Warwick School: Nathan PS 2 Tuesday, September 12, 2017.

For further references and links: http://dunfield.info/warwick2017

1. Put a hyperbolic structure

$$\Sigma = S^2 - \{\text{three points}\}\$$

as follows. Fix an ideal triangle T in \mathbb{H}^2 and double it across the three boundary geodesics. That is, make two copies of it, call them T_1 and T_2 , and glue the sides together by the "identity map". Prove that the hyperbolic metric on Σ is complete.

- 2. Suppose \mathcal{T} is a (topological) ideal triangulation of punctured surface Σ . As per the lecture, we can put a hyperbolic structure on Σ by assigning a "shear" to each edge.
 - (a) Formulate conditions on the shears that are equivalent to the hyperbolic structure being complete.
 - (b) Use your answer in (a) and an Euler characteristic calculation to prove that the dimension of the Teichmüller space of a surface of genus g with k punctures has (real) dimension 6g 6 + 2k.
- 3. Consider the upper halfspace model for \mathbb{H}^3 . The plane E at height 1 has the standard Euclidean metric; it is an example of a *horosphere*. Given a compact region R in E, consider the "chimney" over it:

$$C(R) = \{(x, y, t) \in \mathbb{H}^3 \mid (x, y, 1) \in R \text{ and } t \ge 1\}$$

Prove that C(R) has finite volume and relate its volume to the area of R.

- 4. Consider the a geodesic ideal tetrahedron T in \mathbb{H}^3 . Recall from Lecture 2 that each edge of T has an associated *shape parameter*.
 - (a) Prove that the shape parameter does not depend on an orientation of the edge and that opposite edges have the same shape parameter.
 - Hint: Find symmetries of T by looking at the perpendicular bisectors between pairs of opposite edges.
 - (b) Prove the formulas that relate the different edge parameters given in lecture.
- 5. Figure out how to get SnapPy to give you the edge equations of an ideal triangulation.