq X$ and every $\epsilon > 0$ there is $(\alpha_n) \in c_{00}$ such that $\|\sum \alpha_n T x_n\| < \epsilon \|\sum \alpha_n s_n\|$, where (s_n) is the summing basis for c_0 . We say that T is \mathcal{S}_{ξ} -weakly compact (\mathcal{W}_{ξ}) whenever we can always choose (α_n) to have support in \mathcal{S}_{ξ} .

The Rosenthal (\mathcal{R}) and \mathcal{S}_{ξ} -Rosenthal (\mathcal{R}_{ξ}) operators can be similarly defined using the canonical basis for ℓ_1 instead of the summing basis for c_0 .

Theorem (Odell-Teixeira, 2010)

There exists X such that $SS_1(X)$ is not closed under addition. In particular, SS_1 is not an operator ideal.

Theorem (Odell-Teixeira, 2010)

There exists X such that $SS_1(X)$ is not closed under addition. In particular, SS_1 is not an operator ideal.

Question.

Is W_{ξ} an operator ideal?

Theorem (Odell-Teixeira, 2010)

There exists X such that $SS_1(X)$ is not closed under addition. In particular, SS_1 is not an operator ideal.

Question.

Is W_{ξ} an operator ideal?

Proposition.

 $\mathcal{WD}_{\ell_p}^{(\infty,\xi)}$ is an operator ideal.

Theorem (Odell-Teixeira, 2010)

There exists X such that $SS_1(X)$ is not closed under addition. In particular, SS_1 is not an operator ideal.

Question.

Is W_{ξ} an operator ideal?

Proposition.

 $\mathcal{WD}_{\ell_p}^{(\infty,\xi)}$ is an operator ideal.

Proposition (Causey-Freeman-anonymous)

$$\bigcap_{1\leq \xi < \omega_1} \mathcal{WD}_{\ell_p}^{(\infty,\xi)}(X,Y) = \mathcal{WD}_{\ell_p}^{(\infty,\omega_1)}(X,Y).$$

Several other families of operator ideals have been constructed which have parameters related to the ℓ_p spaces. For example:

Several other families of operator ideals have been constructed which have parameters related to the ℓ_p spaces. For example:

 $\mathcal{N}_p =$ the ideal of *p*-nuclear operators.

Several other families of operator ideals have been constructed which have parameters related to the ℓ_p spaces. For example:

 $\mathcal{N}_p =$ the ideal of *p*-nuclear operators.

 \mathcal{I}_p = the ideal of *p*-integral operators.

Several other families of operator ideals have been constructed which have parameters related to the ℓ_p spaces. For example:

 $\mathcal{N}_p=$ the ideal of *p*-nuclear operators.

 \mathcal{I}_p = the ideal of *p*-integral operators.

 Π_p = the ideal of *p*-summing operators.

Several other families of operator ideals have been constructed which have parameters related to the ℓ_p spaces. For example:

 $\mathcal{N}_{p}=$ the ideal of *p*-nuclear operators.

 \mathcal{I}_p = the ideal of *p*-integral operators.

 Π_p = the ideal of *p*-summing operators.

 $\mathcal{V}=$ the norm-closed ideal of completely continuous operators.

Several other families of operator ideals have been constructed which have parameters related to the ℓ_p spaces. For example:

 \mathcal{N}_p = the ideal of *p*-nuclear operators.

 \mathcal{I}_p = the ideal of *p*-integral operators.

 Π_p = the ideal of *p*-summing operators.

 $\mathcal{V}=$ the norm-closed ideal of completely continuous operators.

The new family of ideals sits here:

$$\mathcal{N}_p \subsetneq \mathcal{I}_p \subsetneq \Pi_p \subsetneq \mathcal{V} \subsetneq \mathcal{WD}_{\ell_p}^{(\infty,\xi)}.$$

A seminorm for the spaces $\mathcal{WD}_{\ell_p}^{(\infty,\xi)}(X,Y)$

For each T in class $\mathcal{WD}_{\ell_p}^{(\infty,\xi)}$, we denote

$$C_{(p,\xi)}(T) := \inf C$$
,

where the "inf" ranges over all possible (uniform) domination constants in the definition of $\mathcal{WD}_{\ell_p}^{(\infty,\xi)}$.

A seminorm for the spaces $\mathcal{WD}_{\ell_p}^{(\infty,\xi)}(X,Y)$

For each T in class $\mathcal{WD}_{\ell_p}^{(\infty,\xi)}$, we denote

$$C_{(p,\xi)}(T) := \inf C$$
,

where the "inf" ranges over all possible (uniform) domination constants in the definition of $\mathcal{WD}_{\ell_p}^{(\infty,\xi)}$.

Proposition.

 $C_{(p,\xi)}$ is a seminorm on the space $\mathcal{WD}_{\ell_p}^{(\infty,\xi)}(X,Y)$.

Classes $\mathcal{WD}_{\ell_p}^{(C,\xi)}$

For each $0 \le C < \infty$, define

$$\mathcal{WD}_{\ell_p}^{(C,\xi)}(X,Y) = \left\{ T \in \mathcal{WD}_{\ell_p}^{(\infty,\xi)}(X,Y) : C_{(p,\xi)}(T) \leq C \right\}.$$

Classes $\mathcal{WD}_{\ell_p}^{(C,\xi)}$

For each $0 \le C < \infty$, define

$$\mathcal{WD}_{\ell_p}^{(C,\xi)}(X,Y) = \left\{ T \in \mathcal{WD}_{\ell_p}^{(\infty,\xi)}(X,Y) : C_{(p,\xi)}(T) \leq C \right\}.$$

It is evident that

$$\mathcal{WD}_{\ell_p}^{(\infty,\xi)}(X,Y) = \bigcup_{C>0} \mathcal{WD}_{\ell_p}^{(C,\xi)}(X,Y) = \bigcup_{n=1}^{\infty} \mathcal{WD}_{\ell_p}^{(n,\xi)}(X,Y).$$

Classes $\mathcal{WD}_{\ell_p}^{(\mathcal{C},\xi)}$

For each $0 \le C < \infty$, define

$$\mathcal{WD}_{\ell_p}^{(C,\xi)}(X,Y) = \left\{ \mathcal{T} \in \mathcal{WD}_{\ell_p}^{(\infty,\xi)}(X,Y) : C_{(p,\xi)}(\mathcal{T}) \leq C \right\}.$$

It is evident that

$$\mathcal{WD}_{\ell_p}^{(\infty,\xi)}(X,Y) = \bigcup_{C \geq 0} \mathcal{WD}_{\ell_p}^{(C,\xi)}(X,Y) = \bigcup_{n=1}^{\infty} \mathcal{WD}_{\ell_p}^{(n,\xi)}(X,Y).$$

We also have

$$\mathcal{WD}_{\ell_p}^{(0,\xi)} = \mathcal{V}.$$

Classes $\mathcal{WD}_{\ell_p}^{(\mathcal{C},\xi)}$

For each $0 \le C < \infty$, define

$$\mathcal{WD}_{\ell_p}^{(C,\xi)}(X,Y) = \left\{ T \in \mathcal{WD}_{\ell_p}^{(\infty,\xi)}(X,Y) : C_{(p,\xi)}(T) \leq C \right\}.$$

It is evident that

$$\mathcal{WD}_{\ell_p}^{(\infty,\xi)}(X,Y) = \bigcup_{C \geq 0} \mathcal{WD}_{\ell_p}^{(C,\xi)}(X,Y) = \bigcup_{n=1}^{\infty} \mathcal{WD}_{\ell_p}^{(n,\xi)}(X,Y).$$

We also have

$$\mathcal{WD}_{\ell_p}^{(0,\xi)} = \mathcal{V}.$$

However, when $C \in (0, \infty)$, the components $\mathcal{WD}_{\ell_p}^{(C,\xi)}(X,Y)$ do not form linear spaces.

$\mathcal{WD}_{\ell_p}^{(\infty,\xi)}$ fails to be norm-closed but $\mathcal{WD}_{\ell_p}^{(\infty,1)}$ is F_σ

In the special case $\xi=1$, the sets $\mathcal{WD}_{\ell_p}^{(C,1)}(X,Y)$, $0\leq C<\infty$, are always norm-closed in $\mathcal{L}(X,Y)$.

$\mathcal{WD}_{\ell_p}^{(\infty,\xi)}$ fails to be norm-closed but $\mathcal{WD}_{\ell_p}^{(\infty,1)}$ is F_σ

In the special case $\xi=1$, the sets $\mathcal{WD}_{\ell_p}^{(C,1)}(X,Y)$, $0\leq C<\infty$, are always norm-closed in $\mathcal{L}(X,Y)$. Consequently,

$$\mathcal{WD}_{\ell_p}^{(\infty,1)}(X,Y) = \bigcup_{n=1}^{\infty} \mathcal{WD}_{\ell_p}^{(n,1)}(X,Y)$$

is an F_{σ} -subset of $\mathcal{L}(X, Y)$.

$\mathcal{WD}_{\ell_p}^{(\infty,\xi)}$ fails to be norm-closed but $\mathcal{WD}_{\ell_p}^{(\infty,1)}$ is F_σ

In the special case $\xi=1$, the sets $\mathcal{WD}_{\ell_p}^{(C,1)}(X,Y)$, $0 \leq C < \infty$, are always norm-closed in $\mathcal{L}(X,Y)$. Consequently,

$$\mathcal{WD}_{\ell_p}^{(\infty,1)}(X,Y) = \bigcup_{n=1}^{\infty} \mathcal{WD}_{\ell_p}^{(n,1)}(X,Y)$$

is an F_{σ} -subset of $\mathcal{L}(X, Y)$.

Proposition.

For any $1 and any <math>1 \le \xi \le \omega_1$, there exists a space X such that $\mathcal{WD}_{\ell_p}^{(\infty,\xi)}(X)$ is not norm-closed.

Define
$$||T||_{(p,\xi)} := C_{(p,\xi)}(T) + ||T||_{op}$$
.

Define
$$||T||_{(p,\xi)} := C_{(p,\xi)}(T) + ||T||_{op}$$
.

This is a norm on the space $\mathcal{WD}_{\ell_p}^{(\infty,\xi)}(X,Y)$, since it is the sum of a norm and a seminorm.

Define
$$||T||_{(p,\xi)} := C_{(p,\xi)}(T) + ||T||_{op}$$
.

This is a norm on the space $\mathcal{WD}_{\ell_p}^{(\infty,\xi)}(X,Y)$, since it is the sum of a norm and a seminorm. In fact, it is easily seen to be an ideal norm.

Define
$$||T||_{(p,\xi)} := C_{(p,\xi)}(T) + ||T||_{op}$$
.

This is a norm on the space $\mathcal{WD}_{\ell_p}^{(\infty,\xi)}(X,Y)$, since it is the sum of a norm and a seminorm. In fact, it is easily seen to be an ideal norm.

Proposition.

In the special case $\xi=1$, the space $\mathcal{WD}_{\ell_p}^{(\infty,1)}(X,Y)$ is complete under the norm $\|\cdot\|_{(p,1)}$. In particular, class $\mathcal{WD}_{\ell_p}^{(\infty,1)}$ forms a Banach ideal.

Define
$$||T||_{(p,\xi)} := C_{(p,\xi)}(T) + ||T||_{op}$$
.

This is a norm on the space $\mathcal{WD}_{\ell_p}^{(\infty,\xi)}(X,Y)$, since it is the sum of a norm and a seminorm. In fact, it is easily seen to be an ideal norm.

Proposition.

In the special case $\xi=1$, the space $\mathcal{WD}_{\ell_p}^{(\infty,1)}(X,Y)$ is complete under the norm $\|\cdot\|_{(p,1)}$. In particular, class $\mathcal{WD}_{\ell_p}^{(\infty,1)}$ forms a Banach ideal.

We do not yet know if the classes $\mathcal{WD}_{\ell_p}^{(\infty,\xi)}$ form Banach ideals when $\xi \neq 1$.

Proposition.

When ξ is fixed, the norm-closed operator ideals $\overline{\mathcal{WD}}_{\ell_p}^{(\infty,\xi)}$ are all distinct as p ranges over $1 \leq p \leq \infty$.

Proposition.

When ξ is fixed, the norm-closed operator ideals $\overline{\mathcal{WD}}_{\ell_p}^{(\infty,\xi)}$ are all distinct as p ranges over $1 \leq p \leq \infty$.

In particular, for $1 < q < p < \infty$,

$$\mathcal{WD}_{\ell_p}^{(\infty,\xi)}(\ell_q) = \mathcal{K}(\ell_q) \neq \mathcal{L}(\ell_q) = \mathcal{WD}_{\ell_q}^{(\infty,\xi)}(\ell_q).$$

Let $T_{p'}=T_{p'}[\mathcal{S}_{\xi},\frac{1}{2}]$ denote the p'-convexified Tsirelson space of order ξ (where $\frac{1}{p}+\frac{1}{p'}=1$).

Let $T_{p'} = T_{p'}[S_{\xi}, \frac{1}{2}]$ denote the p'-convexified Tsirelson space of order ξ (where $\frac{1}{p} + \frac{1}{p'} = 1$).

Example

$$\mathcal{WD}_{\ell_p}^{(\infty,\xi)}(\mathcal{T}_{p'}^*) = \mathcal{L}(\mathcal{T}_{p'}^*)
eq \overline{\mathcal{WD}}_{\ell_p}^{(\infty,\omega_1)}(\mathcal{T}_{p'}^*).$$

Let $T_{p'}=T_{p'}[\mathcal{S}_{\xi},\frac{1}{2}]$ denote the p'-convexified Tsirelson space of order ξ (where $\frac{1}{p}+\frac{1}{p'}=1$).

Example

$$\mathcal{WD}_{\ell_p}^{(\infty,\xi)}(T_{p'}^*) = \mathcal{L}(T_{p'}^*)
eq \overline{\mathcal{WD}}_{\ell_p}^{(\infty,\omega_1)}(T_{p'}^*).$$

Recall again that $\bigcap_{1\leq \xi<\omega_1}\mathcal{WD}_{\ell_p}^{(\infty,\xi)}(X,Y)=\mathcal{WD}_{\ell_p}^{(\infty,\omega_1)}(X,Y)$.

Let $T_{p'} = T_{p'}[S_{\xi}, \frac{1}{2}]$ denote the p'-convexified Tsirelson space of order ξ (where $\frac{1}{p} + \frac{1}{p'} = 1$).

Example

$$\mathcal{WD}_{\ell_p}^{(\infty,\xi)}(T_{p'}^*) = \mathcal{L}(T_{p'}^*)
eq \overline{\mathcal{WD}}_{\ell_p}^{(\infty,\omega_1)}(T_{p'}^*).$$

Recall again that $\bigcap_{1\leq \xi<\omega_1}\mathcal{WD}_{\ell_\rho}^{(\infty,\xi)}(X,Y)=\mathcal{WD}_{\ell_\rho}^{(\infty,\omega_1)}(X,Y).$

Proposition.

There exists a strictly increasing sequence (ξ_n) of countable ordinals $1 \le \xi_n < \xi_{n+1} < \omega_1$, $n \in \mathbb{N}$, and a sequence (X_n) of Banach spaces, such that for all $m, n \in \mathbb{N}$ with m < n we have

$$\overline{\mathcal{W}}\mathcal{D}_{\ell_p}^{(\infty,\xi_n)}(X_m)\subsetneq \overline{\mathcal{W}}\mathcal{D}_{\ell_p}^{(\infty,\xi_m)}(X_m)$$

That's all folks!

Thank you for listening!